JPH04143225A - Manufacture of long size steel with different strength in longitudinal direction - Google Patents
Manufacture of long size steel with different strength in longitudinal directionInfo
- Publication number
- JPH04143225A JPH04143225A JP26776790A JP26776790A JPH04143225A JP H04143225 A JPH04143225 A JP H04143225A JP 26776790 A JP26776790 A JP 26776790A JP 26776790 A JP26776790 A JP 26776790A JP H04143225 A JPH04143225 A JP H04143225A
- Authority
- JP
- Japan
- Prior art keywords
- long steel
- steel material
- heating
- longitudinal direction
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 87
- 239000010959 steel Substances 0.000 title claims abstract description 87
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 34
- 238000010438 heat treatment Methods 0.000 claims abstract description 51
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 28
- 238000001816 cooling Methods 0.000 claims abstract description 25
- 238000010791 quenching Methods 0.000 claims abstract description 23
- 238000005496 tempering Methods 0.000 claims abstract description 19
- 239000000463 material Substances 0.000 claims description 51
- 238000000034 method Methods 0.000 claims description 23
- 230000009466 transformation Effects 0.000 claims description 15
- 230000000171 quenching effect Effects 0.000 claims description 13
- 239000000498 cooling water Substances 0.000 claims description 6
- 238000000137 annealing Methods 0.000 abstract description 3
- 230000003014 reinforcing effect Effects 0.000 abstract description 2
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000005520 cutting process Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
Landscapes
- Heat Treatment Of Articles (AREA)
Abstract
Description
本発明は、長さ方向に強度の異なる長尺鋼材の製造方法
、特に自動車のドアの補強に用いるドアインパクトビー
ムの製造に適用して好適な長さ方向に強度の異なる長尺
鋼材の製造方法に関する。The present invention relates to a method for producing a long steel material having different strengths in the longitudinal direction, and a method for producing a long steel material having different strengths in the longitudinal direction, which is particularly suitable for manufacturing door impact beams used for reinforcing automobile doors. Regarding.
自動車ドアの強度向上の要請から、該ドアの内部にドア
インパクトビームを張設することが行われている。この
ドアインパクトビームは、車の大きさによって異なるが
、通常11前後の鋼管で形成されている。
し
上記ドアインパクトビームは、強い衝撃に耐えるように
するために大きな強度を必要とするが、その両管端部は
ドア枠等に固定するためにスェージ加工(swazin
q )をする必要があるので、適度な軟らかさが要求さ
れる。このような性能が要求されるドアインパクトビー
ムは、従来、以下の(1)、(2)に記載する方法で製
造されていた。
(1)長尺状の原管を所定の長さに切断して短管を作成
した後、該短管に対してその両端部を除いて、高周波加
熱等により焼入れ(quenching )−m戻L
(tenpering)処理(以下QT処理ともいう)
を行い、その後、QT処理を行わなかったために適度な
軟らかさを持つ両管端部に対してスェージ加工を行う。
(2)長尺状の原管を全長に亘ってQT処理した後、該
原管を所定の長さに切断して短管を作成し、次いで、該
短管の両管端部を軟化処理し、その軟化処理後の両管端
部をスェージ加工する。2. Description of the Related Art In order to improve the strength of automobile doors, a door impact beam is installed inside the door. This door impact beam is usually made of around 11 steel tubes, although it varies depending on the size of the car. However, the above-mentioned door impact beam requires great strength in order to withstand strong impacts, but both ends of the pipe are swaged to secure it to the door frame, etc.
q), appropriate softness is required. Door impact beams that require such performance have conventionally been manufactured by the methods described in (1) and (2) below. (1) After creating a short tube by cutting a long original tube into a predetermined length, the short tube is quenched by high-frequency heating, etc., except for both ends.
(tempering) processing (hereinafter also referred to as QT processing)
After that, swage processing is performed on both tube ends, which are moderately soft because QT treatment was not performed. (2) After applying QT treatment to the entire length of a long original tube, the original tube is cut to a predetermined length to create a short tube, and then both ends of the short tube are softened. After the softening treatment, the ends of both tubes are swaged.
しかしながら、前記(1)の方法では、切断後の短管を
QT処理する際に、両管端部を硬化させないために該両
管端部を除いてQT処理を行わなければならず、そのQ
T処理には、例えば、固定した短管の周囲に誘導加熱コ
イルを配設し、該コイルを所定長さ範囲移動させて焼入
れ加熱を行う膜幅が必要とされ、しかも原管を1本ずつ
しか処理できないため生産能率が低いという問題がある
。
又、前記(2)の方法では、長尺原管をQT処理した後
に切断を行うが、QT処理した鋼管はTS=150〜2
00Kgf/ll112クラスの硬さがあるため切断が
困難であり、又、切断後に管端部の軟化処理が必要であ
るため、短管の一本一本に新たに加熱処理が必要になる
という問題がある。
なお、前記(1)、(2)の方法の外に、両管端部がス
ェージ加工可能な軟らかさをもつ鋼管を製造する方法と
しては、長さ方向について部分的に強度が異なる長尺状
の鋼管を製造し、該鋼管をその軟らかい部分で切断して
短管を製造することが考えられる。この方法によれば、
ドアインパクトビーム等に適用できる両管端部にスェー
ジ加工を施すことかできる短管を容易に量産することも
できる。
しかしながら、従来は長さ方向について厚さが異なる鋼
管は製造されているが、長さ方向について強度が異なる
鋼管等の長尺鋼材の製造は実現されていない。
本発明は、前記従来の問題点を解決するべくなされたも
ので、例えば、両管端部がスェージ加工可能な軟らかさ
を備えたドアインパクトビームに好適な短管の製造等に
適用することができる、長さ方向について強度の異なる
長尺鋼材を短い工程で容易且つ確実に製造することがで
きる、長さ方向に強度の異なる長尺鋼材の製造方法を提
供することを課題とする。However, in the method (1) above, when performing QT treatment on the short pipe after cutting, in order to prevent both ends of the pipe from being hardened, the QT treatment must be performed excluding both ends of the pipe, and the
For T treatment, for example, an induction heating coil is placed around a fixed short tube, and the coil is moved over a predetermined length range to perform quenching heating. There is a problem that production efficiency is low because only a small amount of water can be processed. In addition, in the method (2) above, the long original pipe is cut after being QT treated, but the QT treated steel pipe has a TS of 150 to 2.
The problem is that it is difficult to cut because it has a hardness of 00Kgf/ll112 class, and that the ends of the tube must be softened after cutting, so each short tube requires additional heat treatment. There is. In addition to methods (1) and (2) above, there is a method for manufacturing a steel pipe whose both ends are soft enough to be swaged. It is conceivable to manufacture a short pipe by manufacturing a steel pipe and cutting the steel pipe at its soft part. According to this method,
It is also possible to easily mass-produce short tubes that can be applied to door impact beams, etc., and can be swaged at both tube ends. However, although steel pipes having different thicknesses in the longitudinal direction have been manufactured, the production of long steel materials such as steel pipes having different strengths in the longitudinal direction has not been realized. The present invention has been made to solve the above-mentioned conventional problems, and can be applied, for example, to the manufacture of short tubes suitable for door impact beams whose ends are soft enough to be swaged. An object of the present invention is to provide a method for manufacturing a long steel material having different strengths in the longitudinal direction, which can easily and reliably produce long steel materials having different strengths in the longitudinal direction in a short process.
【課題を達成するための手段1
第1発明は、長尺鋼材を加熱する第17U熱手段及び第
2加熱手段と、該長尺鋼材を水冷する冷却手段とを備え
た処理装置を用いる長さ方向に強度の異なる長尺鋼材の
製造方法であって、第1加熱手段により長尺鋼材を変態
温度Ac3以上の温度に加熱した後、長さ方向について
高強度が要求される範囲の長尺鋼材部分に対して、水冷
手段から所定水量の冷却水を噴射して焼入れを行い、且
つ、上記範囲以外の長尺鋼材部分に対して冷却水を遮断
又は焼入れ時より少ない水産で噴射して軟化処理を行い
、次いで、第2加熱手段により、少なくとも焼入れした
上記長尺鋼材部分を変態温度Ac1以下の温度に加熱し
て焼戻しを行うことにより、前記課題を達成したもので
ある。
第2発明は、又、前記処理装置を用いる長さ方向に強度
の異なる長尺鋼材の製造方法において、第1加熱手段に
より、長尺鋼材を変態温度Ac3以上の温度に加熱した
後、冷却手段により、加熱後の上記長尺鋼材を水冷して
焼入れを行い、次いで、第2加熱手段により、長さ方向
について高強度が要求される範囲の長尺鋼材部分を変態
温度Ac1以下の温度に加熱して焼戻しを行い、且つ上
記範囲以外の長尺鋼材部分を変態温度Ac1を超える温
度に加熱して軟化処理を行うことにより、同様に前記課
題を達成したものである。
第3発明は一更に、前記処理装置を用いる長さ方向に強
度の異なる長尺鋼材の製造方法において、第1加熱手段
により、長さ方向について高強度が要求される範囲の長
尺鋼材部分のみを変態温度Ac3以上の温度に加熱した
後、冷却手段により、少なくとも加熱した上記長尺鋼材
部分を水冷して焼入れを行い、次いで、第2加熱手段に
より、少なくとも焼入れした上記長尺鋼材部分を変態温
度Ac1以下の温度に加熱して該部分の焼戻しを行うこ
とにより、同様に前記課題を達成したものである。
【作用及び効果】
第1発明においては、長尺鋼材について、長さ方向につ
いて高強度が要求される範囲の長尺鋼材部分(以下、高
強度部分ともいう)をQT処理し、該範囲以外の軟らか
さが要求される長尺鋼材部分く以下、低強度部分ともい
う)は焼入れせずに軟化させるので、上記高強度部分と
低強度部分との長さ割合か任意の、長さ方向に強度の異
なる長尺鋼材を容易に製造することができ、しかも低強
度部分の軟化処理に際して噴射水量を調節し、冷却速度
を変化させることにより、該低強度部分の強度(軟らか
さ)を調節することもできる。
又、第2発明においては、長尺鋼材を焼入れした後、高
強度部分は焼戻しを行い、低強度部分は焼戻しの上限温
度以上に加熱して軟化させるので、同様に、任意の割合
で長さ方向に強度の異なる長尺餌付を容易に製造するこ
とができ、しかも低強度部分の軟化処理に際して加熱温
度を調節することにより、該部分の強度を調節すること
もできる。
更に、第3発明においては、長尺鋼材について、高強度
部分のみを焼入れ温度以上に加熱し、且つ水冷して焼入
れを行うと共に、その焼入れ部分について焼戻しを行う
ようにしたので、同様に、任意の割合で長さ方向に強度
の異なる長尺鋼材を容易に製造することができる6本発
明では、低強度部分に対する加熱処理を行わなければ、
該低強度部分の強度は原責材と同じであるが、適切なM
囲の温度で加熱処理を行うことにより、その強度を調節
することもできる。
以上の第1〜3のいずれの発明によっても、所望の長さ
の高強度部分を間にして所望の長さの低強度部分が繰り
返して形成された長さ方向に強度の異なる長尺鋼管を容
易に製造することかできる。
この長尺鋼管を、上記低強度部分で切断することにより
、強度が低く(軟らかく)、それ故に加工性か高い管端
部を有する短鋼管を容易に製造することかできる。従っ
て、例えば、両管端部にスェージ加工性か要求されるド
アインパクトビームをも容易に製造することができる。[Means for Achieving the Problem 1] The first invention provides a length treatment apparatus that uses a processing apparatus that includes a 17U heating means and a second heating means that heat a long steel material, and a cooling means that cools the long steel material with water. A method for manufacturing a long steel material having different strengths in the longitudinal direction, the long steel material being heated to a temperature equal to or higher than the transformation temperature Ac3 by a first heating means, and then the long steel material in a range where high strength is required in the longitudinal direction. The part is quenched by injecting a predetermined amount of cooling water from a water cooling means, and the long steel parts outside the above range are softened by cutting off the cooling water or injecting less water than during quenching. The above object has been achieved by heating at least the quenched long steel material portion to a temperature equal to or lower than the transformation temperature Ac1 using the second heating means to temper the steel material. A second invention also provides a method for manufacturing a long steel material having different strengths in the longitudinal direction using the processing apparatus, in which the first heating means heats the long steel material to a temperature equal to or higher than the transformation temperature Ac3, and then the cooling means The long steel material after heating is water-cooled and quenched, and then, by the second heating means, the long steel material portion in the range where high strength is required in the length direction is heated to a temperature equal to or lower than the transformation temperature Ac1. The above-mentioned problem is similarly achieved by tempering the long steel material and heating the portion of the long steel material outside the above range to a temperature exceeding the transformation temperature Ac1 to perform a softening treatment. A third aspect of the present invention further provides a method for manufacturing a long steel material having different strengths in the longitudinal direction using the processing apparatus, wherein the first heating means only applies to a portion of the long steel material in a range where high strength is required in the longitudinal direction. After heating to a temperature equal to or higher than the transformation temperature Ac3, a cooling means is used to water-cool and harden at least the heated long steel portion, and then a second heating means is used to transform at least the hardened long steel portion. The above-mentioned problem is similarly achieved by heating the part to a temperature of Ac1 or lower and tempering the part. [Operations and Effects] In the first invention, the long steel material is subjected to QT treatment in the range where high strength is required in the longitudinal direction (hereinafter also referred to as the high strength part), and in the long steel material outside the range The long steel parts that require softness (hereinafter also referred to as low-strength parts) are softened without being quenched, so that the strength can be increased in the length direction according to the length ratio of the high-strength parts and low-strength parts. It is possible to easily produce long steel materials with different strength, and the strength (softness) of the low-strength portion can be adjusted by adjusting the amount of water jetted during the softening treatment of the low-strength portion and changing the cooling rate. You can also do it. In addition, in the second invention, after hardening the long steel material, the high-strength parts are tempered, and the low-strength parts are softened by heating above the upper limit temperature of tempering. It is possible to easily produce a long bait with different strengths in different directions, and by adjusting the heating temperature during the softening treatment of the low-strength parts, the strength of the parts can also be adjusted. Furthermore, in the third invention, only the high-strength portion of the long steel material is heated above the quenching temperature and quenched by water cooling, and the quenched portion is tempered. 6 In the present invention, it is possible to easily manufacture long steel materials with different strengths in the longitudinal direction at a ratio of
The strength of the low strength part is the same as the original material, but with an appropriate M
The strength can also be adjusted by performing heat treatment at ambient temperatures. According to any of the first to third inventions described above, a long steel pipe with different strengths in the longitudinal direction is formed by repeatedly forming a low-strength part of a desired length with a high-strength part of a desired length in between. Can be easily manufactured. By cutting this long steel pipe at the low-strength portion, it is possible to easily produce a short steel pipe having a pipe end portion that is low in strength (soft) and therefore has high workability. Therefore, for example, it is possible to easily manufacture a door impact beam that requires swage workability at both tube ends.
以下、図面を参照して、本発明の実施例を詳細に説明す
る。
第1図は、第1発明に係る第1実施例の長さ方向に強度
の異なる長尺鋼材の製造方法に適用する処理装置を、処
理対象と共に示す概略構成図、第2図は作用を説明する
ための説明図である。
上記処理装置は、クエンチコイル(第1加熱手段)10
と、水冷リング(冷却手段)12と、テンパーコイル(
第2加熱手段)14とを備えており、これらはいずれも
所定位置の長尺原管の周囲に配設されている。上記クエ
ンチコイル10及びテンパーコイル14はいずれも高周
波加熱コイルである。
本実施例では、上記長尺原管(長尺鋼材)Sを搬送ロー
ル16で図中右方向へ移動させながら、上記処理装置に
より、以下に詳述する処理を行うことにより、長さ方向
に強度の異なる長尺鋼管を連続的に製造することができ
る。
第2図には、同図下方に示す長尺原管Sにおいて、斜線
部分の低強度部分Aに対して軟化処理を、それ以外の高
強度部分BにQT処理を行う場合について、長尺原管S
の各部に対する上記クエンチコイル10の出力(以下、
Q出力ともいう)、水冷リング12の噴射水量(以下、
Q水量ともいう)及びテンパーコイル14の出力(以下
、T出力ともいう)を、それぞれ上記長尺原管Sの各部
に対応する上方に示しである。
上記第2図に示した割合で長さ方向に強度の異なる長尺
鋼管を前記第1図の処理装置で製造する場合は、長尺原
管Sを矢印方向に移動させながら、Q出力は一定のオン
状態に維持して焼入れ加熱を行う、その際、Q水量は、
高強度部分Bに対しては焼入れ可能な所定値に維持しく
オン)、低強度部分Aに達したらゼロ(オフ)にして焼
鈍を行い(軟化処理)、再び高強度部分に達したら焼入
れ可能な値に戻し、以後同様の操作を行う。
又、T出力は一定に維持され、焼入れ、焼鈍を行った上
記長尺管の全長を、焼戻し温度に加熱し、高強度部分B
に対する焼戻しを行う。
上記一連の操作を行うことにより、所定長さの高強度部
分Bと低強度部分Aとからなる、長さ方向に強度の異な
る長尺鋼管を連続的に製造することができる。
ここで、上記クエンチコイル10のQ出力としては、長
尺原管を変態温度Ac3以上に加熱できる大きさであれ
ばよい。
又、上記水冷リング12からのQ水量は、上記Ac3以
上に加熱した原管部分を焼入れできる程度であればよい
、又、低強度部分Aに対するQ水量は、前記第2図に示
したように水冷リング12からの冷却水の噴射を遮断し
てゼロにする場合に限らず、焼入れに使用する水量より
少なければよい(例えば、50%程度にしてもよい)、
このように焼入れ時より少ない水量で軟化処理を行うこ
とにより、上記低強度部分Aの強度(軟らかさ)を調節
することが可能である。
又、テンパーコイル14のT出力としては、焼入れした
高強度部分Bを焼戻しできる温度に加熱できる大きさで
あればよく、その温度としては変態温度Ac3以上で且
つ100℃以上であればよい。
次に、本実施例の効果を明らかにするために行った具体
例について説明する。
前記第1図に示した処理装置を用いて、31゜8(φ)
Xl、6(t)の5AE4130の長尺原管に対して前
述の操作を行い、第3図に示した長さ割合で軟化処理し
た低強度部分A(斜線部)とQT処理した高強度部分B
(斜線部以外)とからなる、長さ方向に強度の異なる長
尺鋼管を製造した。その際、クエンチコイル10で長尺
原管Sを900℃に加熱し、軟化処理時の水冷コイル1
2からの水量はゼロとし、テンパーコイル14による焼
戻し加熱温度は250℃とした。 上記条件で製造した
長尺鋼管について、焼戻し後の高強度部分Bと軟化処理
した低強度部分Aの強度を測定した結果を、焼入れのま
まの(焼戻しをしていない)g4管の測定結果と共に表
1に示す、この強度測定結果は、管の外面からの距離を
変えて測定したビッカース強度である。
上記表1より、
高強度部分Bは、
焼入れのまま
の鋼管に近い大きな強度を有しているのに対し、低強度
部分Aは高強度部分Bの略半分以下の強度になっている
ことが判る。このように、本実施例によれば、長さ方向
について部分的に大きな強度差をもつ長尺鋼管を容易に
製造することができる。
又、上記長尺鋼管を、低強度部分Aで容易に切断するこ
とができ、その中心で切断することにより、両管端部に
100111の低強度部分を有する長さ1000111
の短管を容易に製造することができる。
この短管は、その両管端部を容易にスェージ加工できる
ため、ドアインパクトビームとして好適に用いることが
できる。
第4図は、第2発明に係る第2実施例の長さ方向に強度
の異なる長尺鋼材の製造方法を示す、前記第2図に相当
する説明図である。
この第2実施例は、前記第1実施例と同一の処理装置を
用い、軟化処理をテンパーコイル14の出力を変化させ
て行ったものである。
即ち、本実施例は、水冷リング12からのQ水量を焼入
れ量に維持し、低強度部分Aについても焼入れを行った
後、該低強度部分Aかテンパーコイル14を通過する際
に、該コイル14の出力を上げて該低強度部分Aを軟化
可能な温度に加熱する。それ以外は、実質的に前記第1
実施例と同一の条件の下で操作を行う。
今、高強度部分Bに対する焼戻し温度をT1とすると、
上記テンパーコイル14による軟化処理時の加熱温度T
2はT1より高くする必要がある。
即ち、T2 =TI+αであり、このαとしては、例え
ば50’Cとすることができる。本実施例では、上記軟
化処理温度T2を変えることにより、低強度部分Aの強
度を調節することかでき、その際の上記温度T2の王国
としては、クエンチコイル10による焼入れ加熱温度(
Ac3以上)と同程度を挙げることができる。
本実施例を、前記第1実施例の場合と同じ長尺原管に対
して実際に適用したところ、同様にドアインパクトビー
ムの製造に好適な長さ方向に強度の異なる長尺鋼管を容
易に製造することができた。
第5図は、第3発明に係る第3実施例の長さ方向に強度
の異なる長尺鋼材の製造方法を示す、前記第2図に相当
する説明図である。
この第3実施例も、前記第1実施例と同一の処理装置を
用い、軟化処理をクエンチコイル10の出力を変化させ
て行ったものである。
即ち、本実施例では、長尺原管の高強度部分Bに対して
はクエンチコイル10を作動させて焼入れを加熱を行い
、低強度部分Aに対しては該コイル10を停止させる。
このように部分的に焼入れ温度に加熱処理を行いながら
、水冷リング12がらは全長に亘って所定水量の冷却水
を噴射し、焼入れ加熱部分(高強度部分B)の焼入れを
行い、次いでテンパーコイル14を所定の出力で作動さ
せることにより、その焼入れ部分の焼戻しを行う。
本実施例によれば、高強度部分Bに対しては、前記各実
施例の場合と同様にQT処理を行うことができるため大
きな強度を与えることができ、低強度部分Aは焼入れ加
熱の未実施部分であるため原管と同程度の強度とするこ
とができる。その結果、前記各実施例の場合と同様にド
アインパクトビームの製造に好適な長さ方向に強度の異
なる長尺鋼管を容易に製造することかできる。
なお、本実施例においては、水冷リング12及びテンパ
ーコイル14の作動は、前記の如く長尺鋼管の全長に亘
って行わず、少なくとも焼入れ加熱を行った高強度部分
Bのみに行ってもよい。
以上、本実施例を具体的に説明したが、本発明は前記実
施例に示したものに限られるものでなく、その要旨を逸
脱しない範囲で種々変更可能である。
例えば、本発明に適用できる処理装置としては、前記実
施例に示したものと実質的に同一の機能を備えたもので
あれば任意の装置であってよい。
又、本発明は、ドアインパクトビームの製造に適用され
るものに限られるものでなく、又、鋼管に限らず棒材等
の任意の長尺鋼材に適用できることはいうまでもない。
又、実施例では示さなかったが、第1、第2、第3の各
発明は、単独に実施する場合に限らず、任意に組合せて
実施することも可能であることはいうまでもない。Embodiments of the present invention will be described in detail below with reference to the drawings. Fig. 1 is a schematic configuration diagram showing a processing apparatus applied to a method for manufacturing long steel materials having different strengths in the longitudinal direction according to a first embodiment of the first invention, together with a processing object, and Fig. 2 explains the operation. FIG. The processing device includes a quench coil (first heating means) 10
, a water cooling ring (cooling means) 12, and a temper coil (
(second heating means) 14, all of which are arranged around the long original tube at a predetermined position. Both the quench coil 10 and the temper coil 14 are high-frequency heating coils. In this embodiment, while the long original pipe (long steel material) S is moved rightward in the figure by the conveyor roll 16, the processing device performs the processing described in detail below, thereby moving the long original pipe (long steel material) in the length direction. Long steel pipes with different strengths can be manufactured continuously. FIG. 2 shows a case in which a long original tube S shown in the lower part of the figure is subjected to a softening treatment on a low-strength portion A indicated by diagonal lines, and a QT treatment on the other high-strength portion B. tube S
The output of the quench coil 10 for each part (hereinafter,
(also referred to as Q output), the amount of water injected from the water cooling ring 12 (hereinafter referred to as
Q) and the output of the tempering coil 14 (hereinafter also referred to as T output) are shown above corresponding to each part of the long original tube S, respectively. When manufacturing long steel pipes with varying strengths in the longitudinal direction at the ratio shown in Fig. 2 above using the processing equipment shown in Fig. 1 above, the Q output is kept constant while moving the long original pipe S in the direction of the arrow. Quenching heating is performed by keeping the on state of Q, at which time the water amount is
For high-strength part B, keep it at a predetermined value that can be quenched), and when it reaches low-strength part A, turn it to zero (off) and perform annealing (softening treatment), and when it reaches the high-strength part again, it can be quenched. Return to the value and perform the same operation from now on. In addition, the T output is maintained constant, and the entire length of the long tube that has been quenched and annealed is heated to the tempering temperature, and the high-strength portion B is heated to the tempering temperature.
Perform tempering on By performing the above series of operations, it is possible to continuously manufacture a long steel pipe consisting of a high-strength portion B and a low-strength portion A of a predetermined length and having different strengths in the length direction. Here, the Q output of the quench coil 10 may be of a magnitude that can heat the long original tube to a transformation temperature Ac3 or higher. Further, the amount of Q water from the water cooling ring 12 is sufficient as long as it can harden the raw pipe portion heated to the Ac3 or above, and the amount of Q water for the low strength portion A is as shown in FIG. 2 above. Not limited to the case where the injection of cooling water from the water cooling ring 12 is cut off to zero, it is sufficient that the amount of water is less than the amount of water used for quenching (for example, it may be about 50%).
By performing the softening treatment using a smaller amount of water than during quenching, it is possible to adjust the strength (softness) of the low-strength portion A. Further, the T output of the tempering coil 14 may be any value that can heat the hardened high-strength portion B to a temperature at which it can be tempered, and the temperature may be a transformation temperature Ac3 or higher and 100° C. or higher. Next, a specific example carried out to clarify the effects of this embodiment will be described. Using the processing apparatus shown in FIG. 1, 31°8 (φ)
The above-mentioned operation was performed on the long original tube of 5AE4130 of Xl, 6(t), and the low-strength part A (shaded part) was softened at the length ratio shown in Figure 3, and the high-strength part was QT-treated. B
(other than the shaded area), a long steel pipe with different strengths in the longitudinal direction was manufactured. At that time, the long raw tube S is heated to 900°C with the quench coil 10, and the water cooling coil 1 during the softening process is heated to 900°C.
The amount of water from No. 2 was set to zero, and the tempering heating temperature by the tempering coil 14 was set to 250°C. For the long steel pipe manufactured under the above conditions, the strength measurements of the high-strength part B after tempering and the low-strength part A after softening treatment are shown together with the measurement results of the G4 pipe as-quenched (not tempered). The strength measurement results shown in Table 1 are Vickers strengths measured at different distances from the outer surface of the tube. From Table 1 above, it can be seen that high-strength portion B has a high strength close to that of as-quenched steel pipe, while low-strength portion A has approximately half the strength of high-strength portion B. I understand. As described above, according to this embodiment, a long steel pipe having a large partial strength difference in the longitudinal direction can be easily manufactured. Furthermore, the long steel pipe can be easily cut at the low-strength portion A, and by cutting at the center, a length of 1000111 with low-strength portions of 100111 at both pipe ends can be obtained.
short tubes can be easily manufactured. This short tube can be suitably used as a door impact beam because both ends of the tube can be easily swaged. FIG. 4 is an explanatory view corresponding to FIG. 2, showing a method for manufacturing a long steel material having different strengths in the longitudinal direction according to a second embodiment of the present invention. In this second embodiment, the same processing apparatus as in the first embodiment was used, and the softening process was performed by changing the output of the tempering coil 14. That is, in this embodiment, after maintaining the amount of Q water from the water cooling ring 12 at the quenching amount and quenching the low-strength portion A, when the low-strength portion A passes through the tempering coil 14, the coil 14 to heat the low-strength portion A to a temperature at which it can be softened. Other than that, substantially the first
The operation is carried out under the same conditions as in the example. Now, if the tempering temperature for the high strength part B is T1,
Heating temperature T during softening treatment by the temper coil 14
2 needs to be higher than T1. That is, T2=TI+α, and this α can be, for example, 50'C. In this embodiment, the strength of the low-strength portion A can be adjusted by changing the softening temperature T2, and the temperature at which the temperature T2 is applied is the quenching heating temperature (
Ac3 or higher) can be mentioned. When this example was actually applied to the same long raw tube as in the first example, it was found that it was possible to easily produce a long steel tube with different strengths in the longitudinal direction, which is suitable for manufacturing door impact beams. was able to manufacture it. FIG. 5 is an explanatory view corresponding to FIG. 2, showing a method for manufacturing a long steel material having different strengths in the longitudinal direction according to a third embodiment of the present invention. This third embodiment also uses the same processing apparatus as the first embodiment, and performs the softening process by varying the output of the quench coil 10. That is, in this embodiment, the quench coil 10 is activated to heat the high-strength portion B of the long original tube, and the coil 10 is stopped for the low-strength portion A. While heating the parts to the quenching temperature in this way, a predetermined amount of cooling water is injected over the entire length of the water-cooled ring 12 to quench the quench-heated part (high-strength part B), and then the temper coil By operating 14 at a predetermined output, the hardened portion is tempered. According to this example, the high-strength portion B can be subjected to the QT treatment in the same way as in each of the above-mentioned examples, so that it can be given a large strength, and the low-strength portion A is not heated by quenching. Since it is a practical part, it can have the same strength as the original tube. As a result, as in each of the embodiments described above, it is possible to easily manufacture a long steel pipe having different strengths in the longitudinal direction, which is suitable for manufacturing a door impact beam. In this embodiment, the operation of the water cooling ring 12 and the tempering coil 14 may not be performed over the entire length of the long steel pipe as described above, but may be performed only on the high-strength portion B that has been quenched and heated. Although the present embodiment has been specifically described above, the present invention is not limited to what has been shown in the above embodiment, and various changes can be made without departing from the gist thereof. For example, the processing device applicable to the present invention may be any device as long as it has substantially the same functions as those shown in the embodiments. Further, the present invention is not limited to being applied to the manufacture of door impact beams, and it goes without saying that it can be applied to any long steel material such as bars, not just steel pipes. Further, although not shown in the embodiments, it goes without saying that the first, second, and third inventions are not limited to being implemented individually, but can also be implemented in arbitrary combinations.
第1図は、第1実施例に適用される処理装置を、その作
用と共に示す概略構成図、
第2図は、上記実施例の作用を説明するための概略説明
図、
第3図は、上記実施例を具体的に適用した長尺鋼管を示
す斜視図、
第4図は、第2実施例の作用を説明するための概略説明
図、
第5図は、第3実施例の作用を説明するための概略説明
図である。
10・・・クエンチコイル、
12・・・水冷リング、
14・・・テンパーコイル、
A・・・低強度部分、
B・・・高強度部分。FIG. 1 is a schematic configuration diagram showing a processing device applied to the first embodiment together with its operation. FIG. 2 is a schematic explanatory diagram for explaining the operation of the above embodiment. A perspective view showing a long steel pipe to which the embodiment is specifically applied, FIG. 4 is a schematic explanatory diagram for explaining the operation of the second embodiment, and FIG. 5 is an illustration for explaining the operation of the third embodiment. FIG. 10... Quench coil, 12... Water cooling ring, 14... Temper coil, A... Low strength part, B... High strength part.
Claims (3)
段と、該長尺鋼材を水冷する冷却手段とを備えた処理装
置を用いる長さ方向に強度の異なる長尺鋼材の製造方法
であつて、第1加熱手段により長尺鋼材を変態温度Ac
3以上の温度に加熱した後、 長さ方向について高強度が要求される範囲の長尺鋼材部
分に対して、水冷手段から所定水量の冷却水を噴射して
焼入れを行い、且つ、上記範囲以外の長尺鋼材部分に対
して冷却水を遮断又は焼入れ時より少ない水量で噴射し
て軟化処理を行い、次いで、第2加熱手段により、少な
くとも焼入れした上記長尺鋼材部分を変態温度Ac1以
下の温度に加熱して焼戻しを行うことを特徴とする長さ
方向に強度の異なる長尺鋼材の製造方法。(1) A method for manufacturing a long steel material having different strengths in the longitudinal direction using a processing device equipped with a first heating means and a second heating means for heating the long steel material, and a cooling means for cooling the long steel material with water. The long steel material is heated to a transformation temperature Ac by the first heating means.
After heating to a temperature of 3 or more, a predetermined amount of cooling water is injected from the water cooling means to the long steel part in the range where high strength is required in the length direction to perform quenching, and The cooling water is cut off or injected in a smaller amount than during quenching to soften the long steel part, and then the second heating means heats at least the quenched long steel part to a temperature below the transformation temperature Ac1. A method for producing a long steel material having different strengths in the longitudinal direction, the method comprising heating and tempering the material.
段と、該長尺鋼材を水冷する冷却手段とを備えた処理装
置を用いる長さ方向に強度の異なる長尺鋼材の製造方法
であって、第1加熱手段により、長尺鋼材を変態温度A
c3以上の温度に加熱した後、 冷却手段により、加熱後の上記長尺鋼材を水冷して焼入
れを行い、 次いで、第2加熱手段により、長さ方向について高強度
が要求される範囲の長尺鋼材部分を変態温度Ac1以下
の温度に加熱して焼戻しを行い、且つ上記範囲以外の長
尺鋼材部分を変態温度Ac1を超える温度に加熱して軟
化処理を行うことを特徴とする長さ方向に強度の異なる
長尺鋼材の製造方法。(2) A method for manufacturing a long steel material having different strengths in the longitudinal direction using a processing device equipped with a first heating means and a second heating means for heating the long steel material, and a cooling means for cooling the long steel material with water. The long steel material is heated to a transformation temperature A by the first heating means.
After heating to a temperature of c3 or higher, the heated long steel material is water-cooled and quenched by a cooling means, and then, by a second heating means, the long steel material is heated in a range where high strength is required in the longitudinal direction. In the length direction, the steel part is heated to a temperature below the transformation temperature Ac1 to perform tempering, and the long steel part outside the above range is heated to a temperature exceeding the transformation temperature Ac1 to perform a softening treatment. A method for manufacturing long steel materials with different strengths.
段と、該長尺鋼材を水冷する冷却手段とを備えた処理装
置を用いる長さ方向に強度の異なる長尺鋼材の製造方法
であって、第1加熱手段により、長さ方向について高強
度が要求される範囲の長尺鋼材部分のみを変態温度Ac
3以上の温度に加熱した後、 冷却手段により、少なくとも加熱した上記長尺鋼材部分
を水冷して焼入れを行い、 次いで、第2加熱手段により、少なくとも焼入れした上
記長尺鋼材部分を変態温度Ac1以下の温度に加熱して
、該部分の焼戻しを行うことを特徴とする長さ方向に強
度の異なる長尺鋼材の製造方法。(3) A method for manufacturing a long steel material having different strengths in the longitudinal direction using a processing device equipped with a first heating means and a second heating means for heating the long steel material, and a cooling means for cooling the long steel material with water. The first heating means heats only a portion of the long steel material in a range where high strength is required in the longitudinal direction to a transformation temperature Ac.
After heating to a temperature of 3 or more, at least the heated long steel portion is water-cooled and quenched by a cooling means, and then, at least the hardened long steel portion is heated to a transformation temperature Ac1 or lower by a second heating means. 1. A method for producing a long steel material having different strengths in the longitudinal direction, the method comprising heating the portion to a temperature of 100 to temper the portion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26776790A JPH04143225A (en) | 1990-10-05 | 1990-10-05 | Manufacture of long size steel with different strength in longitudinal direction |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26776790A JPH04143225A (en) | 1990-10-05 | 1990-10-05 | Manufacture of long size steel with different strength in longitudinal direction |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04143225A true JPH04143225A (en) | 1992-05-18 |
Family
ID=17449304
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26776790A Pending JPH04143225A (en) | 1990-10-05 | 1990-10-05 | Manufacture of long size steel with different strength in longitudinal direction |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04143225A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009096261A (en) * | 2007-10-15 | 2009-05-07 | Toyoda Iron Works Co Ltd | Impact energy absorbing member and manufacturing method thereof |
JP2014173148A (en) * | 2013-03-08 | 2014-09-22 | Neturen Co Ltd | Method for producing thin three-dimensional shape body |
JP2015161016A (en) * | 2014-02-28 | 2015-09-07 | 日立オートモティブシステムズ株式会社 | Manufacturing method of surface processing part and manufacturing installation of surface processing part |
JP6179700B1 (en) * | 2016-04-01 | 2017-08-16 | 新日鐵住金株式会社 | Metal tube and structural member using metal tube |
WO2017170561A1 (en) * | 2016-04-01 | 2017-10-05 | 新日鐵住金株式会社 | Metal tube and structural member using metal tube |
JP6399268B1 (en) * | 2017-05-10 | 2018-10-03 | 新日鐵住金株式会社 | Structural members, body structure and bumper reinforcement |
WO2018207668A1 (en) * | 2017-05-10 | 2018-11-15 | 新日鐵住金株式会社 | Structural member, vehicle structure, and bumper reinforcement |
-
1990
- 1990-10-05 JP JP26776790A patent/JPH04143225A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009096261A (en) * | 2007-10-15 | 2009-05-07 | Toyoda Iron Works Co Ltd | Impact energy absorbing member and manufacturing method thereof |
JP2014173148A (en) * | 2013-03-08 | 2014-09-22 | Neturen Co Ltd | Method for producing thin three-dimensional shape body |
JP2015161016A (en) * | 2014-02-28 | 2015-09-07 | 日立オートモティブシステムズ株式会社 | Manufacturing method of surface processing part and manufacturing installation of surface processing part |
JP6179700B1 (en) * | 2016-04-01 | 2017-08-16 | 新日鐵住金株式会社 | Metal tube and structural member using metal tube |
WO2017170561A1 (en) * | 2016-04-01 | 2017-10-05 | 新日鐵住金株式会社 | Metal tube and structural member using metal tube |
US10442468B2 (en) | 2016-04-01 | 2019-10-15 | Nippon Steel Corporation | Metal pipe and structural member using metal pipe |
JP6399268B1 (en) * | 2017-05-10 | 2018-10-03 | 新日鐵住金株式会社 | Structural members, body structure and bumper reinforcement |
WO2018207668A1 (en) * | 2017-05-10 | 2018-11-15 | 新日鐵住金株式会社 | Structural member, vehicle structure, and bumper reinforcement |
KR20190130049A (en) * | 2017-05-10 | 2019-11-20 | 닛폰세이테츠 가부시키가이샤 | Structural Member, Body Structure, and Bumper Reinforcement |
CN110612247A (en) * | 2017-05-10 | 2019-12-24 | 日本制铁株式会社 | Structural members, body construction and bumper reinforcements |
CN110612247B (en) * | 2017-05-10 | 2020-08-28 | 日本制铁株式会社 | Structural components, body structures and bumper reinforcements |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040060623A1 (en) | Method of fabricating metal parts of different ductilities | |
EP2658663B1 (en) | Method of manufacturing multi physical properties part | |
AU2011269680B2 (en) | Tailored properties by post hot forming processing | |
US8518195B2 (en) | Heat treatment for producing steel sheet with high strength and ductility | |
KR20050115283A (en) | Method for the thermomechanical treatment of steel | |
JP2004270025A (en) | High-frequency hardening device for manufacturing constituent element of suspension system especially | |
WO2023213109A1 (en) | Accurate heat treatment method for low-carbon low-alloy high-strength thin steel plate | |
JPH04143225A (en) | Manufacture of long size steel with different strength in longitudinal direction | |
CN109652622B (en) | Steel plate member and method for producing steel plate member | |
CN109689238B (en) | On-line manufacturing method of steel pipe | |
JPS6164817A (en) | Manufacture of hollow stabilizer using electric welded pipe | |
FI3887556T3 (en) | Cold rolled annealed steel sheet with high hole expansion ratio and manufacturing process thereof | |
TW201437378A (en) | A method for producing a metal component of a metal device | |
US20070131319A1 (en) | Flash tempering process and apparatus | |
CN107523668A (en) | One kind is without coating intensity adjustable steel composite material | |
JP2000328141A (en) | Heat treatment method to manufacture long product or flat product of alloy-free or low-alloy steel with hardened surface layer | |
JPS61153230A (en) | Production of low-alloy steel wire rod which permits quick spheroidization | |
US20080257460A1 (en) | Method of producing forgings having excellent tensile strength and elongation from steel wire rods | |
CN117867246B (en) | Toughening thermoforming method of ultrahigh-strength steel plate and high-strength and toughness thermoforming member | |
JPH05320741A (en) | Induction heat treatment of cylindrical parts | |
JPH06172865A (en) | Heat treatment method of high strength and sour resistant steel pipe | |
SU1491895A1 (en) | Method of producing high-strength reinforcement bars of medium-carbon alloyed steels | |
JPS58164731A (en) | Direct heat treatment of wire rod | |
JPH02305929A (en) | Production of steel wire for cold and warm forging and steel wire for cold and warm forging | |
JP2023061553A (en) | Manufacturing method of martensitic stainless steel material |