JPH04134326A - Short wavelength laser beam source and production thereof - Google Patents
Short wavelength laser beam source and production thereofInfo
- Publication number
- JPH04134326A JPH04134326A JP25805990A JP25805990A JPH04134326A JP H04134326 A JPH04134326 A JP H04134326A JP 25805990 A JP25805990 A JP 25805990A JP 25805990 A JP25805990 A JP 25805990A JP H04134326 A JPH04134326 A JP H04134326A
- Authority
- JP
- Japan
- Prior art keywords
- laser light
- lens
- lens barrel
- optical
- laser beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明(よ 光計測等に用いられる短波長レーザ光源お
よびその製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a short wavelength laser light source used for optical measurement, etc., and a method for manufacturing the same.
従来の技術
従来の短波長レーザ光源として(よ 例えば [G、T
ohmon、 K、Yamamoto and
T、Tan1uchi )’oシープゝ4ンクゝ、
ニス ビー アイ イ (Proc、5PIE)Vol
、898 Miniature 0ptics an
d La5ers(1988)]に示されている。Conventional technology As a conventional short wavelength laser light source (for example, [G, T
ohmon, K., Yamamoto and
T, Tan1uchi)'o sheepゝ4nkゝ,
Niss Be I I (Proc, 5PIE) Vol.
, 898 Miniature 0ptics an
d La5ers (1988)].
第3図(戴 従来の短波長レーザ光源の構成を示したも
ので、 10は鏡気 6は非線形光学結晶として例えば
L iN bo 3の基板上に光導波路7を形成した光
波長変換素子、 lは鏡筒9に光波長変換素子6と反対
側の端に取り付けられた波長0.84μmのレーザ光2
を発生させる半導体レーザ、 3は半導体レーザ1のレ
ーザ光出射側に位置するコリメートレンX 5は光波長
変換素子6の光入射面側に位置するフォーカスレンズ
4はコリメートレンズ3とフォーカスレンズ5の間に位
置する半波長板であa 8は光波長変換素子6の光出射
面より出射されたレーザ光を平行にするための整形レン
ズ、 9は本短波長し−サ光源の出力レーザ光であ4
以上のように構成された従来の短波長レーザ光源の動作
を説明する。半導体レーザ1より出射された波長0.8
4μmのレーザ光2はコリメートレンズ3に入射し平行
ビームとなり、半波長板4により偏向方向が修正され
フォーカスレンズ5に入射すも フォーカスレンズ5を
出射したレーザ光2U LiNbO3光波長変換素子
6の光入射面に集光され光導波路7を伝搬し 波長を1
/2に変換される。LiNb0a光波長変換素子6より
出射された波長0.42μmのレーザ光は整形レンズ8
により出射角度が修正され 平行ビーム9として鏡筒l
Oより出射されも
発明が解決しようとする課題
しかしながら本発明者らの検討によれ(fS 上記の
ような構成では 環境温度が±10℃変化したとき、光
軸ずれおよび半導体レーザ1の出力変動が発生し レー
ザ光9の出力が10%以上変動するという課題が判明し
てい九 このように わずか±10℃の変化でこのよう
な出力変動が生じることは実使用において大きな問題と
なることが明らかとなり、この改善が強く望まれること
となりt島
本発明はかかる点に鑑へ 環境温度変化による出力変動
の小さな短波長レーザ光源を提供することを目的とす4
課題を解決するための手段
本発明は ベルチェ熱電素子を用いたもので、非線形光
学結晶板上に光導波路を形成した光波長変換素子と、
レーザ光源と、前記レーザ光源より出射されたレーザ光
を集光し前記光波長変換素子に入射させるレンズとを、
鏡筒内で同一光軸上に固定するとともに 前記鏡筒もし
くはこの鏡筒を覆ったケースにペルチェ熱電素子を取り
付けたことを特徴とする短波長レーザ九九
作用
本発明は前記した手段により、鏡筒に納められた光波長
変換素子と、 レーザ光源と、前記レーザ光源より出射
されたレーザ光を集光し前記光波長変換素子に入射させ
るレンズの温度が一定に保たれるた数 環境温度変化に
よる光軸ずれ及び前記レーザ光源の出力変動が低減し
短波長レーザ光源の出力は安定化することが明かとなっ
九まt:、、ペルチェ熱電素子を前記鏡筒に直接接触さ
せることなく、 この鏡筒を覆い鏡筒とは熱的に遮断さ
れたケースに取り付けることにより、ペルチェ熱電素子
の駆動電流の変動に基ずく温度リップルの影響を緩和す
ることができ、安定な温度制御が可能となム
実施例
第1図(よ 本発明の一実施例における短波長レーザ光
源の構成を示したもので、 1は波長0.84μmのレ
ーザ光2を発生させる半導体レーザ、 3はコリメート
レン2:、4は半波長板、 5はフォカスレンズである
。 6は非線形光学結晶として例えばL iN bo
sの基板上に先導波路7を形成した光波長変換素子で、
8は整形レンX 9は鏡筒10より出射される出力レ
ーザ光であム 12は鏡筒10を覆うアルミ製のケース
であり、 11は鏡筒10の底部でかつ鏡筒lOとケー
ス12の間に位置する断熱材を用いたスペーサ、 13
はケース12の底面に接触させたペルチェ熱電素子であ
ム14はペルチェ熱電素子13の取り付は面においてケ
ース12と対向する面に接触させた放熱フィン、 15
はケース12と放熱フィン14の間に位置しベルチェ熱
電素子以外の部分を埋める断熱材として例えば発泡ポリ
エチレンである。Figure 3 (Dai) shows the configuration of a conventional short wavelength laser light source, 10 is a mirror, 6 is an optical wavelength conversion element in which an optical waveguide 7 is formed on a substrate of a nonlinear optical crystal such as LiNbo 3, and l is a laser beam 2 with a wavelength of 0.84 μm attached to the lens barrel 9 at the end opposite to the optical wavelength conversion element 6.
3 is a collimating lens X located on the laser beam output side of the semiconductor laser 1; 5 is a focus lens located on the light incident surface side of the optical wavelength conversion element 6;
4 is a half-wave plate located between the collimating lens 3 and the focus lens 5; 8 is a shaping lens for collimating the laser beam emitted from the light output surface of the optical wavelength conversion element 6; 9 is a main short-wave plate; The operation of the conventional short wavelength laser light source configured as described above will be explained using the output laser light of the wavelength laser light source. Wavelength 0.8 emitted from semiconductor laser 1
The 4 μm laser beam 2 enters the collimating lens 3 and becomes a parallel beam, and the deflection direction is corrected by the half-wave plate 4.
2U of laser light that enters the focus lens 5 is focused on the light incident surface of the LiNbO3 optical wavelength conversion element 6, propagates through the optical waveguide 7, and has a wavelength of 1
/2. The laser beam with a wavelength of 0.42 μm emitted from the LiNb0a optical wavelength conversion element 6 is passed through the shaping lens 8.
The output angle is corrected by
Problems to be Solved by the Invention Even when Emitted from O It has been found that the output of the laser beam 9 fluctuates by more than 10% due to a change in the output of the laser beam 9. It has become clear that such a fluctuation in output caused by a change of only ±10°C is a major problem in actual use. , this improvement is strongly desired, and in view of this, an object of the present invention is to provide a short-wavelength laser light source with small output fluctuations due to changes in environmental temperature. An optical wavelength conversion element that uses a thermoelectric element and has an optical waveguide formed on a nonlinear optical crystal plate;
a laser light source, a lens that collects the laser light emitted from the laser light source and makes it enter the optical wavelength conversion element,
A short-wavelength laser is fixed on the same optical axis within a lens barrel, and a Peltier thermoelectric element is attached to the lens barrel or a case covering the lens barrel. The temperature of the optical wavelength conversion element housed in a cylinder, the laser light source, and the lens that collects the laser light emitted from the laser light source and makes it enter the optical wavelength conversion element is kept constant.Environmental temperature change The optical axis shift caused by the laser light source and the output fluctuation of the laser light source are reduced.
It has now become clear that the output of the short wavelength laser light source can be stabilized: the Peltier thermoelectric element is not brought into direct contact with the lens barrel, but instead is covered with the lens barrel and thermally isolated from the lens barrel. By attaching it to the case, it is possible to alleviate the influence of temperature ripples caused by fluctuations in the drive current of the Peltier thermoelectric element, and stable temperature control is possible. This figure shows the configuration of the short wavelength laser light source in , where 1 is a semiconductor laser that generates a laser beam 2 with a wavelength of 0.84 μm, 3 is a collimating lens 2, 4 is a half-wave plate, and 5 is a focus lens. 6 As a nonlinear optical crystal, for example, L iN bo
An optical wavelength conversion element in which a guiding waveguide 7 is formed on a substrate of s,
8 is a shaping lens X; 9 is an output laser beam emitted from the lens barrel 10; 12 is an aluminum case that covers the lens barrel 10; 11 is the bottom of the lens barrel 10 and is located between the lens barrel lO and the case 12; A spacer using a heat insulating material located in between, 13
14 is a Peltier thermoelectric element that is in contact with the bottom surface of the case 12; 14 is a heat dissipation fin that is attached to the surface of the Peltier thermoelectric element 13 that faces the case 12;
is, for example, foamed polyethylene as a heat insulating material located between the case 12 and the radiation fins 14 and filling the portion other than the Beltier thermoelectric element.
以上のように構成された本実施例における短波長レーザ
光源の温度制御作用を説明する。ペルチェ熱電素子13
は一方の面がケース12の底部に接触し 他方の面が放
熱フィン14に接触し熱交換を行うことができるた数
ケース12の温度を制御でき、ケース12の内部の空間
の温度を一定に保つことができも したがってケース1
2に周囲を囲まれ スペーサ11を介してケース12に
固定されている鏡筒10の温度は一定となり、光軸およ
び半導体レーザ1の出力は一定に保たれもまた 鏡筒l
Oとケース12の間(よ 断熱効果を有するスペーサ1
1と空間16により熱抵抗が高められ ペルチェ熱電素
子13の駆動に伴いケス12に温度リップルが発生した
場合においても鏡筒10の温度に及ぼす影響は極めて小
さく、安定な温度制御が可能となった この結果 本短
波長レーザ光源の環境温度特性(よ 25±10℃にお
いて鏡筒lOの温度変動±0.5℃以へ 出力変動率1
%以下となり、極めて優れた性能向上が可能となった
な耘 第1図に示す本実施例の短波長レーザ光源の動作
(よ 基本的には第3図に示した従来の短波長レーザ光
源と同じであるの六 同一構成部分には同一番号を付し
て詳細な説明を省略する。The temperature control action of the short wavelength laser light source in this embodiment configured as above will be explained. Peltier thermoelectric element 13
is a number in which one surface is in contact with the bottom of the case 12 and the other surface is in contact with the radiation fins 14 to perform heat exchange.
The temperature of the case 12 can be controlled and the temperature of the space inside the case 12 can be kept constant. Therefore, case 1
The temperature of the lens barrel 10, which is surrounded by the lens barrel 2 and fixed to the case 12 via the spacer 11, is kept constant, and the optical axis and the output of the semiconductor laser 1 are kept constant.
between O and case 12 (spacer 1 with heat insulating effect)
1 and the space 16, the thermal resistance is increased, and even if a temperature ripple occurs in the case 12 due to the operation of the Peltier thermoelectric element 13, the effect on the temperature of the lens barrel 10 is extremely small, making stable temperature control possible. As a result, the environmental temperature characteristics of this short wavelength laser light source (at 25 ± 10 °C, the temperature fluctuation of the lens barrel lO is less than ± 0.5 °C, the output fluctuation rate 1
The operation of the short wavelength laser light source of this embodiment shown in Fig. 1 (basically, it is different from the conventional short wavelength laser light source shown in Fig. 3), making it possible to achieve an extremely excellent performance improvement. Same (6) Identical components are given the same numbers and detailed explanations are omitted.
第2図は 本発明の他の実施例における短波長レーザ光
源の構成を示したもので、 12は第1図に示した第一
の実施例におけるケー人 13はケース12の両側面に
接触させたペルチェ熱電素子、17は放熱フィン、 1
5は断熱材で44 本実施例においてはペルチェ熱電
素子を2個用いることで温度制御幅が広がり、環境温度
変化25±20℃においても出力変動率1%以下となり
九発明の詳細
な説明したように本発明によれは 鏡筒内に作成される
短波長レーザ光源の環境温度変化に伴う出力変動は低減
し その実用的効果は大きく向上することになり、短波
長レーザ光源の実用化に大きく寄与するものであムFIG. 2 shows the configuration of a short wavelength laser light source in another embodiment of the present invention, where 12 is the case 12 in the first embodiment shown in FIG. Peltier thermoelectric element, 17 is a heat radiation fin, 1
5 is a heat insulating material 44 In this embodiment, by using two Peltier thermoelectric elements, the temperature control range is widened, and the output fluctuation rate is less than 1% even with an environmental temperature change of 25±20°C, as described in the detailed explanation of the invention. According to the present invention, the output fluctuation due to environmental temperature changes of the short wavelength laser light source created in the lens barrel is reduced, and its practical effects are greatly improved, which greatly contributes to the practical application of short wavelength laser light sources. It's something to do.
第1図は本発明の一実施例の短波長レーザ光源の要部断
面図 第2図は本発明の他の実施例の短波長レーザ光源
の外観医 第3図は従来の短波長レーザ光源の要部断面
図である。
1・・・半導体レーサミ 3・・・コリメートレンX
4・・・半波長板、 5・・・フォーカスレンス 6・
・・LINbOs光波長変換素子、7・・・光導波路
8・・・整形レンX 10・・・鏡箆 13・・・ペ
ルチェ熱電素子、 14・・・放熱フィン、 17・・
・放熱フィン。
代理人の氏名 弁理士 小鍜治 明 ほか2名4−半凌
表筏
方丈黙フィン
t
スヤープ
第
■
第3図FIG. 1 is a sectional view of a main part of a short wavelength laser light source according to an embodiment of the present invention. FIG. 2 is an external view of a short wavelength laser light source according to another embodiment of the present invention. FIG. It is a sectional view of the main part. 1...Semiconductor Lasermi 3...Collimating train X
4... Half-wave plate, 5... Focus lens 6.
...LINbOs optical wavelength conversion element, 7... optical waveguide
8... Orthopedic lens
- Heat dissipation fin. Name of agent: Patent attorney Akira Okaji and 2 others
Claims (2)
した光波長変換素子と、レーザ光源と、前記レーザ光源
より出射されたレーザ光を集光し前記光波長変換素子に
入射させるレンズとを、鏡筒内で同一光軸上に固定する
とともに前記鏡筒の温度制御を行うためのペルチェ熱電
素子を備えたことを特徴とする短波長レーザ光源。(1) An optical wavelength conversion element in which an optical waveguide is formed on a substrate made of a nonlinear optical crystal, a laser light source, and a lens that collects the laser light emitted from the laser light source and makes it enter the optical wavelength conversion element. 1. A short wavelength laser light source comprising a Peltier thermoelectric element fixed on the same optical axis within a lens barrel and for controlling the temperature of the lens barrel.
した光波長変換素子と、レーザ光源と、前記レーザ光源
より出射されたレーザ光を集光し前記光波長変換素子に
入射させるレンズとを、鏡筒内で同一光軸上に固定する
とともに前記鏡筒の温度制御を行うためのペルチェ熱電
素子を、前記鏡筒とは熱的に遮断されたケースに備えを
取り付けることを特徴とする短波長レーザ光源の製造方
法。(2) An optical wavelength conversion element in which an optical waveguide is formed on a substrate made of a nonlinear optical crystal, a laser light source, and a lens that collects the laser light emitted from the laser light source and makes it enter the optical wavelength conversion element. A short method characterized in that a Peltier thermoelectric element fixed on the same optical axis within a lens barrel and for controlling the temperature of the lens barrel is attached to a case that is thermally isolated from the lens barrel. A method for manufacturing a wavelength laser light source.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25805990A JPH04134326A (en) | 1990-09-26 | 1990-09-26 | Short wavelength laser beam source and production thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25805990A JPH04134326A (en) | 1990-09-26 | 1990-09-26 | Short wavelength laser beam source and production thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04134326A true JPH04134326A (en) | 1992-05-08 |
Family
ID=17314966
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25805990A Pending JPH04134326A (en) | 1990-09-26 | 1990-09-26 | Short wavelength laser beam source and production thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04134326A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5265115A (en) * | 1991-08-30 | 1993-11-23 | Hoya Corporation | Solid-state laser device having a feedback loop |
US5267252A (en) * | 1991-08-30 | 1993-11-30 | Hoya Corporation | Solid-state laser device comprising a temperature-controlled thermal conductive support |
JPH07209680A (en) * | 1994-01-20 | 1995-08-11 | Sharp Corp | Optical wavelength conversion element and its production as well as laser unit |
WO2001022068A1 (en) * | 1999-09-24 | 2001-03-29 | Farfield Sensors Limited | Device for temperature controlled housing of a planar optical component |
JP2002280654A (en) * | 2001-03-19 | 2002-09-27 | Eco Twenty One:Kk | Module for optical communication |
-
1990
- 1990-09-26 JP JP25805990A patent/JPH04134326A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5265115A (en) * | 1991-08-30 | 1993-11-23 | Hoya Corporation | Solid-state laser device having a feedback loop |
US5267252A (en) * | 1991-08-30 | 1993-11-30 | Hoya Corporation | Solid-state laser device comprising a temperature-controlled thermal conductive support |
JPH07209680A (en) * | 1994-01-20 | 1995-08-11 | Sharp Corp | Optical wavelength conversion element and its production as well as laser unit |
WO2001022068A1 (en) * | 1999-09-24 | 2001-03-29 | Farfield Sensors Limited | Device for temperature controlled housing of a planar optical component |
JP2002280654A (en) * | 2001-03-19 | 2002-09-27 | Eco Twenty One:Kk | Module for optical communication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2049943A1 (en) | External cavity semiconductor laser | |
KR101325413B1 (en) | Vertically emitting, optically pumped semiconductor comprising an external resonator and frequency doubling on a separate substrate | |
EP0604335B1 (en) | Athermalized beam source and collimator lens assembly | |
US5270869A (en) | Passively athermalized optical assembly incorporating laminate fiber compensation ring | |
JPH04179180A (en) | Short-wave laser ray source | |
US6130902A (en) | Solid state laser chip | |
US10270218B2 (en) | Light source configured for stabilization relative to external operating conditions | |
JPH04134326A (en) | Short wavelength laser beam source and production thereof | |
US5867303A (en) | Method and apparatus for optimizing the output of a harmonic generator | |
US5150376A (en) | Laser source | |
JP3116777B2 (en) | Semiconductor laser module | |
JP6593547B1 (en) | Optical module | |
US12153325B2 (en) | Wavelength converter | |
KR20010006909A (en) | Crystal holding apparatus | |
WO2022127138A1 (en) | Resonant cavity, laser, and laser radar | |
US5150374A (en) | Method of fabricating a waveguide optical resonant cavity | |
JP3448894B2 (en) | Solid element temperature control device and solid element temperature control method | |
US20040151228A1 (en) | Semiconductor laser device | |
JP2538126B2 (en) | Short wavelength laser light source | |
JPH0268501A (en) | Solid etalon | |
JPH0730171A (en) | Semiconductor laser-excited solid-state laser device | |
JP4620216B2 (en) | Tunable semiconductor laser | |
JPH06308557A (en) | Improved higher harmonic wave generator | |
JPS60191212A (en) | Optical circuit device | |
JP5182602B2 (en) | Variable dispersion compensator |