[go: up one dir, main page]

JPH0413098A - Guided airframe - Google Patents

Guided airframe

Info

Publication number
JPH0413098A
JPH0413098A JP2113176A JP11317690A JPH0413098A JP H0413098 A JPH0413098 A JP H0413098A JP 2113176 A JP2113176 A JP 2113176A JP 11317690 A JP11317690 A JP 11317690A JP H0413098 A JPH0413098 A JP H0413098A
Authority
JP
Japan
Prior art keywords
signal
target
pulse width
clutter
prf
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2113176A
Other languages
Japanese (ja)
Inventor
Osamu Saito
修 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2113176A priority Critical patent/JPH0413098A/en
Publication of JPH0413098A publication Critical patent/JPH0413098A/en
Pending legal-status Critical Current

Links

Landscapes

  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

PURPOSE:To reduce the affection of clutter and improve the capacity of rendezvous with a target by a method wherein the timing of receiving reflected wave from ground, in which the reflection strength of the reflected wave becomes highest, is made to coincide with the timing of transmission of transmitting wave to the target to increase the loss of receiving power of the clutter from ground as much as possible. CONSTITUTION:A distance between clutters operating unit 19 operates a distance between a guided missile and ground in a direction, in which the reflection strength of reflected wave becomes highest among the directions of a main rope. A third pulse width PRF control unit 21 selects a pulse width PRF satisfying both of pulse width PRFs selected by a pulse width PRF control unit 121 and a second pulse width PRF control unit 21. In a guided missile M constituted in such a manner, the loss of the receiving power of a reflected wave from a target can be reduced and the loss of the receiving power of reflected wave from ground in the direction of the main rope can be increased whereby clutter suppressing characteristics are improved and the capacity of rendezvous with a low-altitude target or guidance accuracy is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、目標を捕捉・追尾する誘導飛しょう体に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a guided flying vehicle that captures and tracks a target.

〔従来の技術〕[Conventional technology]

まず、従来のこの種制御装置について簡単に説明する。 First, a conventional control device of this type will be briefly explained.

第3図において1Mは誘導飛しょう体、(1)は誘導飛
しょう体が捕捉・追尾する目標、(2)は目標(1)に
照射する送信波、(3)は目標(1)からの反射波、(
4)は目標(Ilに照射する送信波(2)の送信信号を
発生する送信源部、(5)は送信源部(4)で発生した
送信信号を後述するアンテナに供給し、又、アンテナて
受信したサム(和)受子:信号を後述する前置増幅器(
1)に供給するサーキュレータ、(6)は送信信号を送
信波(2)として目標filに照射し、目標(1)から
の反射波(3)を受信し、サム受信信号とデイ7(差)
受信信号を出力するアンテナ、(7)はアンテナ(6)
を外界より保護するドーム、(8)はアンテナ(6)で
受信した微弱なサム受信信号を低雑音で増幅する第1の
前置増幅器、(91はアンテナ(6)で受信した微弱な
ディフ受信信号を低雑音で増幅する第2の前置増幅器、
00)はサム受信信号を2分配し相対速度検出器と相対
距離検出器に出力する1対1分配器、 011はサム受
信信号より目標信号抽出後、目標信号より目標(j)、
誘導飛しょう体M間で生ずる送信e周e数のト′ソプラ
ー傭移量を抽出し相対速度信号を出力する相対速度検出
器、(120よりム受信信号より目標(1)、誘導飛し
よう体M間で生ずる距離誤差を抽出し相対距離信号を出
力する相対距離検出器、(I2旬ζま相対距離信号より
目標からの反射波の受信のタイミングと送信信号を送信
波として目標に照射するタイミングがずれる送信信号の
パルス幅とPRFを計算し送信源部でその幅とPRFを
発生するための洞部信号を出力するパルス幅・PRF制
御部2口3)はディフ受信信号より誘導飛しょう体Mの
機軸に対する目標(11の角度方向を検出しビーム指向
角制御信号と目標方向角度信号を出力する角度検出m。
In Figure 3, 1M is the guided missile, (1) is the target that the guided flying vehicle captures and tracks, (2) is the transmitted wave irradiated to the target (1), and (3) is the wave from the target (1). Reflected wave, (
4) is a transmission source section that generates a transmission signal of the transmission wave (2) to be irradiated to the target (Il); (5) is a transmission source section that supplies the transmission signal generated in the transmission source section (4) to an antenna to be described later; Sum receiver: The signal received by the preamplifier (
The circulator (6) supplies the transmission signal to the target fil as a transmission wave (2), receives the reflected wave (3) from the target (1), and receives the sum reception signal and Day 7 (difference).
The antenna that outputs the received signal, (7) is the antenna (6)
(8) is the first preamplifier that amplifies the weak sum reception signal received by antenna (6) with low noise, (91 is the weak differential reception signal received by antenna (6)) a second preamplifier that amplifies the signal with low noise;
00) is a one-to-one divider that divides the sum reception signal into two and outputs it to the relative speed detector and relative distance detector. 011 is the one that extracts the target signal from the sum reception signal and extracts the target (j) from the target signal.
A relative speed detector extracts the amount of transfer of the number of transmitted orbits e generated between the guided flying objects M and outputs a relative speed signal. A relative distance detector that extracts the distance error that occurs between M and outputs a relative distance signal (from the relative distance signal, the timing of receiving the reflected wave from the target and the timing of irradiating the transmitted signal to the target as a transmitted wave) The pulse width/PRF controller 2 ports 3) calculates the pulse width and PRF of the transmitted signal and outputs a sinus signal to generate the width and PRF in the transmission source section. An angle detection m that detects the angular direction of the target (11) with respect to the machine axis of M and outputs a beam pointing angle control signal and a target direction angle signal.

間は角度検出器031の出力のビーム指向角制卯信号に
よりアンテナ(6)のビーム指向方向を目標(1)方向
に指向制御するビーム指向角制御部、 (141)は誘
導飛しょう体の位W(飛しょう高度など)、姿勢角を検
出する慣性装置部、Q51は相対速度検出器011の出
力の相対速度信号と2相対距離検出蕾助の出力の相対距
離信号と、角度検出N031の出方の目標方向角度信号
より誘導飛しょう体Mを目標(1)との会合点方向に操
舵するための操舵指令信号を出力ずろオ〜トパイロッ)
・11511.1オートパイロツト[151の出力の操
舵指令信号により誘導飛しょう体Mを目標(1)との会
合点方向に操舵する操舵装置、 +171は誘導飛しょ
う体Mの構成品に必要な電力を供給する電源、■(ま誘
導飛しょう体Mに推力を与える推進装置である。
(141) is a beam pointing angle control unit that controls the beam pointing direction of the antenna (6) in the target (1) direction using a beam pointing angle control signal output from the angle detector 031; W (flight altitude, etc.), an inertial device unit that detects the attitude angle, Q51 is a relative speed signal output from relative speed detector 011, a relative distance signal output from two relative distance detection assistants, and an output of angle detection N031. Outputs a steering command signal for steering the guided flying object M in the direction of the meeting point with the target (1) based on the target direction angle signal of the target (1).
・11511.1 Autopilot [A steering device that steers the guided spacecraft M in the direction of the meeting point with the target (1) using the steering command signal output from 151. +171 is the power required for the components of the guided spacecraft M. It is a propulsion device that provides thrust to the guided flying vehicle M.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

従来の誘導飛しょう体M(ま以上のように構成され、目
標(1)からの反射波(3)の受イ=のタイミングと。
The timing of the reception of the reflected wave (3) from the target (1) of the conventional guided missile M (configured as described above).

目標(1)への送信波(2)の送信のタイミングをずら
すことにより極力受子:電力の損失を少なくするととも
にS/Nを向上させ、目標fllとの会合点方向へと誘
導していた。
By shifting the timing of the transmission of the transmission wave (2) to the target (1), we were able to reduce power loss as much as possible, improve the S/N, and guide it toward the meeting point with the target fll. .

ただし、対地からの反射波(クラッタ)1こ対しては考
慮していなかったため低空目標に対して(よりラックの
影響を受け、目標(1)との会合能力に支障をきたす場
合があった。
However, since it did not take into account the reflected waves (clutter) from the ground, low-altitude targets were more affected by the rack, which could impede the ability to engage with target (1).

この発明は、アンテナのメインビーム方向のビ−ム幅内
に含まわる対地からの反射波の中で一番反射強度が高く
なる反射波の受信のタイミングと目標(1]への送信波
(2)の送信のタイミングを合わせて、極力対地からの
反射波(クラッタ)の受信電力の損失を大きくすること
により、クラッタの影響を軽減し、目標(1)との会合
能力を向上させる誘導飛しょう体を得ることを目的とす
る。
This invention is based on the timing of receiving the reflected wave that has the highest reflection intensity among the reflected waves from the ground included within the beam width in the main beam direction of the antenna, and the transmission wave (2) to the target (1). ) by adjusting the timing of the transmission and increasing the received power loss of reflected waves (clutter) from the ground as much as possible, thereby reducing the influence of clutter and improving the ability to meet the target (1). The purpose is to get a body.

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係わる誘導飛しょう体は誘導飛しょう体の位
置及び姿勢角情報と目標方向角度信号よりメインローブ
方向のビーム幅内に含まれる誘導飛しょう体一対地間距
離を計算し、ビーム幅内のクラッタ距離信号を出力する
手段と、クラッタ距a信号より対地からの反射波の中で
一番反射強度が高くなる反射波の受信のタイミングと送
信信号を送信波として目標に照射するタイミングが合う
送信信号のパルス幅とPRFを計算し送信源部でそのパ
ルス幅とPRFを発生するための制御信号を出力する第
2のパルス幅・PRF制御部と、第1のパルス[PRF
制御部の出力と第2のパルス輻PRF制御部の出力の両
方を満足するパルス幅とPRFを発生すめための制御信
号を送信源部に出力する第3のパルス輻PRF制御部と
を具備したものである。
The guided spacecraft according to this invention calculates the distance between the guided spacecraft and the ground included within the beam width in the main lobe direction from the position and attitude angle information of the guided spacecraft and the target direction angle signal, and The means for outputting the clutter distance signal, the timing of receiving the reflected wave that has the highest reflection intensity among the reflected waves from the ground than the clutter distance a signal, and the timing of irradiating the transmitted signal to the target as the transmitted wave match. a second pulse width/PRF control unit that calculates the pulse width and PRF of the transmission signal and outputs a control signal for generating the pulse width and PRF in the transmission source unit;
A third pulse intensity PRF control section that outputs a control signal for generating PRF with a pulse width that satisfies both the output of the control section and the output of the second pulse intensity PRF control section to the transmission source section. It is something.

〔作 用〕[For production]

この発明は、目標からの反射波を受信するタイミングと
送信波の送信するタイミングをずらすと同時に、メイン
ローブ方向の対地からの反射波を受信するタイミングと
送信波の送信するタイミングが合致するようにすること
が出来るため、目標の受信電力の損失を少なくしたまま
、メインローブ方向の対地からの反射波の受信電力の損
失を大きくすることが出来るので、対クラッタ抑圧特性
が良好となり、低空目標に対する会合能力、すなわち誘
導精度を向上させることが出来る。
This invention shifts the timing of receiving the reflected wave from the target and the timing of transmitting the transmitted wave, and at the same time aligns the timing of receiving the reflected wave from the ground in the main lobe direction with the timing of transmitting the transmitted wave. Therefore, it is possible to increase the loss of the received power of the reflected wave from the ground in the main lobe direction while reducing the loss of the received power of the target, resulting in better anti-clutter suppression characteristics and better performance against low-altitude targets. It is possible to improve the meeting ability, that is, the guidance accuracy.

〔実施例〕〔Example〕

第1図は、この発明の一実施例を示す図であり(1)〜
(ト)、 (1211,(141)は第3図と同じであ
り、 (191〜口が第2図に対して新たに付加した装
置である。
FIG. 1 is a diagram showing an embodiment of the present invention (1) to
(g), (1211, and (141)) are the same as in FIG. 3, and (191 to 口) are new devices added to FIG. 2.

(191は慣性装置部(141)出力の位置及び姿勢角
情報と角度検出器f131の出力の目標方向角度信号よ
りメインローブ方向の誘導飛しょう体一対地間距離を評
すしクラッタ距H,信号を出力するクラッタ間距離計算
部、因)はクラッタ間距離計算部()9)からのクラン
ク距la(M号とアンテナ利得よりクラッタ反射電力を
計算しクラッタ反射電力が最大となる最大クラッタ距離
信号を出力するクラッタ最大反射強度計算部、Q])は
クラッタ最大反射強度計算部(28)の出力の量大クラ
ッタ距離信号より対地からの反射波の受信のタイミング
と送信信号を送信波として目標に照射するタイミングが
合う送信信号のパ/Lス幅とPRFを計算し送信源部(
4)でそのパルス幅とPRFを発生するための制@信号
を出力する第2のパルス幅・PRF制細部2口は第1の
パルス幅PRF制御部(+21)の出力と第2のパルス
幅PRF制細部(21)の出力の両方を満足するパルス
幅とPRFを発生するための制御信号を送信源部(4)
に出力する第3のパルス幅・PRF制細部である。
(191 is the inertial device unit (141) output position and attitude angle information and the angle detector f131 output target direction angle signal to estimate the distance between the guided spacecraft and the ground in the main lobe direction, and calculate the clutter distance H and the signal. The clutter-to-clutter distance calculation unit to output calculates the clutter reflected power from the crank distance la (M number and antenna gain) from the clutter-to-clutter distance calculation unit () 9), and calculates the maximum clutter distance signal that maximizes the clutter reflected power. The output clutter maximum reflection intensity calculation unit (Q]) uses the output of the clutter maximum reflection intensity calculation unit (28) to irradiate the target with the timing of receiving the reflected wave from the ground and the transmission signal as a transmission wave based on the large clutter distance signal. Calculate the path/L path width and PRF of the transmission signal whose timing matches the
In 4), the second pulse width/PRF control part which outputs the control signal for generating the pulse width and PRF outputs the output of the first pulse width PRF control section (+21) and the second pulse width. The transmission source section (4) transmits a control signal for generating PRF and a pulse width that satisfies both the output of the PRF control section (21).
This is the third pulse width/PRF control part to be output to.

なお、クラ・ツタ間距離計算部G11)では次式により
メインローブ方向の中で一番反射強度が高くなろ反射波
を受信する方向の誘導飛しょう体と対地間距離を計算す
る。
In addition, the Kura-tsuta distance calculation unit G11) calculates the distance between the guided flying object and the ground in the direction in which the reflected wave is received, which has the highest reflection intensity among the main lobe directions, using the following equation.

cos(−−θm+θa−θ’b) RC:誘導飛しょう体と対地間距離 Hm+誘導誘導上う体高度 θm:m:誘導上う体姿勢角 また、クラッタ最大反射強度計算部因)ではθ゛bがR
c maχを計算する。
cos (--θm+θa-θ'b) RC: Distance between the guided projectile and the ground Hm + Guided body altitude θm: m: Guided body attitude angle Also, clutter maximum reflection intensity calculation factor) is θ゛b is R
Calculate c maχ.

G2(θ’bl Re’ G(θ″b)−ビーム幅内θ′b方向のアンテナ利得ま
た。第3のパルス幅PRF制御部笥ではパルス幅・PR
F制園部(121)及び第2のパルス幅・pRFli1
部の)でそれぞれ選択されたパルス幅。
G2(θ'bl Re'G(θ''b) - Antenna gain in the θ'b direction within the beam width Also. In the third pulse width PRF control section, the pulse width/PR
F nursery school section (121) and second pulse width/pRFli1
The pulse width selected in each section).

PRFより両方を満足するパルス幅、PRFを選択する
すなわち2次式の両方を満足するパルス幅。
A pulse width that satisfies both of the PRF and a pulse width that satisfies both of the quadratic equations.

PRFを選択する。Select PRF.

L、N    正の数 Rt      目標量相対距離 τ      パルス幅 PRF     パルス繰返し周波数 誘導飛しょう体Mと目標(1)との相対関係図を第2図
に参考として示す。
L, N Positive number Rt Target amount relative distance τ Pulse width PRF Pulse repetition frequency A diagram of the relative relationship between the guided flying object M and the target (1) is shown in FIG. 2 for reference.

上記のように構成された誘導飛しよう体Mにおいては目
標からの反射波の受信電力の損失を少なくシ、かつメイ
ンローブ方向からの対地反射波の受信電力の損失を大き
くすることが出来るので対クラッタ抑圧特性が良好とな
り低空目標に対する会合能力すなわち誘導精度が向上す
る。
In the guided flying object M configured as described above, it is possible to reduce the loss of the received power of the reflected wave from the target and increase the loss of the received power of the ground reflected wave from the main lobe direction. The clutter suppression characteristics are improved, and the ability to meet low-altitude targets, that is, the guidance accuracy is improved.

〔考案の効果〕[Effect of idea]

この発明は以上説明した通りの構成により、目標からの
反射波の受信のタイミングと送(二液の送信のタイミ、
グが合致しないようにすると同時にメインローブ方向の
ビーム幅内に含まれろ対地からの反射波の中で一番反射
強度が高くなる反射波を受信のタイミングが揃うような
PRFとパルス幅の送信波を送信できるようにすること
により対クラッタ抑圧性能を改善し、低空目標に対する
会合能力、すなわち誘導精度を改善する効果が期待でき
る。
This invention has the configuration as explained above, and the timing of receiving the reflected wave from the target and sending it (the timing of sending the two liquids,
At the same time, the PRF and pulse width of the transmitted wave should be such that the reflected wave with the highest reflected strength among the reflected waves from the ground is received within the beam width in the main lobe direction. By making it possible to transmit clutter, it is expected that the anti-clutter suppression performance will be improved, and the ability to meet low-altitude targets, that is, the guidance accuracy, will be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す構成ブロック図、第
2図は誘導飛しょう体と目標との相対関係図、第3図は
従来の誘導飛しょう体を示す構成ブロック図である。 図において、(1)は目標、(2)は送信波、(3)は
反射波、(4)は送信源部、(5)はサーキュレータ、
(6)はアンテナ、(7)はドーム、(8)は第1の前
置増幅器、(9)は第2の前置増幅器、00)は1対1
分配置1.(Illは相対速度検出器、021は相対距
離検出器、 (1211は第1のパルス幅・PRF制御
部、 (131は角度検出器、 041はビーム指向角
制御部、 (1411は慣性装置部、(回はオートパイ
ロット、(迎は擾舵装置、G711.を電源、囮は推進
装置、 (191はクラッタ間距離計算部、 +21は
クラッタ最大反射強度計算部、 (211は第2のパル
ス幅PRF制御部、健)は第3のパルス幅・PRF制御
部である。 なお2図中、同一あるいは相当部分に1よ同一符号を示
しである。 第 2 図
FIG. 1 is a block diagram showing an embodiment of the present invention, FIG. 2 is a diagram showing the relative relationship between a guided missile and a target, and FIG. 3 is a block diagram showing a conventional guided flying vehicle. In the figure, (1) is the target, (2) is the transmitted wave, (3) is the reflected wave, (4) is the transmission source, (5) is the circulator,
(6) is the antenna, (7) is the dome, (8) is the first preamplifier, (9) is the second preamplifier, 00) is the one-to-one
Separation arrangement 1. (Ill is a relative velocity detector, 021 is a relative distance detector, (1211 is a first pulse width/PRF control unit, (131 is an angle detector, 041 is a beam direction angle control unit, (1411 is an inertial device unit, (time is the autopilot, (pickup is the steering device, G711. is the power source, decoy is the propulsion device, (191 is the inter-clutter distance calculation section, +21 is the clutter maximum reflection intensity calculation section, (211 is the second pulse width PRF The control unit (Ken) is the third pulse width/PRF control unit. In Figure 2, the same or equivalent parts are designated by the same symbols as 1.

Claims (1)

【特許請求の範囲】[Claims] 目標に照射する送信波の送信信号を発生する送信源部と
、上記送信信号をアンテナに供給し、受信信号を前置増
幅部に供給するサーキュレータと、送信信号を送信波と
して目標に照射し、目標からの反射波を受信するアンテ
ナと、上記アンテナを外界より保護するドームと、上記
アンテナで受信した微弱なサム(和)受信信号を低雑音
で増幅する第1の前置増幅器と、上記アンテナで受信し
て微弱なディフ(差)受信信号を低雑音で増幅する第2
の前置増幅器と、上記サム受信信号を速度系チャンネル
と距離系チャンネルに2分配する1対1分配器と、上記
1対1分配器で分配されたサム受信信号より目標信号抽
出後、その目標信号より相対速度信号を抽出する相対速
度検出器と、上記1対1分配器で分配されたサム受信信
号より相対距離信号を抽出する相対距離検出器と、上記
相対距離信号より目標からの反射波の受信のタイミング
と送信信号を送信波として目標に照射するタイミングが
ずれる送信信号のパルス幅とPRFを計算し送信源部で
そのパルス幅とPRFを発生するための制御信号を出力
する第1のパルス幅・PRF制御部と、上記ディフ受信
信号よりビーム指向角制御信号と角度信号を抽出する角
度検出器と、上記ビーム指向角制御信号により上記アン
テナのビームを目標方向に制御するビーム指向角制御部
と、誘導飛しょう体の位置(飛しょう高度など)、姿勢
角を検出する慣性装置部と、上記誘導飛しょう体の位置
及び姿勢角情報と相対速度信号と相対距離信号と目標方
向角度信号より誘導飛しょう体を目標との会合点方向に
操舵する操舵指令信号を発生するオートパイロットと、
操舵指令信号により誘導飛しょう体を目標との会合点方
向に操舵する操舵装置とを備えた誘導飛しょう体におい
て、上記誘導飛しょう体の位置及び姿勢角情報と目標方
向角度信号よりメインローブ方向の誘導飛しょう体対地
間距離を計算しクラッタ距離信号を出力するクラッタ間
距離計算部と、上記クラッタ距離信号と上記アンテナの
ビーム方向利得よりクラッタ反射電力を計算し、クラッ
タ反射電力が最大となる最大クラッタ距離信号を出力す
るクラッタ最大反射強度計算部と、上記最大クラッタ距
離信号より対地からの反射波の信号のタイミングと送信
信号を送信波として目標に照射するタイミングが合う送
信信号のパルス幅とPRFを計算し送信源部でそのパル
ス幅とPRFを発生するための制御信号を出力する第2
のパルス幅・PRF制御部と、上記第1のパルス幅PR
F制御部の出力と第2のパルス幅PRF制御部の出力の
両方を満足するパルス幅とPRFを発生するための制御
信号を上記送信源部に出力する第3のパルス幅・制御部
とを具備したことを特徴とする誘導飛しょう体。
a transmission source section that generates a transmission signal of a transmission wave to be irradiated to a target, a circulator that supplies the transmission signal to an antenna and a reception signal to a preamplifier section, and irradiates the target with the transmission signal as a transmission wave; An antenna that receives reflected waves from a target, a dome that protects the antenna from the outside world, a first preamplifier that amplifies a weak sum reception signal received by the antenna with low noise, and the antenna. The second one receives the signal and amplifies the weak differential reception signal with low noise.
a preamplifier, a 1:1 distributor that divides the sum reception signal into two channels, a speed channel and a distance channel, and a target signal extracted from the sum reception signal distributed by the 1:1 distributor. A relative speed detector extracts a relative speed signal from the signal, a relative distance detector extracts a relative distance signal from the sum reception signal distributed by the one-to-one distributor, and a reflected wave from the target from the relative distance signal. The timing of reception of the transmission signal and the timing of irradiation of the transmission signal to the target as a transmission wave are shifted.The first system calculates the pulse width and PRF of the transmission signal and outputs a control signal for generating the pulse width and PRF at the transmission source section. a pulse width/PRF control section; an angle detector that extracts a beam directivity angle control signal and an angle signal from the differential reception signal; and a beam directivity angle control that controls the beam of the antenna in a target direction using the beam directivity angle control signal. , an inertial device section that detects the position (flight altitude, etc.) and attitude angle of the guided spacecraft, information on the position and attitude angle of the guided spacecraft, a relative speed signal, a relative distance signal, and a target direction angle signal. an autopilot that generates a steering command signal to steer the guided flying vehicle in the direction of the meeting point with the target;
In a guided spacecraft equipped with a steering device that steers the guided spacecraft in the direction of the meeting point with the target based on a steering command signal, the main lobe direction is determined based on the position and attitude angle information of the guided spacecraft and the target direction angle signal. a clutter-to-clutter distance calculation unit that calculates the distance between the guided missile and the ground and outputs a clutter distance signal, and calculates clutter reflected power from the clutter distance signal and the beam direction gain of the antenna, so that the clutter reflected power is maximized. A clutter maximum reflection intensity calculation unit that outputs a maximum clutter distance signal, and a pulse width of the transmission signal that matches the timing of the reflected wave from the ground and the timing of irradiating the transmission signal to the target from the maximum clutter distance signal. A second circuit that calculates the PRF and outputs the pulse width and a control signal for generating the PRF at the transmission source section.
and the first pulse width PR.
a third pulse width/control unit that outputs a control signal for generating a pulse width and PRF that satisfy both the output of the F control unit and the output of the second pulse width PRF control unit to the transmission source unit; A guided flying object characterized by the following:
JP2113176A 1990-04-27 1990-04-27 Guided airframe Pending JPH0413098A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2113176A JPH0413098A (en) 1990-04-27 1990-04-27 Guided airframe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2113176A JPH0413098A (en) 1990-04-27 1990-04-27 Guided airframe

Publications (1)

Publication Number Publication Date
JPH0413098A true JPH0413098A (en) 1992-01-17

Family

ID=14605482

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2113176A Pending JPH0413098A (en) 1990-04-27 1990-04-27 Guided airframe

Country Status (1)

Country Link
JP (1) JPH0413098A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443573A (en) * 1987-08-11 1989-02-15 Takeda Chemical Industries Ltd Coating composition
JPH07156742A (en) * 1993-10-12 1995-06-20 Morton Internatl Inc Igniter tube of gas generator
JP2015194366A (en) * 2014-03-31 2015-11-05 三菱電機株式会社 Guidance system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6443573A (en) * 1987-08-11 1989-02-15 Takeda Chemical Industries Ltd Coating composition
JPH07156742A (en) * 1993-10-12 1995-06-20 Morton Internatl Inc Igniter tube of gas generator
JP2015194366A (en) * 2014-03-31 2015-11-05 三菱電機株式会社 Guidance system

Similar Documents

Publication Publication Date Title
JP2802052B2 (en) Combined SAR monopulse and inverse monopulse weapon guidance
US3631485A (en) Guidance system
US3883091A (en) Guided missile control systems
US5153594A (en) Electronic counter-measure system for aircraft
US3001186A (en) Missile guidance system
CN105445757B (en) A kind of vehicles guiding system and bootstrap technique
US4142695A (en) Vehicle guidance system
JPH0413098A (en) Guided airframe
US4193074A (en) Enhancing radar returns from targets having a small radar cross section
JP2002544526A (en) Electromagnetic induction method and apparatus particularly applied to target tracking
US4215347A (en) Target seeker simulator
US3922630A (en) Automatic vehicle positioning system
US3922632A (en) Automatic vehicle positioning system
JPH03282196A (en) Guided airfram
GB900047A (en) Integrated aircraft fire control autopilot
GB2280750A (en) Underwater target tracking system
JPS63501443A (en) Improvements in or relating to radar systems
JPS62170866A (en) Transmitter-receiver
KR102217902B1 (en) Guided Weapon System having Bistatic Homming Devive and Operating Method thereof
JPH0331699A (en) Control device
JPS6269179A (en) Semi-active radar guidance controlling system
JPH07190692A (en) Guided missile
KR870000259B1 (en) Rolling dual mode missile
JP2002310597A (en) Guided projectile and radar
JPH04140684A (en) Controller