JPH0414191B2 - - Google Patents
Info
- Publication number
- JPH0414191B2 JPH0414191B2 JP22929287A JP22929287A JPH0414191B2 JP H0414191 B2 JPH0414191 B2 JP H0414191B2 JP 22929287 A JP22929287 A JP 22929287A JP 22929287 A JP22929287 A JP 22929287A JP H0414191 B2 JPH0414191 B2 JP H0414191B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- parts
- solid content
- water
- steel sheet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Landscapes
- Laminated Bodies (AREA)
- Chemical Treatment Of Metals (AREA)
Description
<産業上の利用分野>
本発明はめつき鋼板の上に有機皮膜を存在せし
めた有機複合鋼板の製造において有機皮膜の各種
塗膜性能を大幅に向上させる方法に関するもので
ある。すなわち、本発明はクロメート処理したク
ロメート被覆めつき鋼板に塗布する特定の有機樹
脂の浴に特定の微細な粒度のコロイドゾルを特定
の割合になるように調整し、形成された皮膜の耐
食性及び溶接性を著しく向上させることにより商
品価値を高めるものである。ここでいうめつき鋼
板とは鋼板上に亜鉛、アルミニウム、スズ、銅、
クロム、ニツケルを単独めつきするかあるいはこ
れらに1種または2種以上の金属を含有させた合
金めつき鋼板であり、これらの電気めつき鋼板あ
るいは溶融めつき鋼板をさす。
<従来の技術>
これまでに電気亜鉛めつき鋼板や溶融めつき鋼
板あるいは各種合金めつき鋼板が製造され、家
電、自動車、建材などに広く使用されてきてい
る。
こうした中で、近年、特に耐食性に優れた表面
処理材料に対する要求がますます強くなり、この
ような鋼板の需要は今後ますます増加する傾向に
ある。
例えば家電業界では省工程、省コストの観点か
ら塗装を省略できる裸使用の可能な優れた耐食性
を有する鋼板に対する要求がある。また、自動車
業界でも最近の環境の変化、例えば北米、北欧で
の冬の道路の凍結防止のためにまく岩塩による腐
食、また、工業地帯でSO2ガスの発生による酸性
雨により腐食など車体と激しい腐食環境にさらさ
れ安全上の観点から優れた耐食性を有する表面処
理鋼板が強く要求されている。
これらの問題点を解決するために種々の検討が
なされ、多くの製品が開発されてきた。
これまで鋼板の耐食性を構造するために亜鉛め
つきが行なわれてきた。亜鉛めつき鋼板は亜鉛の
犠牲防食作用によつて鋼板の腐食を防止するもの
であり、耐食性を得ようとすれば亜鉛付着量を増
加しなければならない。このため必要亜鉛量のコ
ストアツプ、あるいは加工性、溶接性、生産性の
低下等いくつかの問題点がある。また、一般的に
亜鉛めつき鋼板の塗料密着性は悪い。
このような亜鉛めつき鋼板の特に耐食性を改善
する方法として各種合金めつき鋼板が開発されて
きた。これら合金めつき鋼板として例えばZn−
Ni系、Zn−Ni−Co系、Zn−Ni−Cr系、Zn−Fe
系、Zn−Co系、Zn−Mn系等をあげることがで
きる。これら合金めつきにより、通常の亜鉛めつ
き鋼板に比べ裸の耐食性は3〜5倍向上すること
が認められる。しかし、それでも長期間屋外に放
置したり、水や塩水を噴霧すると白錆や赤錆が発
生しやすいことが問題である。
耐食性を改善するためにめつきした後にクロメ
ート処理を施す方法もあり、かなり有効ではある
が、高温多湿化や塩分含有雰囲気下では約100〜
150時間で白錆が発生する。
さらに耐食性を改善するため亜鉛系めつき鋼板
のクロメート材に特殊樹脂を塗布したいわゆる簡
易プレコート鋼板(本発明では以後有機複合鋼板
とよぶ)が開発され一部市販されている。例えば
特開昭58−177476号公報(特公昭61−36587号)、
特開昭60−149786号公報、特開昭58−210192号公
報、特開昭58−210190号公報、特開昭59−116397
号公報等をあげることができる。
これらは鋼板上に特殊樹脂を0.3〜5g/m2塗
布することからなり、これによつて特に裸耐食性
はかなり改善される。
<発明が解決しようとする問題点>
しかし、これらにおいても苛酷な腐食環境下で
は耐食性はかならずしも十分とは言えず、また、
耐食性を確保するため塗膜厚を厚くすると溶接が
困難となり、実質的に自動車用鋼板等に使用でき
なくなる。
以上述べたように優れた耐食性と溶接性をかね
そなえた皮膜を有する有機複合鋼板は未だしの感
がある。
これに対し、本発明は有機複合鋼板を製造する
にあたりクロメート被覆めつき鋼板に塗布する有
機皮膜のめつき鋼板に対する密着性、上塗り塗料
との密着性、耐指紋性、耐スクラツチ性、成形加
工性、諸塗膜特性及び特に耐食性、溶接性を著し
く向上せしめるものである。
<問題点を解決するための手段>
本発明はエチレンとα,β不飽和カルボン酸共
重合体分散液に重合性エチレン系不飽和化合物を
加え、乳化重合させ、重合終了の後、架橋させて
得られた水系樹脂に2mμから12mμの粒径を有
するSiO2,Cr2O3,Fe2O3,Fe3O4,MgO,
ZrO2,SnO2,Al2O3,Sb2O5のコロイドゾルの1
種または2種以上を水系樹脂の固形分100重量部
に対し、固形分で5〜100重量部含有させた水性
液を、5〜200mg/m2のクロム付着量を有するク
ロメート被覆めつき鋼板表面に塗布し、乾燥皮膜
を形成させることを特徴とする鋼板の表面処理法
である。
本発明に用いられる水系樹脂のベースはエチレ
ンとα,β不飽和カルボン酸とからなる共重合体
である。この樹脂が含有する酸基を塩基性物質で
中和することにより水を分散できる。エチレンと
α,β不飽和カルボン酸の比率はエチレン97〜40
重量%とα,β不飽和カルボン酸3〜60重量%が
望ましい。中和に要する塩基は水酸化リチウム、
水酸化ナトリウム、水酸化カリウム等のアルカリ
金属水酸化物、アンモニア、モルホリン、トリエ
チルアミン及びジメチルエタノールアミン等が例
示できるが、本発明にはアンモニア及び低級アミ
ンが好適である。
エチレン、α,β−不飽和カルボン酸共重合体
水分散液の製造は、一般に撹拌下60〜200℃程度
の熱水中で、1時間〜8時間を要しておこなわれ
る。次いでこの系に重合性エチレン系不飽和化合
物を導入し乳化重合を行う。この操作は乳化重合
として一般に行われる方法でよいが、使用される
化合物としては架橋反応を行うために、カルボキ
シル基を含有するエチレン系不飽和化合物、例え
ばマレイン酸、アクリル酸、メタアクリル酸、ク
ロトン酸等が単独又は混合して用いられる。更
に、スチレン、アミノスチレン、メチルスチレ
ン、アクロレイン、アクリルニトリル、メタアク
リル酸メチル、アクリルアマイド、ジヒドロキシ
エチルアクリレート、メタアクリル酸イソプロピ
ル、アクリル酸エチル、アクリル酸2−エチルヘ
キシル、メタアクリル酸ブチル、アクリル酸ヘキ
シル、メトキシポリエチレングリコールアクリレ
ート、酢酸ビニル、プロピオン酸ビニル、安息香
酸ビニル、オレイン酸ビニル、ビニルスルホン
酸、ベオバ10(シエル化学製品)等のカルボキシ
ル基を含有しないエチレン系不飽和化合物を単独
又は混合したものを上記のカルボキシル基を含有
するエチレン系不飽和化合物に併用するのが好ま
しい。上記乳化重合中に若干の高分子化反応が生
起するよように、グリシジルメタアクリレートや
エチレングリコールジメタアクリレート、グリセ
リントリメタアクリレート等の多官能性(メタ)
アクリレート類などの反応型アクリレートを必要
に応じて併用しても差し支えない。
乳化重合法は常法に従つて撹拌下界面活性剤、
重合開始剤、PH調製剤等を使用して行われ、必要
に応じて保護コロイド類、溶剤等も併用すること
ができる。本発明では、エチレン、α、β−不飽
和カルボン酸共重合物と乳化重合に使用する重合
性エチレン系不飽和化合物を重量比率で夫々90/
10〜10/90で目的を達成できる。
上記乳化重合中に分子レベルでのからに合い、
グラフト、更に前記反応型アクリレートで若干の
高分子下反応等が進行するが、本発明では上記乳
化重合終了後に、更に架橋剤を使用して架橋を行
わせる。
架橋剤は反応基として水酸基を持つメチロール
メラミン類、反応基としてエポキシ基を持つエポ
キシ化合物、反応基として環状第2アミンを持つ
イミン類やアジリジン類等のカルボキシ基と反応
可能な2個以上の反応基を有する化合物が単独ま
たは併用して用いられる。
用いられるこの架橋剤は上記乳化重合終了後の
エマルジヨンにこの樹脂中のカルボキシル基1当
量に対して0.01〜1.4当量の割合に加えられる。
使用する架橋剤は官能基を通常2個以上有するも
のが用いられ、カルボキシル基1当量に対して
0.01当量以下では効果がなく、反対に1.4当量以
上の場合は安定性に欠け、更に密着力等か低下
し、実用的でない。
架橋反応は通常120℃以下の反応温度で数時間
を要して行われる。
この架橋反応によつてエマルジヨンからの乾燥
皮膜が溶解を起こすことがないような架橋構造を
有する樹脂が生成する。
以下の如くエチレンとα,β不飽和カルボン酸
共重合体にエチレン系不飽和化合物をグラフト重
合させ、さらに架橋反応を導入することにより分
子レベルで1体となした水系樹脂100重量部に2
mμから12mμのSiO2,Cr2O3,Fe2O3,Fe3O4,
MgO,ZrO2,SnO2,Al2O3,Sb2O5のコロイド
ゾルの1種あるいは2種以上を固形分として5〜
100重量部加えることにより水溶性が得られる。
<作用>
本発明の優れた特性は上記水系樹脂に添加する
コロイドゾルの粒径と添加量に左右され、特定の
粒径以下の微粒のコロイドゾルを使用し、かつ、
添加量を限定してはじめて得られる。
本発明者等は詳細に検討した結果、コロイドゾ
ルに次の条件がなければならないことをみいだし
た。
コロイドゾルの粒径:2mμ〜12mμ
コロイドゾルの添加量:共存する樹脂100部に
対して5〜100重量部
上記条件を満足する浴をめつき鋼板上に塗布
し、乾燥すると、とくに耐食性、溶接性のきわめ
て優れた皮膜が形成され、優れた有機複合鋼板を
製造できることを確認した。
コロイドの粒径2mμ以下では、上記樹脂と配
合してなる水性液の塗布乾燥語の塗膜のクロメー
ト被覆めつき鋼板に対する密着性、上塗り塗料と
の密着性、耐指紋性、耐スクラツチ、成形加工性
は良好だが、耐食性、溶接性が低下し、又水性液
の安定性が不良となり適さない。
又12mμ以上では水性液の安定性には問題ない
が、上記塗膜性能のうちとくに耐食性、溶接性に
著しい向上がみられず不適である。
コロイドの添加量については、上記水系樹脂の
固形分100重量部に対し固形分比で5重量部以下
の場合耐食性が不良であり、又100重量部以上の
添加にても耐食性は向上せず、また有機皮膜が連
続した皮膜の形成しにくくそのため主として絞り
加工性等の成形加工性が不良となり不適である。
コロイドの種類についてはコロイダルシリカ
SiO2が経済的に有利だがCr2O3,Fe2O3,Fe3O4,
MgO,ZrO2,SnO2,Al2O3,Sb2O5のコロイド
ゾルを用いてもまつたく同様な結果が得られる。
また上記コロイドの2種以上を含有せしめても同
様な結果が得られる。
<実施例>
水系樹脂の製造例
製造例−1
加圧反応槽にエチレンのα,β不飽和カルボン
酸共重合体であるダウケミカル社製品プリマコー
ル5983,200gに28%アンモニア水18g、水600g
を仕込みN2シールの後撹拌しつつ昇温した。
撹拌下温度を140°−150℃、3時間保つた後、
冷却しエチレン系分散液を得た。
この分散液に撹拌下過硫酸カリウム2gを水
210gに溶解した溶解を加え、再び80℃まで昇温
した。
メタアクリル酸メチル20g、ブチルメタアクリ
レート18g、メタアクリル酸4gの混合物を撹拌
下、1時間要して滴下する同時に2gの過硫酸カ
リウムを水50gに溶解した溶液を同時に滴下し
た。滴下終了した20分後、撹拌下、架橋剤エピコ
ート256を20g加え、80−85℃で3時間架橋反応
を行つた。
得られたエマルジヨンは、不揮発分22%,PH
9.2であつた。
製造例 2,3,4
同様操作にて製造した例を以下表にして示す。
<Industrial Application Field> The present invention relates to a method for significantly improving various coating properties of an organic coating in the production of an organic composite steel sheet in which an organic coating is present on a galvanized steel sheet. That is, the present invention involves adjusting the colloidal sol of a specific fine particle size to a specific ratio in a bath of a specific organic resin to be applied to a chromate-coated plated steel sheet that has undergone chromate treatment, and improving the corrosion resistance and weldability of the formed film. It increases the product value by significantly improving the product value. The galvanized steel sheet referred to here refers to zinc, aluminum, tin, copper, etc. on the steel sheet.
A steel plate plated with chromium or nickel, or an alloy plated with one or more metals, and refers to electroplated steel plates or hot-dip galvanized steel plates. <Prior Art> Electrogalvanized steel sheets, hot-dip galvanized steel sheets, and various alloy-plated steel sheets have been manufactured so far, and have been widely used in home appliances, automobiles, building materials, and the like. Under these circumstances, in recent years, there has been an increasingly strong demand for surface-treated materials with particularly excellent corrosion resistance, and the demand for such steel sheets is likely to increase further in the future. For example, in the home appliance industry, there is a demand for a steel plate with excellent corrosion resistance that can be used bare and omit painting from the viewpoint of process and cost savings. In addition, recent environmental changes have also occurred in the automobile industry, such as corrosion caused by rock salt sprinkled on winter roads to prevent freezing in North America and Northern Europe, and corrosion caused by acid rain caused by the generation of SO 2 gas in industrial areas. There is a strong demand for surface-treated steel sheets that are exposed to corrosive environments and have excellent corrosion resistance from a safety standpoint. In order to solve these problems, various studies have been made and many products have been developed. Until now, galvanizing has been used to improve the corrosion resistance of steel sheets. Galvanized steel sheets prevent corrosion of the steel sheet through the sacrificial anticorrosive action of zinc, and in order to obtain corrosion resistance, the amount of zinc deposited must be increased. For this reason, there are several problems such as an increase in the cost of the required amount of zinc and a decrease in workability, weldability, and productivity. Additionally, galvanized steel sheets generally have poor paint adhesion. Various alloy-plated steel sheets have been developed as a method for improving the corrosion resistance of such galvanized steel sheets. These alloy-plated steel sheets include, for example, Zn−
Ni series, Zn-Ni-Co series, Zn-Ni-Cr series, Zn-Fe
Examples include Zn-Co, Zn-Mn, and the like. It is recognized that these alloy platings improve the bare corrosion resistance by 3 to 5 times compared to ordinary galvanized steel sheets. However, the problem is that white rust or red rust is likely to occur if left outdoors for a long period of time or if water or salt water is sprayed on it. There is also a method of applying chromate treatment after plating to improve corrosion resistance, which is quite effective, but in high temperature, high humidity or salt-containing atmospheres,
White rust occurs after 150 hours. Furthermore, in order to improve corrosion resistance, a so-called simple pre-coated steel sheet (hereinafter referred to as an organic composite steel sheet in the present invention), which is a zinc-plated steel sheet coated with a chromate material and a special resin, has been developed and some are commercially available. For example, Japanese Patent Publication No. 58-177476 (Japanese Patent Publication No. 61-36587),
JP-A-60-149786, JP-A-58-210192, JP-A-58-210190, JP-A-59-116397
Publications, etc. can be mentioned. These consist of applying 0.3 to 5 g/m 2 of a special resin onto the steel plate, which significantly improves, in particular, the bare corrosion resistance. <Problems to be solved by the invention> However, even in these cases, the corrosion resistance cannot necessarily be said to be sufficient in a severe corrosive environment, and
If the coating thickness is increased in order to ensure corrosion resistance, welding becomes difficult, making it virtually impossible to use it for automobile steel plates and the like. As mentioned above, organic composite steel sheets with coatings that have both excellent corrosion resistance and weldability are still lacking. In contrast, the present invention aims to improve the adhesion of the organic film applied to the chromate-coated plated steel plate to the plated steel plate when producing an organic composite steel plate, the adhesion with the top coat, fingerprint resistance, scratch resistance, and moldability. , which significantly improves various coating film properties, especially corrosion resistance and weldability. <Means for solving the problems> The present invention involves adding a polymerizable ethylenically unsaturated compound to a dispersion of an ethylene and α,β unsaturated carboxylic acid copolymer, carrying out emulsion polymerization, and crosslinking after completion of the polymerization. SiO 2 , Cr 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , MgO, having a particle size of 2 mμ to 12 mμ is added to the obtained aqueous resin.
Colloidal sol of ZrO 2 , SnO 2 , Al 2 O 3 , Sb 2 O 5
An aqueous liquid containing 5 to 100 parts by weight of the solid content of one or more species based on 100 parts by weight of the solid content of the water-based resin is applied to the surface of a chromate-coated galvanized steel sheet with a chromium deposition amount of 5 to 200 mg/ m2 . This is a method for surface treatment of steel sheets, which is characterized by coating the surface of the steel plate with a dry coating and forming a dry film. The base of the aqueous resin used in the present invention is a copolymer consisting of ethylene and α,β unsaturated carboxylic acid. Water can be dispersed by neutralizing the acid groups contained in this resin with a basic substance. The ratio of ethylene to α,β unsaturated carboxylic acid is ethylene 97-40
% by weight and α,β unsaturated carboxylic acid from 3 to 60% by weight. The base required for neutralization is lithium hydroxide,
Examples include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, ammonia, morpholine, triethylamine, and dimethylethanolamine, and ammonia and lower amines are suitable for the present invention. The production of an aqueous dispersion of an ethylene, α,β-unsaturated carboxylic acid copolymer is generally carried out in hot water at about 60 to 200°C with stirring for 1 to 8 hours. Next, a polymerizable ethylenically unsaturated compound is introduced into this system and emulsion polymerization is performed. This operation may be carried out by a method commonly used as emulsion polymerization, but the compounds used include ethylenically unsaturated compounds containing carboxyl groups, such as maleic acid, acrylic acid, methacrylic acid, croton, etc., in order to carry out the crosslinking reaction. Acids etc. are used alone or in combination. Furthermore, styrene, aminostyrene, methylstyrene, acrolein, acrylonitrile, methyl methacrylate, acrylamide, dihydroxyethyl acrylate, isopropyl methacrylate, ethyl acrylate, 2-ethylhexyl acrylate, butyl methacrylate, hexyl acrylate. , methoxypolyethylene glycol acrylate, vinyl acetate, vinyl propionate, vinyl benzoate, vinyl oleate, vinyl sulfonic acid, Beova 10 (Ciel Chemicals), etc., singly or in combination with ethylenically unsaturated compounds that do not contain carboxyl groups. is preferably used in combination with the ethylenically unsaturated compound containing a carboxyl group. Polyfunctional (meth)acrylates such as glycidyl methacrylate, ethylene glycol dimethacrylate, and glycerin trimethacrylate are used so that a slight polymerization reaction occurs during the emulsion polymerization.
If necessary, reactive acrylates such as acrylates may be used in combination. In the emulsion polymerization method, a surfactant, a surfactant, and
This is carried out using a polymerization initiator, a PH adjuster, etc., and protective colloids, a solvent, etc. can be used in combination as necessary. In the present invention, the weight ratio of the ethylene, α, β-unsaturated carboxylic acid copolymer and the polymerizable ethylenically unsaturated compound used for emulsion polymerization is 90/90/1, respectively.
You can achieve your goal in 10-10/90. During the above emulsion polymerization, it is mixed at the molecular level,
Although the grafting and the reaction type acrylate further proceed with some reactions under the polymer, in the present invention, after the emulsion polymerization is completed, crosslinking is further performed using a crosslinking agent. Crosslinking agents are methylolmelamines that have a hydroxyl group as a reactive group, epoxy compounds that have an epoxy group as a reactive group, imines and aziridines that have a cyclic secondary amine as a reactive group that can react with two or more carboxy groups. Compounds having groups can be used alone or in combination. The crosslinking agent used is added to the emulsion after the emulsion polymerization is completed in an amount of 0.01 to 1.4 equivalents per equivalent of carboxyl group in the resin.
The crosslinking agent used usually has two or more functional groups, and the
If it is less than 0.01 equivalent, it will not be effective, and if it is more than 1.4 equivalent, it will lack stability and will further reduce adhesion, making it impractical. The crosslinking reaction is usually carried out at a reaction temperature of 120° C. or lower and takes several hours. This crosslinking reaction produces a resin having a crosslinked structure that prevents the dry film from dissolving from the emulsion. As shown below, an ethylenically unsaturated compound is graft-polymerized onto a copolymer of ethylene and an α,β-unsaturated carboxylic acid, and a crosslinking reaction is further introduced to form a single body at the molecular level.
mμ to 12mμ SiO 2 , Cr 2 O 3 , Fe 2 O 3 , Fe 3 O 4 ,
One or more colloidal sols of MgO, ZrO 2 , SnO 2 , Al 2 O 3 , Sb 2 O 5 as solid content
Water solubility can be obtained by adding 100 parts by weight. <Function> The excellent characteristics of the present invention depend on the particle size and amount of the colloidal sol added to the water-based resin, and the use of fine colloidal sol with a specific particle size or less, and
It can only be obtained by limiting the amount added. As a result of detailed study, the present inventors found that the colloidal sol must meet the following conditions. Particle size of colloidal sol: 2 mμ to 12 mμ Amount of colloidal sol added: 5 to 100 parts by weight per 100 parts of coexisting resin A bath that satisfies the above conditions is applied onto a plated steel plate, and when it dries, it improves corrosion resistance and weldability. It was confirmed that an extremely excellent film was formed and that an excellent organic composite steel sheet could be manufactured. When the particle size of the colloid is 2 mμ or less, the adhesion of the dry coating film to the chromate-coated plated steel plate, the adhesion with the top coat, the fingerprint resistance, the scratch resistance, the molding process, etc. Although the properties are good, corrosion resistance and weldability are reduced, and the stability of aqueous liquids is poor, making it unsuitable. Moreover, if it is 12 mμ or more, there is no problem with the stability of the aqueous liquid, but there is no significant improvement in corrosion resistance or weldability among the above coating properties, which is unsuitable. Regarding the amount of colloid added, if the solid content ratio is less than 5 parts by weight with respect to 100 parts by weight of the solid content of the water-based resin, the corrosion resistance will be poor, and even if it is added more than 100 parts by weight, the corrosion resistance will not improve. Furthermore, it is difficult to form a continuous organic film, and therefore the forming processability such as drawing workability is mainly poor, making it unsuitable. Colloidal silica for types of colloids
SiO 2 is economically advantageous, but Cr 2 O 3 , Fe 2 O 3 , Fe 3 O 4 ,
Similar results can be obtained using colloidal sols of MgO, ZrO 2 , SnO 2 , Al 2 O 3 , and Sb 2 O 5 .
Similar results can also be obtained by containing two or more of the above colloids. <Example> Production example of water-based resin Production example-1 In a pressurized reaction tank, 200 g of Dow Chemical's product Primacol 5983, which is an α,β unsaturated carboxylic acid copolymer of ethylene, 18 g of 28% ammonia water, and 600 g of water
After charging with N2 , the temperature was raised while stirring. After keeping the temperature under stirring at 140°-150°C for 3 hours,
It was cooled to obtain an ethylene dispersion. To this dispersion, 2 g of potassium persulfate was added to water while stirring.
The solution dissolved in 210 g was added and the temperature was raised to 80°C again. A mixture of 20 g of methyl methacrylate, 18 g of butyl methacrylate, and 4 g of methacrylic acid was added dropwise over 1 hour while stirring, and at the same time a solution of 2 g of potassium persulfate dissolved in 50 g of water was added dropwise. 20 minutes after the dropwise addition was completed, 20 g of the crosslinking agent Epicote 256 was added under stirring, and a crosslinking reaction was carried out at 80-85°C for 3 hours. The resulting emulsion had a non-volatile content of 22% and a pH of
It was 9.2. Production Examples 2, 3, 4 Examples produced using the same procedure are shown in the table below.
【表】【table】
【表】
製造比較例1,2は製造例1,2によるエチレ
ンとα,β−不飽和カルボン酸共重合体分散液に
対して、別に同じく製造例1,2に示した重合性
エチレン系不飽和化合物を単独に乳化重合させ混
合させたものであり、比較例1,2は製造例1,
2に対応した混合液である。
実施例 1
めつき付着量が20g/m2のZn−Ni系合金めつ
き鋼板(Ni=11.2%)にCr付着量が60mg/m2と
なるようにクロメート処理し、製造例1に示す水
系樹脂に粒径が5〜6mμのコロイダルシリカを
固形分で100重量部に対して20重量部となるよう
に調整した水性液をその上に塗布し、乾燥して
1.0g/m2となるように皮膜を形成した。
実施例 2
実施例1に示す鋼板に対して、製造例2に示す
水系樹脂固形分100重量部に粒径が5〜6mμの
コロイダルシリカを固形分で20重量部となるよう
に調整した水性液を、その上に塗布し、乾燥して
1.2g/m2となるように皮膜を形成させた。
実施例 3
めつき付着量が20g/m2のZn−Ni−Co系合金
めつき鋼板(Ni=11.3%,Co=0.3%)にCr付着
量が80mg/m2となるようにクロメート処理し製造
例1に示す水系樹脂に粒径が8〜10mμのCr3O3
のゾルを樹脂100重量部(固形分)に対して30重
量部(固形分)となるように調整した水性液をそ
の上に塗布し、乾燥して1.0g/m2となるように
皮膜を形成した。
実施例 4
めつき付着量が20g/m2のZn−Fe系合金めつ
き鋼板にCr付着量が50mg/m2となるようにクロ
メート処理し、製造例3に示す水系樹脂に粒径が
3〜5mμのAl2O3ゾルを水系樹脂100重量部
(固形分)に対して50重量部(固形分)となるよ
うに調整した水性液をその上に塗布し乾燥して
1.2g/m2となるように皮膜を形成した。
実施例 5
めつき付着量が20g/m2とZn−Mn系合金めつ
き鋼板(Mn=41%)にCr付着量が60mg/m2とな
るようにクロメート処理し、製造例3に示す水系
樹脂100重量部(固形分)に粒径3〜5mμの
SnO2ゾルを30重量部(固形分)となるように調
整した水性液をその上に塗布し乾燥して0.9g/
m2となるように皮膜を形成させた。
比較例 1
実施例1のコロイダルシリカに替えて、粒径が
15〜20mμのコロイダルシリカを用いた以外は実
施例と同一の方法で皮膜を形成した。
比較例 2
実施例1と同一の方法にて粒径5〜6mμのコ
ロイダルシリカを実施例1に示す樹脂固形分100
重量部に対して、150重量部(固形分)加え皮膜
を形成した。
比較例 3
実施例1と同一の方法にて粒径5〜6mμのコ
ロイダルシリカを、実施例1に示す樹脂固形分
100重量部に対して、2重量部(固形分)加え、
皮膜を形成した。
比較例 4
実施例1に示すクロメート処理めつき鋼板を用
い製造比較例1に示す水系樹脂固形分100重量部
に粒径が5〜6mμのコロイダルシリカを固形分
で20重量部となるように調整した水性液にて1.0
g/m2の皮膜を形成させた。
比較例 5
製造比較例2に示す水系樹脂を用いた以外は比
較例4と同一にて皮膜を形成させた。
実施例1,2,3,4,5ならびに比較例1,
2,3,4で得られた表面処理鋼板について各種
試験を行なつた結果を第1表に示す。
各種試験条件は以下の通りである。
(1) 耐食性
JIS−Z−2321に準拠した塩水噴霧試験によ
り1500時間後の白錆発生率(%)及び4000時間
後の赤錆発生率(%)を求めた。
(2) 塗料密着性
塗料及び評価方法は次の通りである。
塗料密着性はメラミン系(焼付条件280℃×
60秒)の焼付塗料を使用し、塗料密着評価法は
JIS−5400により描画、ゴバン目エリクセン、
衝撃、2T折り曲げの各試験を行ない、これら
の総合評価によつて判定した。評価は◎,○,
△,×,××の5段階で行ない◎が最良である。
◎:塗膜剥離面積 0%
○: 〃 0〜1%
△: 〃 1〜10%
×: 〃 10〜50%
××: 〃 50%以上
(3) スポツト溶接法
連続溶接試験はナゲツト径が4mmφになるま
での連続打点で評価した。
◎:5000点以上
○:4500〜5000点
△:4000〜4500点
×:3500〜4000点
××:3500点以下
(4) 皮膜密着性
クロスカツト後7mmエリクセン押出しし、そ
の後セロフアンテープ剥離した。また、2T曲
げ試験後テープ剥離し両者の総合評価で判定し
た。
(5) 耐アルカリ性
市販のアルカリ脱脂液(PH10.0〜10.5、60℃
で2分浸漬)で浸漬した後の重量減で判定し
た。
評価は◎:重量減0%、○:重量減1%以
下、△:重量減1〜5%、×:重量減5〜10%、
××:重量減10%以上の5段階で評価した。
(6) 耐溶剤性
トリクロルエタン液に2分間浸漬した後の重
量減で判定した。
(7) 鉛筆硬度
鉛筆硬度で求めた。
(8) 加工性
40φ,25hの円筒絞り後、側壁部をセロフア
ンテープ剥離した。[Table] Comparative Production Examples 1 and 2 are the dispersions of ethylene and α,β-unsaturated carboxylic acid copolymers produced in Production Examples 1 and 2, and the polymerizable ethylene-based unsaturated copolymer dispersions produced in Production Examples 1 and 2. Comparative Examples 1 and 2 are obtained by emulsion polymerizing and mixing a saturated compound alone, and Comparative Examples 1 and 2 are those of Production Example 1,
This is a liquid mixture corresponding to 2. Example 1 A Zn-Ni alloy plated steel sheet (Ni = 11.2%) with a plating weight of 20 g/m 2 was treated with chromate so that the Cr coating weight was 60 mg/m 2 , and the water-based coating shown in Production Example 1 was prepared. An aqueous solution of colloidal silica with a particle size of 5 to 6 mμ adjusted to 20 parts by weight per 100 parts by weight of the solid content is applied onto the resin, and dried.
A film was formed at a density of 1.0 g/m 2 . Example 2 For the steel plate shown in Example 1, an aqueous liquid prepared by adding colloidal silica having a particle size of 5 to 6 mμ to 100 parts by weight of the aqueous resin solid content shown in Production Example 2 so that the solid content was 20 parts by weight was prepared. on it, dry it and
A film was formed to have a weight of 1.2 g/m 2 . Example 3 A Zn-Ni-Co alloy plated steel sheet (Ni = 11.3%, Co = 0.3%) with a plating weight of 20 g/m 2 was chromate-treated so that the Cr coating weight was 80 mg/m 2 . Cr 3 O 3 with a particle size of 8 to 10 mμ is added to the aqueous resin shown in Production Example 1.
An aqueous solution prepared by adjusting the sol to 30 parts by weight (solid content) per 100 parts by weight (solid content) of the resin is applied on top of the sol, and a film is formed so that it dries to 1.0 g/ m2 . Formed. Example 4 A Zn-Fe alloy coated steel plate with a plating weight of 20 g/m 2 was treated with chromate so that the Cr adhesion was 50 mg/m 2 , and the water-based resin shown in Production Example 3 was coated with a particle size of 3. An aqueous solution containing ~5 mμ Al 2 O 3 sol adjusted to 50 parts by weight (solid content) per 100 parts by weight (solid content) of the water-based resin was applied on top of the aqueous solution and dried.
A film was formed to have a weight of 1.2 g/m 2 . Example 5 A Zn-Mn alloy plated steel plate (Mn=41%) with a plating weight of 20 g/m 2 was treated with chromate so that the Cr coating weight was 60 mg/m 2 and the water-based coating shown in Production Example 3 was prepared. 100 parts by weight (solid content) of resin with a particle size of 3 to 5 mμ
An aqueous solution of SnO 2 sol adjusted to 30 parts by weight (solid content) was applied on top of it and dried to give 0.9 g/
A film was formed to have an area of m 2 . Comparative Example 1 In place of colloidal silica in Example 1, the particle size was
A film was formed in the same manner as in the example except that colloidal silica of 15 to 20 mμ was used. Comparative Example 2 Colloidal silica with a particle size of 5 to 6 mμ was prepared in the same manner as in Example 1 to a resin solid content of 100% as shown in Example 1.
Based on the weight part, 150 parts by weight (solid content) was added to form a film. Comparative Example 3 Colloidal silica with a particle size of 5 to 6 mμ was added to the resin solid content shown in Example 1 in the same manner as in Example 1.
Add 2 parts by weight (solid content) to 100 parts by weight,
A film was formed. Comparative Example 4 Manufactured using the chromate-treated plated steel plate shown in Example 1. Colloidal silica with a particle size of 5 to 6 mμ was adjusted to 20 parts by weight in solid content of the aqueous resin shown in Comparative Example 1 to 100 parts by weight. 1.0 in aqueous liquid
A film of g/m 2 was formed. Comparative Example 5 A film was formed in the same manner as in Comparative Example 4 except that the aqueous resin shown in Manufacture Comparative Example 2 was used. Examples 1, 2, 3, 4, 5 and comparative example 1,
Table 1 shows the results of various tests conducted on the surface-treated steel sheets obtained in steps 2, 3, and 4. Various test conditions are as follows. (1) Corrosion Resistance The incidence of white rust (%) after 1500 hours and the incidence of red rust (%) after 4000 hours were determined by a salt spray test in accordance with JIS-Z-2321. (2) Paint adhesion The paint and evaluation method are as follows. Paint adhesion is melamine-based (baking condition 280℃ x
The paint adhesion evaluation method uses baking paint (60 seconds).
Drawn according to JIS-5400, Eriksen's eyes,
Impact and 2T bending tests were conducted, and judgments were made based on the overall evaluation of these tests. Evaluation is ◎, ○,
Perform the test in five stages: △, ×, and XX, with ◎ being the best. ◎: Paint film peeling area 0% ○: 〃 0~1% △: 〃 1~10% ×: 〃 10~50% ××: 〃 50% or more (3) Spot welding method In the continuous welding test, the nugget diameter was 4 mmφ The evaluation was based on the number of consecutive hits until . ◎: 5,000 points or more ○: 4,500 to 5,000 points △: 4,000 to 4,500 points ×: 3,500 to 4,000 points XX: 3,500 points or less (4) Film adhesion After cross-cutting, 7 mm of Erichsen was extruded, and then cellophane tape was peeled off. In addition, after the 2T bending test, the tape was peeled off and a comprehensive evaluation of both was performed. (5) Alkali resistance Commercially available alkaline degreasing liquid (PH10.0-10.5, 60℃
Judgment was made based on the weight loss after immersion (immersion for 2 minutes). Evaluation is ◎: weight loss 0%, ○: weight loss 1% or less, △: weight loss 1-5%, ×: weight loss 5-10%,
XX: Evaluated on a five-point scale with weight loss of 10% or more. (6) Solvent resistance Judgment was made by weight loss after immersion in trichloroethane solution for 2 minutes. (7) Pencil hardness Determined by pencil hardness. (8) Processability After drawing a cylinder of 40φ for 25 hours, the cellophane tape was peeled off from the side wall.
【表】
(8)加工性 ◎ ◎ ◎
◎ ◎ ◎ × ○ ○ ×
[Table] (8) Processability ◎ ◎ ◎
◎ ◎ ◎ × ○ ○ ×
Claims (1)
分散液に重合性エチレン系不飽和化合物を加えて
乳化重合させ、重合終了の後更に架橋させて得ら
れた水系樹脂に、2mμから12mμの粒径を有す
るSiO2、Cr2O3、Fe2O3、Fe3O4、MgO、ZrO2、
SnO2、Al2O3、 Sb2O5のコロイドゾルの1種または2種以上を水
系樹脂の固形分100重量部に対し固形分で5〜100
重量部含有させた水性液を、5〜200mg/m2のク
ロム付着量を有するクロメート被覆メツキ鋼板表
面に塗布し乾燥被膜を形成させることを特徴とす
る鋼板の表面処理法。[Claims] 1. A water-based resin obtained by adding a polymerizable ethylenically unsaturated compound to a dispersion of an ethylene and α,β unsaturated carboxylic acid copolymer, carrying out emulsion polymerization, and further crosslinking after completion of the polymerization. , SiO 2 , Cr 2 O 3 , Fe 2 O 3 , Fe 3 O 4 , MgO, ZrO 2 with a particle size of 2 mμ to 12 mμ,
One or more colloidal sols of SnO 2 , Al 2 O 3 , and Sb 2 O 5 are added in a solid content of 5 to 100 parts per 100 parts by weight of the solid content of the water-based resin.
A method for surface treatment of a steel sheet, which comprises applying an aqueous liquid containing parts by weight to the surface of a chromate-coated galvanized steel sheet having a chromium adhesion amount of 5 to 200 mg/m 2 to form a dry film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22929287A JPS6473083A (en) | 1987-09-12 | 1987-09-12 | Surface treatment of steel sheet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22929287A JPS6473083A (en) | 1987-09-12 | 1987-09-12 | Surface treatment of steel sheet |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6473083A JPS6473083A (en) | 1989-03-17 |
JPH0414191B2 true JPH0414191B2 (en) | 1992-03-12 |
Family
ID=16889842
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22929287A Granted JPS6473083A (en) | 1987-09-12 | 1987-09-12 | Surface treatment of steel sheet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6473083A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01127084A (en) * | 1987-11-11 | 1989-05-19 | Nippon Steel Corp | Preparation of surface treated steel plate excellent in sharpness and cratering resistance |
JPH03136840A (en) * | 1989-10-23 | 1991-06-11 | Kobe Steel Ltd | Resin coated steel plate excellent in paintability, corrosion resistance, chemical resistance and scratch resistance and preparation thereof |
-
1987
- 1987-09-12 JP JP22929287A patent/JPS6473083A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6473083A (en) | 1989-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4966634A (en) | Composition of the surface treatment for metal and the treatment method | |
EP1378547A1 (en) | Surface-treated metal sheet | |
JPH0144387B2 (en) | ||
JP3305595B2 (en) | Metal plate having rust-preventive organic film, method for producing the same, and treatment liquid used therefor | |
JPH0148870B2 (en) | ||
JP2001214283A (en) | Surface treated galvanized steel sheet | |
JPH0374144B2 (en) | ||
JPH0414191B2 (en) | ||
JP2003073856A (en) | Rust inhibitor-containing water-dispersible metal surface treatment agent, surface-treated metal material and method for producing the same | |
US5518770A (en) | Methods and compositions for pretreatment of metals | |
JP2002036427A (en) | Metal material with resin-based corrosion resistant layer | |
CN100510183C (en) | Water-based surface-treating agent for plated metal sheet, surface-treated metal sheet, and process for producing the same | |
JPS62152578A (en) | Manufacture of alloy plated steel of zn or zn family superb in corrosion resistance, paintability and weldability | |
KR910003484B1 (en) | Metal Surface Treatment Compositions and Treatment Methods | |
US3630791A (en) | Process of surface treatment of metals | |
JPS6250479A (en) | Production of zn or zn alloy plated steel sheet having excellent corrosion resistance, paintability and fingerprint resistance | |
JP3196397B2 (en) | Organic composite coated steel sheet and method for producing the same | |
JPH0462150A (en) | Organic composite plated steel sheet | |
JPS63128083A (en) | Water-based rust-proofing primer | |
JPH0329807B2 (en) | ||
JPS5914552B2 (en) | Metal surface treatment method that provides high corrosion resistance | |
JPS6245310B2 (en) | ||
JPH08209038A (en) | Composition for treating surface of metal | |
KR0128132B1 (en) | Water-soluble resin for the chromated steel sheet electrically coated with zn and and/or zn alloy and manufacturing method of steel sheet therefor | |
JPH07228978A (en) | Method for producing alloyed hot-dip galvanized steel sheet composite material with excellent bare corrosion resistance and paintability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080312 Year of fee payment: 16 |