[go: up one dir, main page]

JPH0413568B2 - - Google Patents

Info

Publication number
JPH0413568B2
JPH0413568B2 JP20669984A JP20669984A JPH0413568B2 JP H0413568 B2 JPH0413568 B2 JP H0413568B2 JP 20669984 A JP20669984 A JP 20669984A JP 20669984 A JP20669984 A JP 20669984A JP H0413568 B2 JPH0413568 B2 JP H0413568B2
Authority
JP
Japan
Prior art keywords
shock absorber
sliding member
piezoelectric body
voltage
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20669984A
Other languages
Japanese (ja)
Other versions
JPS6185210A (en
Inventor
Mitsuo Inagaki
Hideaki Sasaya
Kenji Takeda
Yodo Nakano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP20669984A priority Critical patent/JPS6185210A/en
Priority to US06/781,638 priority patent/US4729459A/en
Publication of JPS6185210A publication Critical patent/JPS6185210A/en
Publication of JPH0413568B2 publication Critical patent/JPH0413568B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • B60G17/01941Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof characterised by the use of piezoelectric elements, e.g. sensors or actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/20Type of damper
    • B60G2202/24Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/80Interactive suspensions; arrangement affecting more than one suspension unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/20Speed
    • B60G2400/204Vehicle speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/40Steering conditions
    • B60G2400/41Steering angle
    • B60G2400/412Steering angle of steering wheel or column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/50Pressure
    • B60G2400/51Pressure in suspension unit
    • B60G2400/518Pressure in suspension unit in damper
    • B60G2400/5182Fluid damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/60Load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/80Exterior conditions
    • B60G2400/82Ground surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/10Piezoelectric elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2500/00Indexing codes relating to the regulated action or device
    • B60G2500/10Damping action or damper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/02Retarders, delaying means, dead zones, threshold values, cut-off frequency, timer interruption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/20Manual control or setting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/60Signal noise suppression; Electronic filtering means
    • B60G2600/604Signal noise suppression; Electronic filtering means low pass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/74Analog systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/90Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems other signal treatment means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/01Attitude or posture control
    • B60G2800/012Rolling condition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/18Starting, accelerating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/22Braking, stopping

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vehicle Body Suspensions (AREA)
  • Fluid-Damping Devices (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、減衰力を調整自在とした車両用のシ
ヨツクアブソーバに関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a shock absorber for a vehicle whose damping force can be freely adjusted.

(従来の技術) 従来の減衰力可変シヨツクアブソーバは、例え
ば特開昭58−194609号公報に開示される様に、シ
リンダ内に区画形成された2つの上下油圧室を通
路で連絡するとともに、この通路の面積を回転バ
ルブによつて変化させることによつて、減衰力を
変える構成のものであつた。
(Prior Art) A conventional variable damping force shock absorber, as disclosed in, for example, Japanese Patent Laid-Open No. 58-194609, connects two upper and lower hydraulic chambers defined in a cylinder with a passage. The damping force was changed by changing the area of the passage using a rotary valve.

(発明が解決しようとする問題点) ところが、従来のものにおいて、車両の走行状
態によつてシヨツクアブソーバの減衰力を変化さ
せる場合は、その走行状態を各種のセンサ、例え
ば車速センサ・操舵角センサ・スロツトルセンサ
等の信号に基づいて間接的に予測し、適切な減衰
力となるように回転バルブを制御する構成であつ
た。このため、従来のもので減衰力を適切に制御
するには、非常に多くのセンサを必要とし、また
これらのセンサの信号を受けて車両の走行状態を
予測する制御回路が複雑になるといつた問題点を
有していた。
(Problem to be Solved by the Invention) However, in the conventional system, when changing the damping force of the shock absorber depending on the driving condition of the vehicle, the driving condition is detected by various sensors such as a vehicle speed sensor and a steering angle sensor.・It was configured to indirectly predict the damping force based on signals from the throttle sensor, etc., and control the rotary valve to provide an appropriate damping force. For this reason, in order to properly control the damping force with conventional methods, a large number of sensors are required, and the control circuit that receives the signals from these sensors and predicts the vehicle's driving condition becomes complex. It had some problems.

本発明は上記の問題点に鑑みてなされるもので
なつて、車両走行状態をシヨツクアブソーバ内の
油室の圧力変化に基づいて予測し、且つ応答性の
優れた制御が可能となる新規な減衰力可変シヨツ
クアブソーバを提供することを目的とする。
The present invention has been made in view of the above-mentioned problems, and provides a novel damping system that predicts vehicle running conditions based on pressure changes in the oil chamber in the shock absorber and enables highly responsive control. The object of the present invention is to provide a variable force shock absorber.

(問題点を解決するための手段) 本発明は上記問題点を解決するための手段とし
て、シリンダ11に対して摺動自在にピストン1
2を収納した第1、第2油室14,15を形成
し、前記ピストンに設けられて第1、第2油室1
4,15を連通する連通路17,18と、この連
通路の通路面積を摺動変位することによつて変化
させ、且つ、一端面は第2油室の圧力を受ける摺
動部材19と、この摺動部材19の他端面側に配
設させて前記摺動部材19の変位を応力として受
けてこの応力に基づいて電圧を発生し、且つ印加
電圧に基づいて伸縮変位して変位を前記摺動部材
19へ伝達する圧電体23とを具備することを特
徴とする。
(Means for Solving the Problems) As a means for solving the above-mentioned problems, the present invention provides a piston 1 that is slidable with respect to the cylinder 11.
The piston is provided with first and second oil chambers 14 and 15 that house the oil chambers 1 and 2.
4 and 15, and a sliding member 19 whose passage area is changed by sliding displacement, and whose one end face receives pressure from the second oil chamber. The sliding member 19 is disposed on the other end surface side, receives the displacement of the sliding member 19 as stress, generates a voltage based on this stress, and expands and contracts based on the applied voltage to reduce the displacement. It is characterized by comprising a piezoelectric body 23 that transmits power to the moving member 19.

(実施例) 次に、本発明の一実施例を図面に基づいて説明
する。第1図は本発明の一実施例である減衰力可
変シヨツクアブソーバの断面図、第2図は第1図
に図示したシヨツクアブソーバ1を用いた車両制
御システムの模式図、第3図は第1図、第2図に
図示した制御回路2の回路図を各々示す。
(Example) Next, an example of the present invention will be described based on the drawings. FIG. 1 is a sectional view of a variable damping force shock absorber according to an embodiment of the present invention, FIG. 2 is a schematic diagram of a vehicle control system using the shock absorber 1 shown in FIG. FIG. 2 shows a circuit diagram of the control circuit 2 shown in FIG.

第1図において、1は減衰力可変シヨツクアブ
ソーバで、シリンダ11内に軸方向に摺動自在に
収納されたピストンロツド13と、ピストンロツ
ド13と溶接等によつて一体に固定されたピスト
ン12とによつて区画形成されて作動油の封入さ
れた第1油室14及び第2油室15と、第1油室
14と第2油室15とを連通するようにピストン
12に設けられている絞り16が各々配設されて
いる。
In FIG. 1, reference numeral 1 denotes a variable damping force shock absorber, which consists of a piston rod 13 housed in a cylinder 11 so as to be slidable in the axial direction, and a piston 12 that is integrally fixed to the piston rod 13 by welding or the like. A first oil chamber 14 and a second oil chamber 15 which are partitioned and filled with hydraulic oil, and a throttle 16 provided on the piston 12 so as to communicate the first oil chamber 14 and the second oil chamber 15. are arranged respectively.

ピストン12の中央には、中央孔17と側孔1
8が穿設されて、第1油室14と第2油室15を
連通する連通路が形成されている。この中央孔1
7には、連通路の通路面積を変化させる摺動自在
であるスプール19が、軸方向に摺動自在に油密
的に挿入されている。即ちスプール19は、外周
に環状の溝19aと中央に中央孔19bと、この
両者を連通する連通孔19cと備え、この溝19
aが前記側孔18と連通する位置から遮断される
位置まで移動することによつて、前記連通の通路
面積を変化させるいわゆる可変絞りの役割をす
る。また、スプール19の一端面即ち図中下方端
面は、第2油室15の圧力を受けるとともに、そ
の一部はストツパ20支持されたスプリング21
によつて上方に付勢されている。尚、ストツパ2
0は中央孔17に圧入されて固定されている。一
方、スプール19の他端面即ち図中上方端面の部
は、スプール19の上方に形成された突出部19
dの上方端面であつて、後述する封入室27に突
出している。なお、スプール19は摺動抵抗を減
少させるため、上下端面を連通する小孔19eを
備えている。
A central hole 17 and a side hole 1 are provided in the center of the piston 12.
8 is bored to form a communication path that communicates the first oil chamber 14 and the second oil chamber 15. This central hole 1
A slidable spool 19 that changes the passage area of the communication passage is inserted into the spool 7 in an oil-tight manner so as to be slidable in the axial direction. That is, the spool 19 has an annular groove 19a on the outer periphery, a central hole 19b in the center, and a communication hole 19c that communicates the two.
By moving a from a position where it communicates with the side hole 18 to a position where it is blocked, it acts as a so-called variable throttle that changes the passage area of the communication. Also, one end surface of the spool 19, that is, the lower end surface in the figure, receives pressure from the second oil chamber 15, and a portion of the spool 19 receives pressure from the spring 20 supported by the stopper 20.
is urged upward by. In addition, Stoppa 2
0 is press-fitted into the central hole 17 and fixed. On the other hand, the other end surface of the spool 19, that is, the upper end surface in the figure, has a protrusion 19 formed above the spool 19.
d, and projects into the inclusion chamber 27, which will be described later. The spool 19 is provided with a small hole 19e that communicates between the upper and lower end surfaces in order to reduce sliding resistance.

ピストン12の上部のケーシング12aとピス
トンロツド13によつて形成される空間22内に
は、圧電素子23aと電極板(図示せず)とが交
互に多数積層された積層型圧電体23が固定され
ている。この圧電素子23aは、ピストンロツド
13内にあるリード線24によつて印加される電
圧に基づいて、軸方向に伸縮変位する逆圧電効果
を有しているとともに、圧電素子23aの軸方向
に応力が加わるとその応力に基づい起電力を発生
する圧電効果を備えており、例えば、PbZrO3
PbTiO3等を主成分とするPZT素子などである。
A laminated piezoelectric body 23 in which a large number of piezoelectric elements 23a and electrode plates (not shown) are alternately laminated is fixed in a space 22 formed by the casing 12a above the piston 12 and the piston rod 13. There is. This piezoelectric element 23a has an inverse piezoelectric effect in which it expands and contracts in the axial direction based on the voltage applied by the lead wire 24 in the piston rod 13, and also has a stress in the axial direction of the piezoelectric element 23a. It has a piezoelectric effect that generates an electromotive force based on the applied stress. For example, PbZrO 3 ,
These include PZT elements whose main components are PbTiO 3 and the like.

25は圧電体23の伸縮変位と追従してケーシ
ング12a内の空間22を上下方向に摺動移動す
るプランジヤで、プランジヤ25、空間22、ス
プール19の突出部19dの上方端面及びシール
用Oリング26によつて封入室27が区画形成さ
れる。封入室27には非圧縮性流体、例えばシリ
コン油が密封状態で封入されており、プランジヤ
25の断面積とスプール19の突出部19dの断
面積との比によつて、いわゆるパスカルの原理に
基づいて圧電体23によつて変位するプランジヤ
25の微少変位量をスプール19に増大させて伝
達する。また封入室27はスプリング21によつ
て10〜20Kg/cm3程度の圧力に維持されている。
A plunger 25 slides vertically in a space 22 inside the casing 12a following the expansion and contraction of the piezoelectric body 23, and includes the plunger 25, the space 22, the upper end surface of the protrusion 19d of the spool 19, and the O-ring 26 for sealing. The enclosing chamber 27 is defined by the following. An incompressible fluid such as silicone oil is hermetically sealed in the filling chamber 27, and the ratio between the cross-sectional area of the plunger 25 and the cross-sectional area of the protrusion 19d of the spool 19 is determined based on the so-called Pascal's principle. The amount of minute displacement of the plunger 25 displaced by the piezoelectric body 23 is increased and transmitted to the spool 19. Further, the pressure in the enclosure chamber 27 is maintained at a pressure of about 10 to 20 kg/cm 3 by a spring 21.

尚、スプール19は圧電体23に電圧が印加さ
れていないときは、第1、第2油室14,15を
連通する側孔18及び、絞り16により連通し、
高電圧(約500V)が印加されたときは両油室1
4,15は側孔18が絞り16だけで連通するよ
うに構成されている。
Note that when no voltage is applied to the piezoelectric body 23, the spool 19 communicates with the first and second oil chambers 14 and 15 through a side hole 18 and a throttle 16.
When high voltage (approximately 500V) is applied, both oil chambers 1
4 and 15 are constructed so that the side holes 18 communicate with each other only through the aperture 16.

また、28,29はシール用Oリングで、Oリ
ング28はピストンロツド13の外周に配設され
て油室14,15のシールをし、Oリング29は
スプール19の突出部19dの外周にあつて封入
室27のシリコン油が外部へ流出しないようにす
るものである。
Further, 28 and 29 are O-rings for sealing. This prevents the silicone oil in the sealing chamber 27 from leaking to the outside.

また、2は制御回路であつてリード線24を介
して圧電体23と電気的に接続されている。
Further, 2 is a control circuit which is electrically connected to the piezoelectric body 23 via a lead wire 24.

上述の構成に基づいて、減衰力可変シヨツクア
ブソーバの作動について説明する。
The operation of the variable damping force shock absorber will be explained based on the above configuration.

制御回路2により圧電体23に電圧が印加され
ない場合においては、ピストン12の側孔18と
スプール19の溝19aとは連通しており、ピス
トン12及びピストンロツド13がシリンダ11
内を摺動する際に発生する減衰力は、側孔18及
び絞り16を流れる作動油の抵抗力として得られ
る。
When no voltage is applied to the piezoelectric body 23 by the control circuit 2, the side hole 18 of the piston 12 and the groove 19a of the spool 19 are in communication, and the piston 12 and the piston rod 13 are connected to the cylinder 11.
The damping force generated when sliding inside is obtained as a resistance force of the hydraulic oil flowing through the side hole 18 and the throttle 16.

制御回路2により圧電体23に高電圧(約
500V)が印加された場合には、圧電体23は微
少の伸び変位(約90μ)し、この変位はプランジ
ヤ25及びスプール19の突出部19dの断面積
の比(約25倍)だけ封入室27によつて拡大され
てスプール19に図中下方の変位(約2mm)とし
て伝達される。この時、側孔18とスプール19
の溝19aと連通は遮断されため、シヨツクアブ
ソーバ1の減衰力は絞り16を流れる作動油の抵
抗力として得られる。この抵抗力は、前述の場合
と比較して、側孔18が閉塞されただけ大きくな
るため、シヨツクアブソーバ1の減衰力は増加す
る。
The control circuit 2 applies a high voltage (approx.
500V), the piezoelectric body 23 undergoes a slight elongation displacement (approximately 90μ), and this displacement causes the enclosure chamber 27 to expand by a ratio (approximately 25 times) of the cross-sectional area of the plunger 25 and the protrusion 19d of the spool 19. , and is transmitted to the spool 19 as a downward displacement (approximately 2 mm) in the figure. At this time, the side hole 18 and the spool 19
Since communication with the groove 19a is cut off, the damping force of the shock absorber 1 is obtained as a resistance force of the hydraulic oil flowing through the throttle 16. This resistance force becomes larger as the side hole 18 is closed compared to the case described above, so that the damping force of the shock absorber 1 increases.

以上述べた様に、シヨツクアブソーバ1の減衰
力は、圧電体23に印加される電圧を制御回路2
によつてON−OFFすることにより、ハード・ソ
フトの2つの減衰力を得られる。
As described above, the damping force of the shock absorber 1 is determined by controlling the voltage applied to the piezoelectric body 23 by the control circuit 2.
By turning it ON and OFF, you can obtain two types of damping force: hard and soft.

尚、上述の説明においては、圧電体23に印加
される電圧をON−OFF制御することによつてシ
ヨツクアブソーバ1の減衰力を2段階に切り換え
るものであつたが、圧電体23印加される電圧を
零から高電圧(約500V)まで連続的に制御する
ことによつて、シヨツクアブソーバ1の減衰力を
ソフトからハードまで連続的に変えることも可能
であることは言うまでもない。
In the above explanation, the damping force of the shock absorber 1 is switched in two stages by controlling the voltage applied to the piezoelectric body 23 on and off, but the voltage applied to the piezoelectric body 23 It goes without saying that it is also possible to continuously change the damping force of the shock absorber 1 from soft to hard by continuously controlling the voltage from zero to a high voltage (approximately 500 V).

次に、シヨツクアブソーバ1内の油室14,1
5の圧力変化に基づいて、車両走行状態を検出す
る場合における圧電体23の作動を説明する。
Next, the oil chambers 14, 1 in the shock absorber 1
The operation of the piezoelectric body 23 when detecting the running state of the vehicle based on the pressure change shown in FIG. 5 will be described.

シヨツクアブソーバ1の作動時、例えばピスト
ン12がシリンダ11内を下降している場合に
は、ピストン12の側孔18及び絞り16を介し
て、第2油室15の作動油が第1油室14に流れ
る。このとき、作動油の作動抵抗より、第2油室
15の圧力は上昇してスプール19の下端面を上
方に押圧する押圧力が作用する。
During the operation of the shock absorber 1, for example, when the piston 12 is moving down inside the cylinder 11, the hydraulic oil in the second oil chamber 15 flows into the first oil chamber 15 through the side hole 18 of the piston 12 and the throttle 16. flows to At this time, the pressure in the second oil chamber 15 increases due to the operating resistance of the hydraulic oil, and a pressing force that presses the lower end surface of the spool 19 upward acts.

圧電体23に追従するプランジヤ25とスプー
ル19とは、封入室27内のシリコン油によつて
両者の変位が伝達される構成となつているため、
スプール19の下方端面より押圧力が作用する
と、その押圧力に応じて封入室27の圧力が変化
する。この圧力変化は、プランジヤ25を介して
圧電体23に押圧力を作用させるため、圧電体2
3は圧電効果により電圧が発生する。この電圧
は、リード線24で制御回路2に接続されて走行
状態の判定に用いられる。
The plunger 25 that follows the piezoelectric body 23 and the spool 19 are configured so that their displacement is transmitted by the silicone oil in the enclosure chamber 27.
When a pressing force is applied from the lower end surface of the spool 19, the pressure in the filling chamber 27 changes in accordance with the pressing force. This pressure change causes a pressing force to act on the piezoelectric body 23 via the plunger 25.
3, voltage is generated due to piezoelectric effect. This voltage is connected to the control circuit 2 through a lead wire 24 and used to determine the running state.

尚、上述の実施例においては、圧電体23の変
位が微少であるため、封入室27を介してその変
位を拡大してスプール20に伝達する構成である
が、圧電体23の変位によつて直接にスプール2
0を変位させてもピストン12の側孔18を開閉
することが可能の場合は、封入室27は不必要と
なることは言うまでもない。
In the above embodiment, since the displacement of the piezoelectric body 23 is minute, the displacement is magnified and transmitted to the spool 20 via the enclosure chamber 27. directly on spool 2
It goes without saying that if it is possible to open and close the side hole 18 of the piston 12 even if 0 is displaced, the sealing chamber 27 becomes unnecessary.

また、ピストン12の、中央孔17、側孔18
からなる連通路の通路面積が十分に大きい場合
は、ピストン口に設けられている絞り16を省略
しても上述の作動、効果が得られることは、当業
者において容易に理解されるであろう。
In addition, the center hole 17 and side hole 18 of the piston 12
Those skilled in the art will easily understand that if the passage area of the communication passage made of .

第2図は、上述のシヨツクアブソーバ1を組み
込んだ車両制御も模式図であつて、2は制御回
路、3は車輪で、シヨツクアブソーバ1は、前後
両方車輪の計4輪に各々取付けられて、各々のリ
ード線24は制御回路2と接続されている。
FIG. 2 is a schematic diagram of a vehicle control incorporating the above-mentioned shock absorber 1, where 2 is a control circuit, 3 is a wheel, and the shock absorber 1 is attached to each of the four wheels, both front and rear wheels. Each lead wire 24 is connected to the control circuit 2.

第3図は制御回路2の回路図である。 FIG. 3 is a circuit diagram of the control circuit 2.

制御回路2は、DC−DCコンバータによる高圧
電源201、高圧電源201の出力を0N−OFF
する4ヶのスイツチ202、各シヨンクアブソー
バ1の圧電体23に発生する電圧を分圧する抵抗
器203,204、分圧された圧電体23の電圧
の低周波成分だけを取り出す4組のローパスフイ
ルタ205(L・F)、フイルタ追過後の信号を
設定レベルVRと比較して1,0信号を発生する
4組の比較器206,4本のシヨツクアブソーバ
1の圧電体23からの信号を判別して作動する
AND回路207,OR回路208,及びこの
AND・ORによる論理回路の信号を受けて、一定
時間(約2秒間)前記スイツチ202を閉じさせ
るタイマ回路209から構成されている。
The control circuit 2 turns 0N-OFF the output of the high-voltage power supply 201 and the high-voltage power supply 201 using the DC-DC converter.
resistors 203 and 204 that divide the voltage generated in the piezoelectric body 23 of each shock absorber 1, and four sets of low-pass filters that extract only the low frequency components of the divided voltage of the piezoelectric body 23. 205 (L/F), 4 sets of comparators 206 that generate 1 and 0 signals by comparing the signal after filter tracking with the set level V R , and discriminate the signals from the piezoelectric bodies 23 of the four shock absorbers 1. to operate
AND circuit 207, OR circuit 208, and this
It consists of a timer circuit 209 that closes the switch 202 for a certain period of time (approximately 2 seconds) in response to a signal from an AND/OR logic circuit.

前記論理回路は、4本のシヨツクアブソーバの
取付位置を、前輪右側(F・R)、前輪左側
(F・L)、後輪右側(R・R)、前輪左側(R・
L)として説明すると、F・RとF・L、又は
R・RとR・L、又はF・RとR・R、又はR・
LとR・Lが同時に比較器206の設定電圧VR
を越える電圧を発生した場合に、AND回路20
7が1となり、OR回路208は1なる論理を有
する。
The logic circuit determines the mounting positions of the four shock absorbers: front right side (F/R), front left side (F/L), rear right side (R/R), and front left side (R/R).
L), F・R and F・L, or R・R and R・L, or F・R and R・R, or R・
L and R・L are set voltage V R of comparator 206 at the same time.
AND circuit 20 when a voltage exceeding
7 becomes 1, and the OR circuit 208 has a logic of 1.

次に、本発明による減衰力可変シヨツクアブソ
ーバを組み込んだシステムの作動について説明す
る。
Next, the operation of the system incorporating the variable damping force shock absorber according to the present invention will be explained.

本システムにおいて、従来公知の減衰力可変シ
ヨツクアブソーバを組み込んだシステム同様、マ
ニユアル操作により減衰力をソスト又はハードに
切替えることは、設定に応じて本発明のシヨツク
アブソーバ1の圧電体23に加える高電圧をON
又はOFFとすれば容易にできることは前述した
様にいうまでもない。(マニユアル操作に係る回
路は省略する) 本システムの最も重なポイントは、車両の走行
状態に応じて自動的に減衰力をソフトあるいはハ
ードに切替えるいわゆるオート機能を容易にかつ
簡単に行なえるところにある。
In this system, similarly to a system incorporating a conventionally known variable damping force shock absorber, switching the damping force between soft and hard by manual operation is achieved by applying a high voltage to the piezoelectric body 23 of the shock absorber 1 of the present invention according to the setting. ON
Or, it goes without saying that this can be easily done by turning it off, as mentioned above. (The circuit related to manual operation is omitted.) The most important point of this system is that it can easily and easily perform the so-called auto function, which automatically switches the damping force between soft and hard depending on the vehicle's driving condition. be.

本システムにおけるオートモードでは、車両の
4輪に装着された4本のシヨツクアブソーバ1に
組み込んだ圧電体23の発生電圧をもとに、車両
の走行状態を予測し、すみやかにソフトからハー
ドへと減衰力を切替える。本システムでは、オー
トモード時の減衰力のソフトからハードへの切替
えは、急発進時・急制動時及びスラローム走行時
に行ない、各々、スクオウト(車両の尻下り現
象)・ダイブ(車両の前のめり)及びロールを防
止し操縦安定性を向上するとともに、通常時の乗
りごごち性を向上させることができる。
In the auto mode of this system, the running condition of the vehicle is predicted based on the voltage generated by the piezoelectric body 23 built into the four shock absorbers 1 attached to the four wheels of the vehicle, and the system quickly changes from soft to hard. Switch the damping force. In this system, the damping force in auto mode is switched from soft to hard during sudden starts, sudden braking, and slalom driving, respectively, and is applied during squats (vehicle tail-end phenomenon), dives (vehicle leaning forward), and It is possible to prevent roll and improve steering stability, as well as to improve the comfort of the ride in normal conditions.

次に、4本のシヨツクアブソーバ1に組み込ま
れた圧電体23の発生電圧から、いかに、急発
進、急制動及びスラロームを予測するかを説明す
る。
Next, it will be explained how to predict sudden start, sudden braking, and slalom from the voltage generated by the piezoelectric bodies 23 incorporated in the four shock absorbers 1.

急発進時に車両はスクオウト現象、すなわち車
両の尻下りが生ずるため4輪の内、後2輪(R・
R及びR・L)に取り付けられたシヨツクアブソ
ーバ1が縮む。従つて、後2輪(R・R及びR・
L)に取り付けられたシヨツクアブソーバ1から
の電圧信号が同時に発生するため、これらを検知
して減衰力はソフトからハードへと切替えスクオ
ウトを抑える。即ちAND回路207のAND4が
1となつて、タイマ回路209によつて一定時間
スイツチ202を閉じ、シヨツクアブソーバ1の
圧電体23に高圧電源201の高電圧を印加す
る。
When the vehicle starts suddenly, the vehicle tends to perform a scouting phenomenon, in other words, the rear two wheels of the four wheels (R,
The shock absorber 1 attached to R and R/L) is retracted. Therefore, the rear two wheels (R・R and R・
Since the voltage signals from the shock absorber 1 attached to the shock absorber 1 are generated at the same time, these are detected and the damping force is switched from soft to hard to suppress the squat. That is, AND4 of the AND circuit 207 becomes 1, the timer circuit 209 closes the switch 202 for a certain period of time, and the high voltage of the high voltage power supply 201 is applied to the piezoelectric body 23 of the shock absorber 1.

急制動時には、ダイブ現象、すなわち車両の前
のめりにより前2輪(F・R及びF・L)に取り
付けられたシヨツクアブソーバから電圧信号が同
時に発生する。これを検知して減衰力をソフトか
らハードへと切替えタイブ現象を抑える。このと
きAND回路207のAND1が1となる。
During sudden braking, voltage signals are simultaneously generated from the shock absorbers attached to the front two wheels (F, R and F, L) due to a dive phenomenon, that is, the vehicle leans forward. This is detected and the damping force is switched from soft to hard to suppress the type phenomenon. At this time, AND1 of the AND circuit 207 becomes 1.

また、スラローム走行時には、コーナリングの
方向に従いロール現象が発生する。この時、車両
の右2輪(F・R及びR・R)、又は左2輪
(F・L及びR・L)のいずれかが沈み込むため、
シヨツクアブソーバ1からの電圧信号は右2輪
(F・R及びR・R)、又は左2輪(F・L及び
R・L)が同時に発生するため、これを受けて減
衰力をソフトからハードへ切替えることによりロ
ールを抑える。このときはAND回路207の
AND2、又はAND3が1なる。
Further, during slalom running, a roll phenomenon occurs depending on the direction of cornering. At this time, either the two right wheels (F・R and R・R) or the two left wheels (F・L and R・L) of the vehicle sink, so
The voltage signal from shock absorber 1 is generated simultaneously for the two right wheels (F・R and R・R) or the two left wheels (F・L and R・L), so in response to this, the damping force is changed from soft to hard. The roll is suppressed by switching to At this time, the AND circuit 207
AND2 or AND3 becomes 1.

本システムの制御回路2では、前述の、スクオ
ウト・ダイブ・ロール現象に応じて、各シヨツク
アブソーバ1の圧電体から発生する電圧をあらか
じめ設定した電圧(VR)と比較することにより、
設定電圧(VR)より大なる場合に信号を論理回
路へ入力し、この信号をANDとORの組合せによ
り、車両の走行状態に起因するスクオウト・ダイ
ブ・ロール現象を予測し、高圧電源201からの
高電圧をシヨツクアブソーバ1の圧電体23へ加
えるためスイツチ202を設定時間の間(約2秒
間)作動させる。尚、シヨツクアブソーバ1の発
生電圧は、抵抗器203によつて分圧し、これを
あらかじめ設定した特性を有するフイルタ205
(ローパスフイルタ)に通すことで、例えば走路
の凹凸などによつて発生するタイヤの上下振動に
起因する比較的高い周波数成分をカツトして防い
でいる。
The control circuit 2 of this system compares the voltage generated from the piezoelectric body of each shock absorber 1 with a preset voltage (V R ) in response to the aforementioned scout, dive, and roll phenomenon.
When the voltage is higher than the set voltage (V R ), a signal is input to the logic circuit, and this signal is combined with AND and OR to predict the scout, dive, and roll phenomenon caused by the vehicle running condition, and is output from the high voltage power supply 201. The switch 202 is operated for a set time (approximately 2 seconds) in order to apply a high voltage of 1 to the piezoelectric body 23 of the shock absorber 1. The voltage generated by the shock absorber 1 is divided by a resistor 203, and then divided by a filter 205 having preset characteristics.
By passing the signal through a low-pass filter, it cuts out and prevents relatively high frequency components caused by vertical vibration of the tire caused by, for example, irregularities in the running road.

以上述べた通り、本発明による減衰を可変シヨ
ツクアブソーバ1は、減衰力を切替える手段とし
て圧電体23と、パスカルの原理に基きこの圧電
体23の微少変位を拡大してスプール19の変位
を起こし、ピストン12の側孔18を開閉する構
成としたことにより、シヨツクアブソーバ1の縮
み時には、圧電体23ら電圧信号を発生させるこ
とができ、この信号をもとに、車両の走行状態を
予測することが可能となり、従来のシステムに使
用されている車速センサ、ステアリングセンサ、
スロツトルセンサ、ブレーキ圧センサなどの多く
のセンサを必要とする配線などを含めてシステム
が簡単となるメリツトを有する。
As described above, the shock absorber 1 with variable damping according to the present invention uses the piezoelectric body 23 as a means for switching the damping force, and expands minute displacement of the piezoelectric body 23 based on Pascal's principle to cause displacement of the spool 19. By opening and closing the side hole 18 of the piston 12, when the shock absorber 1 is compressed, a voltage signal can be generated from the piezoelectric body 23, and based on this signal, the running state of the vehicle can be predicted. This makes it possible to replace the vehicle speed sensor, steering sensor,
This has the advantage of simplifying the system, including wiring that requires many sensors such as the throttle sensor and brake pressure sensor.

(発明の効果) 以上述べた様に本発明は、シヨツクアブソーバ
内のピストンに圧電体を配設するとともに、第
1・第2油室の連通路の通路面積を変化させる摺
動部材を設けて、両者の変位を伝達する構成とし
たことにより、シヨツクアブソーバが縮む場合に
は第2油室の圧力が摺動部材から、圧電体と伝達
されて、この圧力に基づいて圧電体に電圧が発生
する。このため、車両走行状態を、シヨツクアブ
ソーバ内の油室の圧力変化に基づいて発生する圧
電体の電圧によつて直接に予測することが可能と
なる。また、摺動部材は圧電体に印加される電圧
に基づいて変位移動して、通路面積を変化させる
ため、従来の回転バルブなどに比較して非常に応
答性が優れたものになる。
(Effects of the Invention) As described above, the present invention provides a piezoelectric body on the piston in the shock absorber and a sliding member that changes the passage area of the communication passage between the first and second oil chambers. By adopting a configuration that transmits the displacement between the two, when the shock absorber contracts, the pressure in the second oil chamber is transmitted from the sliding member to the piezoelectric body, and a voltage is generated in the piezoelectric body based on this pressure. do. Therefore, it is possible to directly predict the running state of the vehicle based on the voltage of the piezoelectric body generated based on the pressure change in the oil chamber in the shock absorber. Further, since the sliding member is displaced and moved based on the voltage applied to the piezoelectric body to change the passage area, the responsiveness is much better than that of conventional rotary valves.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である減衰力可変シ
ヨツクアブソーバの断面図、第2図は第1図に図
示したシヨツクアブソーバ1を用いた車両制御シ
ステムの模式図、第3図は第1図、第2図に図示
した制御回路2の回路図を各々示す。 1……減衰力可変シヨツクアブソーバ、11…
…シリンダ、12……ピストン、12a……ケー
シング、14,15……第1・第2油室、16…
…絞り、17,18……連通路となる中央孔と側
孔、19……スプール(摺動部材)、21……ス
プリング、23……圧電体、25……プランジ
ヤ、27……封入室。
FIG. 1 is a sectional view of a variable damping force shock absorber according to an embodiment of the present invention, FIG. 2 is a schematic diagram of a vehicle control system using the shock absorber 1 shown in FIG. FIG. 2 shows a circuit diagram of the control circuit 2 shown in FIG. 1... variable damping force shock absorber, 11...
...Cylinder, 12...Piston, 12a...Casing, 14, 15...First and second oil chambers, 16...
... Aperture, 17, 18 ... Central hole and side hole serving as a communication path, 19 ... Spool (sliding member), 21 ... Spring, 23 ... Piezoelectric body, 25 ... Plunger, 27 ... Enclosure chamber.

Claims (1)

【特許請求の範囲】 1 シリンダに対して摺動自在にピストンを収納
した第1、第2油室を形成し、前記ピストンに設
けられて第1、第2油室を連通する連通路と、こ
の連通路の通路面積を摺動変位することによつて
変化させ、且つ、一端面は第2油室の圧力を受け
る摺動部材と、この摺動部材の他端面側に配設さ
せて前記摺動部材の変位を応力として受けてこの
応力に基づいて電圧を発生し、且つ印加電圧に従
つて伸縮変位してその変位を前記摺動部材へ伝達
する圧電体とを具備することを特徴とする減衰可
変シヨツクアブソーバ。 2 前記圧電体は、軸方向に応力が加わるとその
応力に基づいて電圧を発生する圧電効果と、印加
される電圧に基づいて軸方向に伸縮変位する逆圧
電効果とを有する圧電素子を、軸方向に多数積層
した積層型圧電体である特許請求の範囲第1項記
載の減衰力可変シヨツクアブソーバ。 3 前記圧電体の変位は、前記圧電体と追従して
ケーシング内を追従するプランジヤと・前記摺動
部材の他端面と・前記ケーシングとによつて区画
されて非圧縮流体の封入された封入室を介して前
記スプールに伝達されるとともに、前記プランジ
ヤの断面積と前記摺動部材の他端面の面積の比に
よつて拡大されて前記摺動部材に伝達される特許
請求の範囲第2項記載の減衰力可変シヨツクアブ
リーバ。
[Scope of Claims] 1. A communication passage forming first and second oil chambers in which a piston is slidably housed in a cylinder, and communicating the first and second oil chambers provided in the piston; The passage area of this communication passage is changed by sliding displacement, and one end face is disposed on the sliding member receiving pressure of the second oil chamber and the other end face side of the sliding member is disposed on the other end face side. It is characterized by comprising a piezoelectric body that receives displacement of the sliding member as stress and generates a voltage based on this stress, expands and contracts according to the applied voltage, and transmits the displacement to the sliding member. variable damping shock absorber. 2 The piezoelectric body has a piezoelectric element that has a piezoelectric effect that generates a voltage based on stress when stress is applied in the axial direction, and an inverse piezoelectric effect that expands and contracts in the axial direction based on the applied voltage. The variable damping force shock absorber according to claim 1, which is a laminated piezoelectric material laminated in multiple directions. 3. The displacement of the piezoelectric body is caused by an enclosed chamber filled with an incompressible fluid that is partitioned by a plunger that follows the piezoelectric body inside the casing, the other end surface of the sliding member, and the casing. Claim 2, wherein the pressure is transmitted to the spool through the spool, and is transmitted to the sliding member after being enlarged by the ratio of the cross-sectional area of the plunger to the area of the other end surface of the sliding member. variable damping force shock absorber.
JP20669984A 1984-10-01 1984-10-01 Shock absorber with adjustable damping force Granted JPS6185210A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP20669984A JPS6185210A (en) 1984-10-01 1984-10-01 Shock absorber with adjustable damping force
US06/781,638 US4729459A (en) 1984-10-01 1985-09-30 Adjustable damping force type shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20669984A JPS6185210A (en) 1984-10-01 1984-10-01 Shock absorber with adjustable damping force

Publications (2)

Publication Number Publication Date
JPS6185210A JPS6185210A (en) 1986-04-30
JPH0413568B2 true JPH0413568B2 (en) 1992-03-10

Family

ID=16527649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20669984A Granted JPS6185210A (en) 1984-10-01 1984-10-01 Shock absorber with adjustable damping force

Country Status (1)

Country Link
JP (1) JPS6185210A (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113509A (en) * 1984-11-09 1986-05-31 Honda Motor Co Ltd Shock absorber controlling device
JPH0517469Y2 (en) * 1986-03-06 1993-05-11
JPH0517468Y2 (en) * 1986-03-06 1993-05-11
JPH0672635B2 (en) * 1986-06-25 1994-09-14 株式会社日本自動車部品総合研究所 Damping force control device for shock absorber
JPS6376507U (en) * 1986-11-07 1988-05-21
JPS63303238A (en) * 1987-06-02 1988-12-09 Nippon Autom:Kk Shock absorber
JPS6455445A (en) * 1987-08-24 1989-03-02 Nippon Denso Co Damping force detector and shock absorber controller
JP2619902B2 (en) * 1988-02-13 1997-06-11 株式会社デンソー Shock absorber damping force control device
JP2576222Y2 (en) * 1988-11-18 1998-07-09 株式会社ユニシアジェックス Suspension system
JP2505228Y2 (en) * 1988-04-15 1996-07-24 株式会社ユニシアジェックス Variable damping force hydraulic shock absorber
JP2505229Y2 (en) * 1988-04-15 1996-07-24 株式会社ユニシアジェックス Variable damping force hydraulic shock absorber
JPH01152810U (en) * 1988-04-15 1989-10-20
JP2505231Y2 (en) * 1988-04-19 1996-07-24 株式会社ユニシアジェックス Variable damping force hydraulic shock absorber
JP2505232Y2 (en) * 1988-04-19 1996-07-24 株式会社ユニシアジェックス Variable damping force hydraulic shock absorber
US4961483A (en) * 1988-08-03 1990-10-09 Atsugi Motor Parts, Limited Variable damping characteristics shock absorber with feature of generation of piston stroke direction indicative signal
JPH0524832Y2 (en) * 1988-11-14 1993-06-23
JPH02142942A (en) * 1988-11-25 1990-06-01 Atsugi Unisia Corp hydraulic shock absorber
EP0401802B1 (en) * 1989-06-07 1995-02-08 Nippondenso Co., Ltd. Drive system of actuator having piezoelectric device for use in motor vehicle
JP2738049B2 (en) * 1989-08-10 1998-04-08 株式会社デンソー Vehicle damping force detector
JPH0425640A (en) * 1990-05-18 1992-01-29 Toyo Tire & Rubber Co Ltd Vibration isolator
JPH04175533A (en) * 1990-11-05 1992-06-23 Nissan Motor Co Ltd Displacement magnifying mechanism for piezoelectric actuator
DE4126241A1 (en) * 1991-08-08 1993-02-11 Krupp Widia Gmbh CUTTING INSERT AND DRILLING TOOL FOR HOLES IN FULL MATERIAL
JP5651529B2 (en) * 2010-05-31 2015-01-14 本田技研工業株式会社 Variable damping force damper
JP5374475B2 (en) * 2010-10-26 2013-12-25 本田技研工業株式会社 Variable damping force damper

Also Published As

Publication number Publication date
JPS6185210A (en) 1986-04-30

Similar Documents

Publication Publication Date Title
JPH0413568B2 (en)
US4729459A (en) Adjustable damping force type shock absorber
JP2752668B2 (en) Suspension system
US9731575B2 (en) Suspension apparatus
WO2011099143A1 (en) Suspension device
US6332622B1 (en) Suspension apparatus having two interconnected shock absorbers
GB2220624A (en) Control of the damping in a hydraulic shock absorber
JPH0672635B2 (en) Damping force control device for shock absorber
US5054809A (en) Variable damping characteristics shock absorber
US4722546A (en) Rear suspension controller
JPH0258122B2 (en)
JP6397536B1 (en) Suspension device and suspension control device
JPS5830818A (en) Anti-roll device for vehicle
JPH0717523Y2 (en) Variable damping force hydraulic shock absorber
JPS6229410A (en) Shock absorber for vehicle and shock absorber controlling device equiped with said shock absorber
JPH0424243B2 (en)
JP2752664B2 (en) Suspension system
JP2576222Y2 (en) Suspension system
EP0338814B1 (en) Automotive suspension system with variable suspension characteristics and variable damping force shock absorber therefor
JP2741030B2 (en) Variable damping force type hydraulic shock absorber
JPH0747210Y2 (en) Variable damping force type hydraulic shock absorber
JP3682334B2 (en) Spring constant switching structure
JPH0228485B2 (en) BUREEKIHATSUSHINJINOSHOTSUKUABUSOOBASEIGYOSOCHI
JPH0241913A (en) Variable damping force hydraulic shock absorber
JPH0365418A (en) Variable damping force suspension unit