JPH04133999U - power supply device - Google Patents
power supply deviceInfo
- Publication number
- JPH04133999U JPH04133999U JP4074791U JP4074791U JPH04133999U JP H04133999 U JPH04133999 U JP H04133999U JP 4074791 U JP4074791 U JP 4074791U JP 4074791 U JP4074791 U JP 4074791U JP H04133999 U JPH04133999 U JP H04133999U
- Authority
- JP
- Japan
- Prior art keywords
- power supply
- power generation
- power
- solar cell
- supply device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 claims abstract description 16
- 230000005611 electricity Effects 0.000 claims abstract description 6
- 239000002887 superconductor Substances 0.000 abstract description 10
- 230000000694 effects Effects 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 230000005291 magnetic effect Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 2
- 230000005292 diamagnetic effect Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Landscapes
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Photovoltaic Devices (AREA)
Abstract
(57)【要約】
【構成】人工衛星に搭載され太陽電池発電装置8を備え
た電力供給装置において、太陽電池発電装置8に加え
て、超電導体1の完全反磁性を利用した発電により蓄電
し電力を供給する装置7を有する。
【効果】超電導体を電力発生源として利用して従来の太
陽電池電力供給システムと併用する事により、日陰に関
係なく安定した電力供給が可能となる。
(57) [Summary] [Structure] In a power supply device equipped with a solar cell power generation device 8 mounted on a satellite, in addition to the solar cell power generation device 8, electricity is stored by power generation using the perfect diamagnetism of the superconductor 1. It has a device 7 for supplying power. [Effect] By using a superconductor as a power generation source in conjunction with a conventional solar cell power supply system, a stable power supply is possible regardless of shade.
Description
【0001】0001
本考案は人工衛星の電力の供給方式として、超電導現象を利用した発電装置も 併用した電力供給装置に関する。 This invention also includes a power generation device that utilizes superconductivity as a power supply method for artificial satellites. Regarding the power supply device used together.
【0002】0002
従来の人工衛星の発電システムの多くは、太陽電池による電力供給装置であり 、太陽電池表面を太陽光の入射方向へ向く様に制御して必要な電力を得るもので あった。 Most of the power generation systems of conventional satellites are power supply devices using solar cells. , which obtains the necessary power by controlling the surface of the solar cell to face the direction of sunlight incidence. there were.
【0003】0003
上述した従来の太陽電池方式の電力供給装置は、電池表面に対し、太陽光が一 定量以上入射する様な条件の場合に有効な発電装置であるので、衛星の日食時に は発電を衛星内部に搭載したバッテリーのみにたよらざるを得ない。したがって 衛星の軌道,姿勢,運用面からの制約が大きいという欠点があった。 In the conventional solar cell type power supply device described above, sunlight is not directly applied to the battery surface. It is an effective power generation device under conditions where more than a certain amount of solar radiation is incident, so it can be used during solar eclipses of satellites. must rely solely on batteries mounted inside the satellite for power generation. therefore The drawback was that there were significant restrictions in terms of the satellite's orbit, attitude, and operation.
【0004】0004
本考案の電力供給装置は、人工衛星に搭載され太陽電池発電装置を備えた電力 供給装置において、前記太陽電池発電装置に加えて、超電導の完全反磁性を利用 した発電により蓄電し電力を供給する装置を有する。 The power supply device of this invention is installed on a satellite and is equipped with a solar power generation device. In addition to the above-mentioned solar cell power generation device, the supply device utilizes the perfect diamagnetism of superconductivity. It has a device that stores electricity and supplies electricity from generated electricity.
【0005】[0005]
次に、本考案について図面を参照して説明する。図1は、本考案の一実施例の ブロック図,図2,図3は本実施例の動作説明図である。 Next, the present invention will be explained with reference to the drawings. Figure 1 shows an embodiment of the present invention. The block diagrams, FIGS. 2 and 3 are explanatory diagrams of the operation of this embodiment.
【0006】 まず、超電導体の動作原理を説明する。超電導体は、極低温まで冷される事で 超電導状態となり、その状態において完全導電性と完全反磁性を示す。この超電 導状態を実現するために、図3に示す様に、衛星3の日陰面に超電導体1を配置 することにより、深宇宙空間への輻射冷却を図る、また、地球周辺をはじめ宇宙 空間には磁力線2が存在しており、衛星3としては、その磁力線2の中を飛行し ている状況にある。しかしながら、図2に示す様に周囲の磁力線2は超電導体1 の完全反磁性により、超電導体内部へは入り込めない。この状態で超電導体1に は、磁力線を排斥するための遮閉電流が流れる。[0006] First, the operating principle of superconductors will be explained. Superconductors are cooled to extremely low temperatures. It becomes a superconducting state, and in that state it exhibits perfect conductivity and perfect diamagnetic properties. This super electric In order to achieve a conductive state, the superconductor 1 is placed on the shaded surface of the satellite 3, as shown in Figure 3. By doing so, we aim to provide radiation cooling to deep space, and also to Magnetic lines of force 2 exist in space, and the satellite 3 flies within these lines of force. I am in a situation where I am However, as shown in Figure 2, the surrounding magnetic field lines 2 Due to its complete diamagnetic nature, it cannot penetrate inside the superconductor. In this state, superconductor 1 In this case, a blocking current flows to exclude magnetic lines of force.
【0007】 図1の実施例において、衛星3内の電力貯蔵ユニット7にこの遮閉電流をたく わえ、電力制御器5により、バッテリ6及び電力貯蔵ユニット7から電力負荷4 に対する電力供給を制御する事で超電導に基づいて電力発生源を衛星日陰時の補 助あるいは主電源として利用できる。又、衛星3の日照モード時には太陽電池8 からの電力供給とともに、衛星の日陰面に配置した超電導体1からの発生電力を 電力制御器5により電力負荷4へ並列に供給される様制御することで、衛星全体 としての発生電力の増大を図ることできる。[0007] In the embodiment of FIG. 1, this blocking current is stored in the power storage unit 7 in the satellite 3. Moreover, the power controller 5 outputs power from the battery 6 and the power storage unit 7 to the power load 4. By controlling the power supply to the satellite, the power generation source based on superconductivity can be Can be used as an auxiliary or main power source. Also, when the satellite 3 is in sunlight mode, the solar battery 8 In addition to supplying power from the By controlling the power controller 5 to supply power to the load 4 in parallel, the entire satellite It is possible to increase the power generated as a result.
【0008】[0008]
以上説明したように、本考案は超電導体を電力発生源として利用して従来の太 陽電池電力供給システムと併用する事により、日陰に関係なく安定した電力供給 が可能となる。また、打上げ時期(ロンチウィンドゥ)を大きくでき、軌道の選 択に対する自由度が大きくできる。さらに従来の太陽電池はカバーガラス等によ り重量が大きかったが超電導体発電システムを併用する事で、衛星全体としての 重量軽減が図れる等の効果がある。 As explained above, the present invention uses superconductors as a power generation source to Stable power supply regardless of shade by using in conjunction with solar battery power supply system becomes possible. In addition, the launch window (launch window) can be increased and the orbit can be selected. You have a greater degree of freedom in making choices. Furthermore, conventional solar cells have a cover glass, etc. However, by using the superconductor power generation system, the overall weight of the satellite can be improved. This has the effect of reducing weight.
【図1】本考案の一実施例の電力供給装置の構成図であ
る。FIG. 1 is a configuration diagram of a power supply device according to an embodiment of the present invention.
【図2】本実施例の動作説明図である。FIG. 2 is an explanatory diagram of the operation of this embodiment.
【図3】本実施例の動作説明図である。FIG. 3 is an explanatory diagram of the operation of this embodiment.
1 超電導体 2 磁力線 3 衛星 4 電力負荷 5 電力制御器 6 バッテリ 7 電力貯蔵ユニット 8 太陽電池 1 superconductor 2 Magnetic field lines 3 Satellite 4 Power load 5 Power controller 6 battery 7 Electricity storage unit 8 Solar cells
Claims (1)
備えた電力供給装置において、前記太陽電池発電装置に
加えて、超電導の完全反磁性を利用した発電により蓄電
し電力を供給する装置を有することを特徴とする電力供
給装置。Claim 1: A power supply device mounted on an artificial satellite and equipped with a solar cell power generation device, comprising, in addition to the solar cell power generation device, a device for storing electricity and supplying power by power generation using the perfect diamagnetism of superconductivity. A power supply device characterized by:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4074791U JPH04133999U (en) | 1991-06-03 | 1991-06-03 | power supply device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4074791U JPH04133999U (en) | 1991-06-03 | 1991-06-03 | power supply device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04133999U true JPH04133999U (en) | 1992-12-14 |
Family
ID=31921723
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4074791U Pending JPH04133999U (en) | 1991-06-03 | 1991-06-03 | power supply device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04133999U (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013006592A (en) * | 2011-06-23 | 2013-01-10 | Thales | Hybrid assembly equipped with at least one solar panel |
-
1991
- 1991-06-03 JP JP4074791U patent/JPH04133999U/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013006592A (en) * | 2011-06-23 | 2013-01-10 | Thales | Hybrid assembly equipped with at least one solar panel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11289757B2 (en) | Radioisotope thermoelectric battery (RTB) system | |
US20050016579A1 (en) | Solar power devices for providing power to handheld devices | |
US5367245A (en) | Assembly for the induction of lightning into a superconducting magnetic energy storage system | |
JPH04133999U (en) | power supply device | |
Caldwell et al. | Advanced space power system with optimized peak power tracking | |
JPH0993834A (en) | Uninterruptible power supply system | |
McKissock et al. | A solar power system for an early Mars expedition | |
US20220247343A1 (en) | Thermoelectric active storage embedded hybrid solar thermal and photovoltaic wall module | |
JPS6419929A (en) | Solar power generator | |
Hague et al. | Performance of International Space Station electric power system during station assembly | |
JPH01318519A (en) | Method of supplying power for controlling solar photovoltaic power generation system | |
Sloane et al. | Electric Power Generation Systems for Use in Space | |
JPH1014255A (en) | Thermoelectric combined system | |
JPH01117374A (en) | Solar energy storing device | |
Hoberecht et al. | Use of excess solar array power by regenerative fuel cell energy storage systems in low earth orbit | |
Lyon | 100 kW peak photovoltaic power system for the Natural Bridges National Monument | |
Weng et al. | Overview of high temperature superconducting power transmission system for space solar power station | |
JPS6237882B2 (en) | ||
Vogt et al. | Space Station photovoltaic power module design | |
Ntlela et al. | Satellite to Ground Communication Energy Storage Selection | |
Chen et al. | Design and Implementation of Power Supply and Distribution System for Mars Landing Mission | |
JPS5839227A (en) | Solar battery power source system | |
JPH01216580A (en) | Solar cell device | |
Borger et al. | Military Space Power Requirements: The Next Decade | |
Dawson et al. | Space-Station Power Systems |