JPH04131199A - Concurrent disposal of night soil and septic tank sludge - Google Patents
Concurrent disposal of night soil and septic tank sludgeInfo
- Publication number
- JPH04131199A JPH04131199A JP2250054A JP25005490A JPH04131199A JP H04131199 A JPH04131199 A JP H04131199A JP 2250054 A JP2250054 A JP 2250054A JP 25005490 A JP25005490 A JP 25005490A JP H04131199 A JPH04131199 A JP H04131199A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- liquid
- septic tank
- separated
- flocculating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010802 sludge Substances 0.000 title claims abstract description 104
- 239000002689 soil Substances 0.000 title abstract description 5
- 239000007788 liquid Substances 0.000 claims abstract description 50
- 238000000034 method Methods 0.000 claims abstract description 41
- 238000000926 separation method Methods 0.000 claims abstract description 33
- 239000012466 permeate Substances 0.000 claims abstract description 10
- 239000012528 membrane Substances 0.000 claims description 44
- 239000010800 human waste Substances 0.000 claims description 28
- 230000029087 digestion Effects 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 11
- 229920000642 polymer Polymers 0.000 claims description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000007787 solid Substances 0.000 abstract description 4
- 230000003311 flocculating effect Effects 0.000 abstract 7
- 239000006228 supernatant Substances 0.000 abstract 3
- 238000007865 diluting Methods 0.000 abstract 1
- 229920002521 macromolecule Polymers 0.000 abstract 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 6
- 239000005416 organic matter Substances 0.000 description 5
- 239000000835 fiber Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 210000002700 urine Anatomy 0.000 description 3
- 125000002091 cationic group Chemical group 0.000 description 2
- 229920006317 cationic polymer Polymers 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000855 fermentation Methods 0.000 description 2
- 230000004151 fermentation Effects 0.000 description 2
- 238000005189 flocculation Methods 0.000 description 2
- 230000016615 flocculation Effects 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 208000023514 Barrett esophagus Diseases 0.000 description 1
- 229920003043 Cellulose fiber Polymers 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241001149900 Fusconaia subrotunda Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000010797 grey water Substances 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000010865 sewage Substances 0.000 description 1
- 238000005063 solubilization Methods 0.000 description 1
- 230000007928 solubilization Effects 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 231100000167 toxic agent Toxicity 0.000 description 1
- 239000003440 toxic substance Substances 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
Landscapes
- Treatment Of Sludge (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、し尿と浄化槽汚泥とを併合処理する方法に関
するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for jointly processing human waste and septic tank sludge.
従来のし尿と浄化槽汚泥の併合処理方法のなかで、最も
新しい進歩したプロセスとして評価されているものは、
高負荷脱窒素膜分離方式と呼ばれているプロセスである
。これは、し尿と浄化槽汚泥との混合液を無希釈、高容
積負荷て硝化脱窒製処理したのち、限外濾過(UP)膜
によりSSを完全に膜分離し、SS七セロ生物処理水を
得るプロセスである。Among the conventional combined treatment methods for human waste and septic tank sludge, the one that has been evaluated as the most recent and advanced is:
This process is called a high-load denitrification membrane separation method. This process involves nitrification and denitrification treatment of a mixed liquid of human waste and septic tank sludge without dilution and high volume loading, and then complete membrane separation of SS using an ultrafiltration (UP) membrane to produce SS Nanasero biologically treated water. It is a process of gaining.
しかし、前記従来の最新プロセスは、汚水を浄化するプ
ロセスとしては合理的てはあるものの、汚泥処理工程か
旧態依然であり、次のような大きな欠点をもっている。However, although the conventional state-of-the-art process is reasonable as a process for purifying sewage, the sludge treatment process remains old-fashioned and has the following major drawbacks.
即ち、汚泥発生量か10〜15kg5S/J、ffと極
めて多量であり、しかも難脱水性であるため、汚泥の脱
水・焼却工程や膜分離工程のランニングコスト、イニシ
アルコストが多大であるという点である。In other words, the amount of sludge generated is extremely large (10 to 15 kg5S/J, ff), and it is difficult to dewater, so the running cost and initial cost of the sludge dehydration/incineration process and membrane separation process are large. be.
この点は、トータルプロセスとして評価する場合、重大
な欠点てあり、この欠点を解決したブロセスでなけれは
理想的とは言うことかできない。This point is a serious drawback when evaluated as a total process, and a process that does not solve this drawback cannot be called ideal.
本発明は、前記従来の最新プロセスの欠屯を大幅に解決
し得る新規な処理プロセスを提供することを目的として
いる。具体的には、汚泥発生量を著しく減少することに
よって、汚泥の脱水・焼却工程のランニングコスト、イ
ニシアルコストを大きく節減可能な新規プロセスを提供
するものである。An object of the present invention is to provide a novel treatment process that can largely solve the deficiencies of the conventional state-of-the-art processes. Specifically, the present invention provides a new process that can significantly reduce the running cost and initial cost of the sludge dewatering and incineration process by significantly reducing the amount of sludge generated.
さらに、本発明は、従来プロセスの問題点てあった膜分
離工程のランニングコストイニシアルコストを節減する
方式を確立することを課題としている。Furthermore, it is an object of the present invention to establish a method for reducing the initial running cost of the membrane separation step, which has been a problem in conventional processes.
本発明は、し尿に高分子凝集剤を添加して凝集分離し、
該凝集分離汚泥と浄化槽汚泥を濃縮分離した濃縮汚泥の
両者を嫌気性消化したのち膜分離し、該膜透過液と前記
し尿の凝集分離液とを生物学的硝化脱窒素処理すること
を特徴とし、また、前記生物学的硝化脱窒素処理された
処理水と前記浄化槽汚泥の濃縮分離液とをさらに生物学
的硝化脱窒素処理することをも特徴とするし尿と浄化槽
汚泥の併合処理方法である。The present invention involves adding a polymer flocculant to human waste to coagulate and separate it,
The flocculated and separated sludge and the concentrated sludge obtained by concentrating and separating the septic tank sludge are both subjected to anaerobic digestion and membrane separation, and the membrane-permeated liquid and the flocculated and separated liquid of human waste are subjected to biological nitrification and denitrification treatment. Further, the method for the combined treatment of human waste and septic tank sludge is characterized in that the treated water subjected to the biological nitrification and denitrification treatment and the concentrated separated liquid of the septic tank sludge are further subjected to biological nitrification and denitrification treatment. .
本発明の作用を、一実施態様を示す第1図を参照しなか
ら以下に説明する。The operation of the present invention will be described below with reference to FIG. 1, which shows one embodiment.
毛髪、ゴム、プラスチック、紙なとの粗大固形物か除去
されたし尿(除渣し尿と呼ぶ)lに、筒分子凝集剤2(
カチオン系、両性のポリマー、あるいはカチオン系とア
ニオン系のポリマーの併用か好適)を添加、混合し、ス
クリーン、沈殿、遠心分離なとの固液分離装置3により
生成フロックを分離し、凝集分離液4と凝集分離汚泥5
とに分する。凝集分離汚泥5は、除渣し尿l中の微細S
S、コロイド、繊維分(セルロース系)か一体化した凝
集体となっている。A cylindrical flocculant 2 (
cationic, amphoteric polymers, or a combination of cationic and anionic polymers (preferably) are added and mixed, and the generated flocs are separated by a solid-liquid separator 3 such as a screen, sedimentation, or centrifugation, and the flocs are flocculated and separated. 4 and coagulated and separated sludge 5
Divide into. The flocculated and separated sludge 5 consists of fine S in the filtered night soil.
It is an integrated aggregate of S, colloid, and fiber (cellulose).
一方、あらかしめ粗大異物を除去した浄化槽汚泥6を、
スクリーン、沈殿、遠心分離なとの固液分離装置7によ
って濃縮し、濃縮分離液8と濃縮汚泥9とに分離する。On the other hand, the septic tank sludge 6 from which coarse foreign matter has been removed is
It is concentrated by a solid-liquid separator 7 such as a screen, sedimentation, or centrifugation, and separated into a concentrated separated liquid 8 and a concentrated sludge 9.
しかるのち、除渣し尿1の凝集分離汚泥5と浄化槽汚泥
6の濃縮汚泥9の両者を嫌気性消化槽10に供給し、嫌
気性消化を行ったのちUF膜なとの膜分離装置11て膜
分離し、膜透過液12と膜分離消化汚泥13とに分ける
。After that, both the coagulated and separated sludge 5 of the filtered human waste 1 and the concentrated sludge 9 of the septic tank sludge 6 are supplied to an anaerobic digestion tank 10 and subjected to anaerobic digestion. The membrane permeated liquid 12 and the membrane-separated digested sludge 13 are separated.
以上の操作は、本発明の新概念の−ってあり、し尿を凝
集分離して得た凝集汚泥と、一方てし尿とは別個に浄化
槽汚泥を固液分離して得た汚泥の両者を嫌気性消化し、
膜分離するという概念は類例をみない。従来は、除渣し
尿1と浄化槽汚泥6とを混合したものを、そのまま嫌気
性消化していたので、し尿中のNH,−N、H,Sか嫌
気性消化反応を著しく阻害し、かつ大容量の消化槽を必
要としていた。The above operation is a new concept of the present invention, in which both the flocculated sludge obtained by coagulating and separating human waste and the sludge obtained by solid-liquid separation of septic tank sludge separately from human waste are anaerobically processed. sexually digested,
The concept of membrane separation is unprecedented. Conventionally, a mixture of septic tank sludge 1 and septic tank sludge 6 was anaerobically digested, but the NH, -N, H, and S in the human waste significantly inhibited the anaerobic digestion reaction, and A large-capacity digester was required.
しかして、除渣し尿1の凝集分離汚泥5と浄化槽汚泥6
の濃縮汚泥9を、嫌気性消化槽10内で長時間の固形物
滞留時間(SRT)に維持して嫌気性消化し、有機物を
CH4、Co、を主とするガスとH,Oに分解する。Therefore, the coagulated and separated sludge 5 of the removed human waste 1 and the septic tank sludge 6
The thickened sludge 9 is anaerobically digested by maintaining a long solids retention time (SRT) in an anaerobic digestion tank 10, and the organic matter is decomposed into gases mainly consisting of CH4 and Co, and H and O. .
嫌気性消化槽10における水理滞留時間(HRT)は1
5日以上とし、消化は高温消化でもかまわないか、常温
もしくは温度35°C〜37°Cの中温消化か好ましく
、SRTは、理想的には無限大、好ましくは100日以
上に設定するのか良い。このような条件設定によって、
凝集分離汚泥5と濃縮汚泥9中の有機物の90%以上か
分解され、繊維分でさえも60%以上か分解される。こ
れは、驚(へき新知見である。The hydraulic retention time (HRT) in the anaerobic digestion tank 10 is 1
The digestion should be for 5 days or more, and high-temperature digestion is acceptable, or room temperature or medium-temperature digestion at 35°C to 37°C is preferable, and the SRT should ideally be set to infinity, preferably 100 days or more. . By setting these conditions,
More than 90% of the organic matter in the flocculated and separated sludge 5 and the thickened sludge 9 is decomposed, and even more than 60% of the fiber content is decomposed. This is a surprising new finding.
嫌気性消化槽10のSRTを維持する目的のうえて、後
続する消化汚泥の膜分離は極めて重要な役割を果す。膜
による固液分離は完全てあり、膜透過液12への消化汚
泥や嫌気性微生物の流出はセロであり、膜分離消化汚泥
13のリサイクルによって嫌気性消化槽IO内のSRT
を極めて長く維持てきるからである。14は、極めて小
量の未消化残渣の引抜管である。For the purpose of maintaining the SRT of the anaerobic digestion tank 10, the subsequent membrane separation of the digested sludge plays an extremely important role. Solid-liquid separation by the membrane is complete, and the flow of digested sludge and anaerobic microorganisms into the membrane permeate 12 is zero, and the SRT in the anaerobic digestion tank IO is reduced by recycling the membrane-separated digested sludge 13.
This is because it can be maintained for an extremely long time. 14 is a drawing tube for a very small amount of undigested residue.
以上の操作により、除渣し尿1の凝集分離汚泥5と浄化
槽汚泥6の濃縮汚泥9中の有機物は、分解率90%以上
という高度の嫌気性消化か達成される。このように有機
物か高度に分解される原因は、毒性物質であるNH,−
Nを少なくしであること、SRTを非常に長・;するこ
とかできるという点のほつ・に、加水分解酵素、各種有
機物の可溶生菌か膜によって阻止されて系外に流出しな
いために、セルロース、活性汚泥細胞壁なとの難分解性
有機物か分解されるためと推定される。従来のし尿と浄
化槽汚泥の混合物をそのまま嫌気性消化→沈殿分離する
方法ては、セルロース系繊維はほとんど分解されず、未
消化汚泥として残留してしまう。By the above operations, the organic matter in the coagulated and separated sludge 5 of the filtered human waste 1 and the concentrated sludge 9 of the septic tank sludge 6 can be anaerobically digested with a decomposition rate of 90% or more. The cause of this high level of decomposition of organic matter is the toxic substance NH,-
The advantage of using less N and allowing a very long SRT is that it is blocked by hydrolytic enzymes and soluble living bacteria or membranes of various organic substances and does not flow out of the system. It is assumed that this is due to the decomposition of refractory organic substances such as cellulose and activated sludge cell walls. In the conventional method of anaerobic digestion and precipitation separation of a mixture of human waste and septic tank sludge, cellulose fibers are hardly decomposed and remain as undigested sludge.
次に、除渣し尿1の凝集分離液4と嫌気性消化後の膜透
過液12の両者を、無希釈量の生物学的硝化脱窒製工程
I5に供給し、BOD、T−Nを生物学的に除去する。Next, both the coagulated separation liquid 4 of the filtered human waste 1 and the membrane permeate liquid 12 after anaerobic digestion are supplied to the biological nitrification and denitrification process I5 in an undiluted amount, and BOD and T-N are scientifically removed.
しかるのち、固液分離(沈殿、遠心分離、膜分離)、好
ましくはUP膜なとの膜分離装置16で膜分離し、膜透
過液17と膜分離活性汚泥18とに分離し、膜分離活性
汚泥18は生物学的硝化脱窒製工程15にリサイクルさ
れる。After that, solid-liquid separation (sedimentation, centrifugation, membrane separation) is performed, preferably through membrane separation in a membrane separation device 16 such as a UP membrane, and the membrane permeate liquid 17 and membrane-separated activated sludge 18 are separated. The sludge 18 is recycled to the biological nitrification and denitrification process 15.
このように、本発明は、し尿中のコロイド、微細SS、
繊維分を高分子凝集剤2により高度に凝集分離し、さら
にSS七セロ嫌気性消化後の膜透過液12と共に生物学
的硝化脱窒製処理するようにプロセスを構成した結果、
生物学的硝化脱窒製工程15には不活性SSかほとんと
供給されない。In this way, the present invention provides colloids in human urine, fine SS,
As a result of configuring the process so that the fiber content is highly coagulated and separated using the polymer flocculant 2, and then subjected to biological nitrification and denitrification treatment together with the membrane permeate 12 after the SS seven cello anaerobic digestion,
Almost no inert SS is supplied to the biological nitrification and denitrification process 15.
従って、生物学的硝化脱窒製工程15の活性汚泥MLS
Sには、生物反応のあずからない不活性83分かほとん
と含まれず、この結果、生物学的硝化脱窒製工程15の
活性汚泥SRTを長時間維持することかできる。このこ
とにより余剰汚泥発生量を著しく減少できる。Therefore, activated sludge MLS of biological nitrification and denitrification process 15
S contains almost no inert substances that are not subject to biological reactions, and as a result, the activated sludge SRT of the biological nitrification and denitrification process 15 can be maintained for a long time. This can significantly reduce the amount of surplus sludge generated.
19は、ごく少量の余剰汚泥の引抜管で、引抜かれた余
剰汚泥は、直接嫌気性消化槽10に供給するか、除渣し
尿lに混合し凝集分離すれはよい。Reference numeral 19 is a drawing pipe for a very small amount of surplus sludge, and the drawn surplus sludge may be directly supplied to the anaerobic digestion tank 10 or mixed with the removed human waste 1 and coagulated and separated.
また、浄化槽汚泥6の濃縮分離液8は、生物学的硝化脱
窒製工程15に供給し、生物処理することかできる。Further, the concentrated separated liquid 8 of the septic tank sludge 6 can be supplied to a biological nitrification and denitrification process 15 for biological treatment.
さらに、本発明の好ましい実施態様としては、除渣し尿
1の凝集分離液4と嫌気性消化後の膜透過液12の浄化
処理系統と、浄化槽汚泥6の濃縮分離液8の浄化処理系
を分離することである。Further, in a preferred embodiment of the present invention, a purification treatment system for the flocculated separation liquid 4 of the filtered human waste 1 and the membrane permeate liquid 12 after anaerobic digestion, and a purification treatment system for the concentrated separation liquid 8 of the septic tank sludge 6 are separated. It is to be.
即ち、除渣し尿1の凝集分離液4と凝集分離汚泥5は、
溶解性BOD、T−Nなとか数1000■/r存在する
のに対し、浄化槽汚泥6の濃縮分離液8は、溶解性BO
D、T−Nなとか数1. OO■/lにすぎないことに
着目し、高濃度有機性汚水である凝集分離液4と嫌気性
消化後の膜透過液12の両者のみを生物学的硝化脱窒製
工程15に供給して生物処理したのち、膜分離装置16
で膜分離するように構成する。一方、浄化槽汚泥6の濃
縮分離液8は、汚染度か少ないので、膜分離装置16の
膜透過液17に混合して第2生物学的硝化脱窒素工程2
0に供給し、生物処理を行う。That is, the flocculation separation liquid 4 and the flocculation separation sludge 5 of the removed human waste 1 are as follows:
While soluble BOD, T-N, etc. exists at several thousand μ/r, the concentrated separated liquid 8 of the septic tank sludge 6 contains soluble BOD.
D, T-N, etc. number 1. Focusing on the fact that it is only OO■/l, only both the coagulated separation liquid 4, which is highly concentrated organic wastewater, and the membrane permeated liquid 12 after anaerobic digestion are supplied to the biological nitrification and denitrification process 15. After biological treatment, membrane separation device 16
The system is configured to perform membrane separation. On the other hand, since the concentrated separated liquid 8 of the septic tank sludge 6 has a low degree of contamination, it is mixed with the membrane permeated liquid 17 of the membrane separation device 16 to carry out the second biological nitrification and denitrification process 2.
0 and perform biological treatment.
第2生物学的硝化脱窓素工程20の機能は、膜透過液1
7と浄化槽汚泥6の濃縮分離液8中に含まれる、少量の
BOD、T−Nを生物学的に高度に除去することてあり
、第2生物学的硝化脱窒素工程20に凝集剤21、粉末
活性炭22等を添加することによって、COD、色度、
PO3−をも効果的に除去することか可能である。第2
生物学的硝化脱窒素工程20の生物処理水は、さらに任
意の固液分離装置23、好ましくは膜分離装置て固液分
離され、高度処理水24として流出する。The function of the second biological nitrification and dewindowaging step 20 is to
A flocculant 21, By adding powdered activated carbon 22 etc., COD, chromaticity,
It is also possible to effectively remove PO3-. Second
The biologically treated water from the biological nitrification and denitrification step 20 is further subjected to solid-liquid separation in an arbitrary solid-liquid separator 23, preferably a membrane separator, and flows out as highly treated water 24.
なお、第2生物学的硝化脱窒素工程20への流入液中に
場内雑排水25を混合し、同時に生物処理することもて
きる。Incidentally, it is also possible to mix the on-site gray water 25 into the inflow to the second biological nitrification and denitrification process 20 and perform biological treatment at the same time.
このように、第2生物学的硝化脱窒素工程20を利用す
ることにより、無希釈の生物学的硝化脱窒製工程15か
、浄化槽汚泥6の流入によって希釈されないため、生物
酸化熱による温度上昇を高く維持することかでき、水量
負荷も少なくなるから小容量の設備で効率良い硝化脱窒
素処理か可能になる。さらに、活性汚泥の膜分離装置1
6への水量負荷も少なくなり、膜の所要面積と動力コス
トか減小するという大きな利点か得られる。In this way, by using the second biological nitrification and denitrification process 20, the biological nitrification and denitrification process 15 is not diluted, and since it is not diluted by the inflow of the septic tank sludge 6, the temperature rise due to biological oxidation heat is reduced. can be maintained at a high level, and the water load is reduced, making it possible to carry out efficient nitrification and denitrification treatment with small-capacity equipment. Furthermore, activated sludge membrane separation device 1
The water load on the membrane 6 is also reduced, and the required area of the membrane and power cost are reduced, which is a great advantage.
以下に本発明の実施例を示す。 Examples of the present invention are shown below.
し尿中の夾雑物、繊維分を微細目スクリーンで除去した
のち、カチオン系ポリマー(エバグロースCl04G、
商品名)を250■/l添加し、30秒攪拌した結果、
強い大きなフロックか形成され、目開き1ml11の傾
斜型ウェッジワイヤスクリーンで容易にフロックか分離
できた。この分離された汚泥(凝集分離汚泥)の固形物
濃度は、4.3%と高濃度であった。After removing impurities and fibers in human urine with a fine mesh screen, cationic polymers (Evagrowth Cl04G,
As a result of adding 250 μ/l of (trade name) and stirring for 30 seconds,
Strong, large flocs were formed, and the flocs could be easily separated using an inclined wedge wire screen with a 1 ml opening. The solids concentration of this separated sludge (coagulated and separated sludge) was as high as 4.3%.
一方、浄化槽汚泥を遠心濃縮機により濃縮分離した濃縮
汚泥の固形物濃度は、4.2%となった。On the other hand, the solids concentration of concentrated sludge obtained by concentrating and separating septic tank sludge using a centrifugal thickener was 4.2%.
次に、前記のし尿の凝集分離汚泥と浄化槽汚泥の濃縮汚
泥の混合汚泥(重量比1・1)を、温度35°Cの嫌気
性消化槽(槽内攪拌は機械的に行った)に供給し、HR
Tを15日間に設定し、汚泥の酸発酵、可溶化、及びメ
タン発酵を進行させた。Next, the mixed sludge (weight ratio 1.1) of the above-mentioned coagulated and separated sludge of human waste and concentrated sludge of septic tank sludge was supplied to an anaerobic digestion tank at a temperature of 35°C (stirring in the tank was performed mechanically). S, HR
T was set to 15 days, and acid fermentation, solubilization, and methane fermentation of the sludge proceeded.
嫌気性消化槽から流出する消化汚泥をUP膜により完全
に膜分離し、膜分離消化汚泥を嫌気性消化槽にリサイク
ルした。また、この膜透過液と前記の傾斜型ウェッジワ
イヤスクリーンて分離さねたし尿の凝集分離液とを混合
し、生物学的硝化脱窒素工径に供給した。The digested sludge flowing out from the anaerobic digestion tank was completely separated by the UP membrane, and the membrane-separated digested sludge was recycled to the anaerobic digestion tank. In addition, this membrane permeate liquid and the flocculated separation liquid of human waste separated by the above-mentioned inclined wedge wire screen were mixed and supplied to a biological nitrification and denitrification plant.
なお、嫌気性消化汚泥はUP膜により完全に分離されて
リサイクルされ、系外には全く流出しないため、嫌気性
消化槽のSRTを200日以上に設定可能であり、この
結果、汚泥中有機物の約90%か分解し、未消化残渣は
1.2kg/&と極めて少量であった。In addition, the anaerobic digested sludge is completely separated and recycled by the UP membrane and does not flow out of the system at all, so the SRT of the anaerobic digestion tank can be set to 200 days or more, and as a result, the organic matter in the sludge is reduced. About 90% was decomposed, and the undigested residue was extremely small at 1.2 kg/&.
前記生物学的硝化脱窒素工径に供給された嫌気性消化膜
分離液とし尿の凝集分離液の混合液の水質は表−1に示
す通りてあった。The water quality of the mixed liquid of the anaerobic digestive membrane separated liquid and the human urine coagulation separated liquid supplied to the biological nitrification and denitrification system was as shown in Table 1.
表−1 生物学的硝化脱窒素工径の運転条件を表−2に示す。Table-1 Table 2 shows the operating conditions for the biological nitrification and denitrification process.
表
表−2の生物学的硝化脱窒素工径のUP膜透過液の水質
は表−3に示す通りてあった。The water quality of the UP membrane permeate in the biological nitrification and denitrification process shown in Table 2 was as shown in Table 3.
表
また、浄化槽汚泥の濃縮分離液は、前記UP膜透過液と
共に硫酸バント1500■/1.粉末活性炭600■/
lを添加して、第2生物学的硝化脱窒素工程及び膜分離
工程(中空糸@)にて処理した。その処理水水質を表−
4に示す。In addition, the concentrated separated liquid of the septic tank sludge, together with the permeated liquid from the UP membrane, was treated with sulfate band 1500/1. Powdered activated carbon 600■/
1 was added and treated in the second biological nitrification and denitrification step and membrane separation step (hollow fiber@). The quality of the treated water is shown below.
4.
表
H
6,8〜7.1
なお、生物学的硝化脱窒製工程の6ケ月間の連続実験中
、余剰汚泥の引抜きは不要であった。この原因は、流入
液の不活性88分かほとくとなく、活性汚泥のMLSS
も高濃度であるため、余剰汚泥の発生量か非常に少ない
ためと考えられる。Table H 6,8-7.1 During the six-month continuous experiment of the biological nitrification and denitrification process, it was not necessary to extract excess sludge. The cause of this is not only the inactivity of the influent (88%), but also the MLSS of the activated sludge.
This is thought to be because the amount of surplus sludge generated is extremely small, as the concentration of sludge is also high.
以上述へたように、本発明によれは次のような卓越した
効果を奏する。As described above, the present invention provides the following outstanding effects.
■ 従来プロセスに比へ、汚泥発生量か著しく少なζな
り、膜分離、脱水、焼却等の汚泥処理工程か大幅に合理
化される。■ Compared to conventional processes, the amount of sludge generated is significantly reduced, and sludge treatment processes such as membrane separation, dewatering, and incineration are significantly streamlined.
■ 生物学的硝化脱窒製工程っ1ら余剰活性汚泥かほと
んと発生しない。■ Biological nitrification and denitrification process generates almost no surplus activated sludge.
■ し尿と浄化槽汚泥を直接嫌気性消化するのではなく
、し尿の凝集分離汚泥と浄化槽汚泥の濃縮汚泥の混合物
を嫌気性消化−膜分離するようにした結果、し尿の液側
に高濃度に存在する嫌気性消化阻害物質(NH,−N、
H,S)か嫌気性消化槽に流入しない。このため、極め
て効果的な嫌気性消化反応か進み、汚泥中の存機物か徹
底的に分解される。■ Rather than directly anaerobically digesting human waste and septic tank sludge, a mixture of coagulated and separated sludge from human waste and concentrated sludge from septic tank sludge is subjected to anaerobic digestion and membrane separation, resulting in a high concentration of human waste present in the liquid side. Anaerobic digestion inhibitors (NH, -N,
H, S) does not flow into the anaerobic digestion tank. As a result, an extremely effective anaerobic digestion reaction takes place, completely decomposing the remaining substances in the sludge.
第1図は本発明の一実施態様を示す系統説明図である。
1・・・し尿、2・・・高分子凝集剤、3. 7. 2
3固液分離装置、4・凝集分離液、5・・凝集分離汚泥
、6 ・浄化槽汚泥、8・・・濃縮分離液、9・・・濃
縮汚泥、10・・・嫌気性消化槽、11.16・・・膜
分離装置、12.17・・・膜透過液、13・膜分離消
化汚泥、15・・・生物学的硝化脱窒製工程、18 膜
分離活性汚泥、20・・・第2生物学的硝化脱窒素工程
、2I 凝集剤、22 粉末活性炭、24・・高度処理
水。FIG. 1 is a system explanatory diagram showing one embodiment of the present invention. 1... Human waste, 2... Polymer flocculant, 3. 7. 2
3. Solid-liquid separation device, 4. Coagulated separated liquid, 5. Coagulated separated sludge, 6. Septic tank sludge, 8. Concentrated separated liquid, 9. Thickened sludge, 10. Anaerobic digestion tank, 11. 16... Membrane separation device, 12.17... Membrane permeate, 13. Membrane separated digested sludge, 15... Biological nitrification and denitrification process, 18 Membrane separated activated sludge, 20... Second Biological nitrification and denitrification process, 2I flocculant, 22 powdered activated carbon, 24...highly treated water.
Claims (2)
集分離汚泥と浄化槽汚泥を濃縮分離した濃縮汚泥の両者
を嫌気性消化したのち膜分離し、該膜透過液と前記し尿
の凝集分離液とを生物学的硝化脱窒素処理することを特
徴とするし尿と浄化槽汚泥の併合処理方法。(1) A polymer flocculant is added to human waste and the human waste is coagulated and separated, and both the coagulated and separated sludge and the concentrated sludge obtained by concentrating and separating the septic tank sludge are subjected to anaerobic digestion and membrane separation, and the membrane permeate and the human waste are separated. A combined treatment method for human waste and septic tank sludge, characterized by subjecting the coagulated and separated liquid to biological nitrification and denitrification treatment.
浄化槽汚泥の濃縮分離液とをさらに生物学的硝化脱窒素
処理するものである請求項1記載のし尿と浄化槽汚泥の
併合処理方法。(2) The combined treatment method for human waste and septic tank sludge according to claim 1, wherein the treated water subjected to the biological nitrification and denitrification treatment and the concentrated separated liquid of the septic tank sludge are further subjected to biological nitrification and denitrification treatment. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25005490A JPH0647119B2 (en) | 1990-09-21 | 1990-09-21 | Combined treatment method of human waste and septic tank sludge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25005490A JPH0647119B2 (en) | 1990-09-21 | 1990-09-21 | Combined treatment method of human waste and septic tank sludge |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04131199A true JPH04131199A (en) | 1992-05-01 |
JPH0647119B2 JPH0647119B2 (en) | 1994-06-22 |
Family
ID=17202118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25005490A Expired - Lifetime JPH0647119B2 (en) | 1990-09-21 | 1990-09-21 | Combined treatment method of human waste and septic tank sludge |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0647119B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639396A (en) * | 1992-07-27 | 1994-02-15 | Ebara Infilco Co Ltd | Method for treating waste water |
JP2000015231A (en) * | 1998-07-06 | 2000-01-18 | Kubota Corp | Method for methane fermentation of organic waste |
JP2002096092A (en) * | 2000-09-21 | 2002-04-02 | Maezawa Ind Inc | Method of controlling grain size of floc as well as water treating method and device |
JP2002336825A (en) * | 2001-05-17 | 2002-11-26 | Kubota Corp | Method for recycling organic waste |
JP2010227876A (en) * | 2009-03-27 | 2010-10-14 | Osaka Gas Co Ltd | Composite treatment method for wastewater and organic residue |
JP2011183393A (en) * | 2011-05-23 | 2011-09-22 | Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd | Apparatus for post-treatment of methane fermentation, system for post-treatment of methane fermentation, and method thereof |
WO2012133386A1 (en) * | 2011-03-30 | 2012-10-04 | 株式会社クボタ | Wastewater treatment method and wastewater treatment system |
-
1990
- 1990-09-21 JP JP25005490A patent/JPH0647119B2/en not_active Expired - Lifetime
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639396A (en) * | 1992-07-27 | 1994-02-15 | Ebara Infilco Co Ltd | Method for treating waste water |
JP2000015231A (en) * | 1998-07-06 | 2000-01-18 | Kubota Corp | Method for methane fermentation of organic waste |
JP2002096092A (en) * | 2000-09-21 | 2002-04-02 | Maezawa Ind Inc | Method of controlling grain size of floc as well as water treating method and device |
JP2002336825A (en) * | 2001-05-17 | 2002-11-26 | Kubota Corp | Method for recycling organic waste |
JP2010227876A (en) * | 2009-03-27 | 2010-10-14 | Osaka Gas Co Ltd | Composite treatment method for wastewater and organic residue |
WO2012133386A1 (en) * | 2011-03-30 | 2012-10-04 | 株式会社クボタ | Wastewater treatment method and wastewater treatment system |
JP2011183393A (en) * | 2011-05-23 | 2011-09-22 | Mitsubishi Heavy Industries Environmental & Chemical Engineering Co Ltd | Apparatus for post-treatment of methane fermentation, system for post-treatment of methane fermentation, and method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0647119B2 (en) | 1994-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7101482B2 (en) | Method and facility for treatment of sludge derive from biological water purification facilities | |
JPH04131199A (en) | Concurrent disposal of night soil and septic tank sludge | |
JPH04131197A (en) | Disposal of night soil type sewage and apparatus therefor | |
JP3887581B2 (en) | Sewage treatment equipment | |
JPH0667520B2 (en) | Human waste system treatment equipment | |
JP4168552B2 (en) | Organic waste treatment methods | |
JP2655284B2 (en) | Treatment method of human wastewater | |
JP3907152B2 (en) | Organic wastewater treatment method and treatment apparatus | |
JP3181521B2 (en) | Water treatment method and water treatment device | |
JP3843540B2 (en) | Biological treatment method of effluent containing organic solids | |
JPS637900A (en) | Treatment of sewage of excretion system | |
JP2939156B2 (en) | Sewage treatment equipment | |
JPH02293095A (en) | Treatment of organic sewage | |
JPH0218918B2 (en) | ||
JPH10249376A (en) | Treatment of organic waste water such as sewage | |
JPS6157300A (en) | Treatment of sludge of excretion purification tank | |
JP3308788B2 (en) | Organic wastewater treatment method | |
JP2001096297A (en) | Sewage treatment process and equipment for treating effluent sewerage | |
JPH0419920B2 (en) | ||
Zhou et al. | A Novel Approach for Purifying Food Waste Anaerobic Digestate Through Bio-Conditioning Dewatering Followed by Activated Sludge Process: A Case Study | |
JP3447037B2 (en) | Aerobic digestion of activated sludge | |
JPH04227899A (en) | Treatment of night soil | |
EP1323680A1 (en) | Method for recovering nitrates from percolating waters coming from solid urban waste materials | |
JPH06142685A (en) | Method and apparatus for treating waste liquid containing organic nitrogen | |
JPS6316097A (en) | Treatment of organic waste water |