JPH04127595A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPH04127595A JPH04127595A JP24917390A JP24917390A JPH04127595A JP H04127595 A JPH04127595 A JP H04127595A JP 24917390 A JP24917390 A JP 24917390A JP 24917390 A JP24917390 A JP 24917390A JP H04127595 A JPH04127595 A JP H04127595A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- width
- semiconductor laser
- cladding layer
- refractive index
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 238000005253 cladding Methods 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 8
- 238000005530 etching Methods 0.000 abstract description 9
- 238000009826 distribution Methods 0.000 abstract description 8
- 230000010355 oscillation Effects 0.000 abstract description 8
- 238000002347 injection Methods 0.000 abstract description 7
- 239000007924 injection Substances 0.000 abstract description 7
- 238000000034 method Methods 0.000 abstract description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000243 solution Substances 0.000 abstract description 2
- 235000011149 sulphuric acid Nutrition 0.000 abstract description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 abstract 2
- 239000011259 mixed solution Substances 0.000 abstract 2
- 235000011007 phosphoric acid Nutrition 0.000 abstract 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 15
- 201000009310 astigmatism Diseases 0.000 description 7
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はPOS、FAシステム等のバーコードリーダ用
およびレーザプリンタ等の光源に用いられる半導体レー
ザに関し、特に高出力で横モード制御が可能であり、ビ
ームの非点隔差が小さい発振波長680nm以下のAJ
GaInP系可視光半導体レーザの構造に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a semiconductor laser used for barcode readers such as POS and FA systems, and as a light source for laser printers, etc., and particularly relates to a semiconductor laser that is capable of high output and transverse mode control. Yes, AJ with oscillation wavelength of 680 nm or less with small beam astigmatism difference
This invention relates to the structure of a GaInP-based visible light semiconductor laser.
第3図は従来の横モード制御型のA il G a I
nP系可視光半導体レーザの構造を示す断面図である
(昭和61年秋季応用物理学会予稿集、P。Figure 3 shows the conventional transverse mode control type A il Ga I
It is a cross-sectional view showing the structure of an nP-based visible light semiconductor laser (Proceedings of the Japan Society of Applied Physics Fall 1986, p.
165)。165).
図中1はn−GaAs基板であり、この基板1上にはn
−GaAsバッファー層2が形成されている。バッファ
ー層2上にはn−AAGaTnPクラッド層3.GaT
nP活性層4、p−AnGalnPクラッド層5.p−
GaTnPキャップ層6.n−GaAs電流素子層7お
よびp−GaAsコンタクト層8からなるダブルヘテロ
接合構造が形成されている。1 in the figure is an n-GaAs substrate, and on this substrate 1 there is an n-GaAs substrate.
- A GaAs buffer layer 2 is formed. On the buffer layer 2 is an n-AAGaTnP cladding layer 3. GaT
nP active layer 4, p-AnGalnP cladding layer 5. p-
GaTnP cap layer6. A double heterojunction structure consisting of an n-GaAs current element layer 7 and a p-GaAs contact layer 8 is formed.
この構造を有する半導体レーザ用結晶は通常MOVPE
法によって製造されるが、段差を形成した基板上にA、
&Ga1nPを積層することは技術的に困難なため、第
3図に示すようにGa1nP活性層4上に段差を有しな
p −A 61 G a I n Pクラッド層5を形
成し、この段差部にn−GaAS電流阻止層7を形成す
ることにより、自己整合的に電流狭窄と光導波作用がな
される。Crystals for semiconductor lasers with this structure are usually MOVPE.
A is manufactured by the method, but A,
Since it is technically difficult to stack &Ga1nP, as shown in FIG. By forming the n-GaAS current blocking layer 7, current confinement and optical waveguide effects are achieved in a self-aligned manner.
ここで、第3図の従来構造について製造工程を簡単に述
べる。先ず、1回目のMOVPE成長によってn−Ga
Asバッファー層2からp−GaInPキャップ層6ま
での5層構造を順次形成する。続いて、キャップ層6上
に写真食刻により幅5μmのストライプ状のS i 0
2膜マスクを形成し、p−AJ2Ga I nPクラッ
ド層5の途中までエツチングして、ストライプ状のメサ
部を形成する0次いで2回目のMOVPE成長によって
ストライプ状の5102M!マスクを除くメサ部にnG
aAs電流阻止層7を選択的に形成する。その後、5i
02膜マスクを除去した後、3回目のMOVPE成長に
よって全面にp−GaAsコンタクト層8を成長形成し
、コンタクトN8上にp側電極9.n−GaAs基板1
上にn側電極10を形成することにより、第3図に示す
構造の半導体レーザが完成される。Here, the manufacturing process for the conventional structure shown in FIG. 3 will be briefly described. First, by the first MOVPE growth, n-Ga
A five-layer structure from As buffer layer 2 to p-GaInP cap layer 6 is sequentially formed. Subsequently, on the cap layer 6, a stripe-shaped S i 0 with a width of 5 μm is formed by photolithography.
A two-layer mask is formed, and the p-AJ2Ga I nP cladding layer 5 is etched halfway to form a striped mesa portion.Then, a second MOVPE growth is performed to form a striped 5102M! nG in the mesa area excluding the mask
An aAs current blocking layer 7 is selectively formed. After that, 5i
After removing the 02 film mask, a p-GaAs contact layer 8 is grown over the entire surface by a third MOVPE growth, and a p-side electrode 9 is formed on the contact N8. n-GaAs substrate 1
By forming the n-side electrode 10 thereon, a semiconductor laser having the structure shown in FIG. 3 is completed.
このWI造では電流狭窄はD−GaAs電流阻止N7に
より行なわれる。才な、p−GaInPキャップ層6は
p−AρGaInPクラッド層5とp −G a A
Sコンタクト層8とのバンド不連続により生ずる電気抵
抗の増大を防ぐ役割を有している(例えば、昭和62年
度秋季応用物理学会予稿集P、765講演番号19a−
ZR−6)。In this WI structure, current confinement is performed by a D-GaAs current block N7. The p-GaInP capping layer 6 is composed of the p-AρGaInP cladding layer 5 and the p-GaInP capping layer 6.
It has the role of preventing an increase in electrical resistance caused by band discontinuity with the S contact layer 8 (for example, 1985 Autumn Proceedings of the Japan Society of Applied Physics P, 765 Lecture No. 19a-
ZR-6).
一方、横モード制御は段差を有したp−AηGa1nP
クラッド層5のメサ両側部でnGaAs電流阻止層7に
より光吸収を生じるためメサ両側に屈折率分布が形成さ
れることにより行なわれる。On the other hand, the transverse mode control is performed using p-AηGa1nP with steps.
This is achieved by forming a refractive index distribution on both sides of the mesa since light is absorbed by the nGaAs current blocking layer 7 on both sides of the mesa of the cladding layer 5.
近年、基本横モードで発振し、低発振しきい値で低非点
隔差を有する屈折率ガイド型の半導体レーザの要求が高
まっている。In recent years, there has been an increasing demand for an index-guided semiconductor laser that oscillates in a fundamental transverse mode, has a low oscillation threshold, and has a low astigmatism difference.
しかしながら、前述のような従来の屈折率ガイド型半導
体レーザでは、レーザ発振のための電流注入幅と活性層
4に平行な方向の作りつけの実効屈折率分布の幅とがほ
ぼ同寸法であるため波面のゆがみが生じ、非点隔差が1
0〜13μmと大きくなりレーザ光を微小スポットに絞
りにくい欠点を有している。However, in the conventional refractive index guided semiconductor laser as described above, the current injection width for laser oscillation and the width of the built-in effective refractive index distribution in the direction parallel to the active layer 4 are approximately the same size. Distortion of the wavefront occurs, and the astigmatism difference is 1
It has a drawback that it is large, ranging from 0 to 13 μm, and it is difficult to narrow down the laser beam to a minute spot.
本発明は、このような問題点を解決し、非点隔差の小さ
い横モード制御が可能なAjIGalnP系可視光半導
体レーザを提供するものである。The present invention solves these problems and provides an AjIGalnP visible light semiconductor laser that is capable of transverse mode control with a small astigmatism difference.
本発明の半導体レーザは、従来の横モード制御型のAJ
Ga I nP系半導体レーザにおける電流注入幅が活
性層に平行方向の作りつけの実効屈折率分布の幅より充
分小さくするために、1回目のMOVPE成長で形成す
る最上層のキャップ層の幅をその下地層であるクラッド
層の幅より小さくしたメサ部を備えている。The semiconductor laser of the present invention is a conventional transverse mode control type AJ.
In order to make the current injection width in the Ga I nP semiconductor laser sufficiently smaller than the width of the built-in effective refractive index distribution in the direction parallel to the active layer, the width of the uppermost cap layer formed in the first MOVPE growth is It has a mesa portion that is smaller in width than the cladding layer, which is the underlying layer.
次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.
第1図は本発明の一実施例の半導体レーザの構造を示す
横断面図である。FIG. 1 is a cross-sectional view showing the structure of a semiconductor laser according to an embodiment of the present invention.
まず、原料としてメタル系■族有機金属(トリメチルイ
ンジウム、トリエチルガリウム、トリメチルアルミニウ
ム)と■放水素化物(P H3AsH3)とを用いた減
圧下でのMOVPE法により、面方位(100)のn−
GaAs基板11(n濃度2 X 10 I8c m−
’)上に厚さ0.5.czmのn−GaAsバッファー
層12(n濃度1×I Q 17 c m −3)、厚
さ1μmのn−(A、&(1,6Gaa4)o、q I
no、q Pクラッド層13(n濃度5x 10”c
m−3)、厚さ0.06μmのGao、5 T no、
5 P活性層14.厚さ1μmのp(A II 6,6
G ao4) 0.5 I no5Pクラッド層15
(p濃度3X10’7cm−’)を順次成長してダブ
ルヘテロウェハーを形成する。続いて、キャップ層16
上に写真食刻法により幅5μmのストライプ状のS i
O2膜マスクを形成する。First, the n-
GaAs substrate 11 (n concentration 2 x 10 I8c m-
') Thickness 0.5 on top. czm n-GaAs buffer layer 12 (n concentration 1×I Q 17 cm −3), 1 μm thick n-(A, &(1,6Gaa4)o, q I
no, q P cladding layer 13 (n concentration 5x 10"c
m-3), Gao with a thickness of 0.06 μm, 5 T no,
5P active layer 14. 1 μm thick p(A II 6,6
G ao4) 0.5 I no5P cladding layer 15
(p concentration 3×10'7 cm-') is sequentially grown to form a double hetero wafer. Subsequently, the cap layer 16
A striped Si with a width of 5 μm is formed on the top by photolithography.
Form an O2 film mask.
次いで、第1図に示すように、H,PO4H202、H
20の混合iおよびH2SO4のエツチング液を用いて
p−(Aρ0,6 Ga(1,4)。’5InO6pク
ラッド層15の途中までエツチングし、ストライプ状メ
サ部の両側のクラッド層15の厚さを0.2〜0.3μ
mとなるように制御する。次に、H8P 04 、 H
202、H20の混合液を用いてpGao、5 I n
o、5 Pキャラ1層16のみを選択的にエツチングし
、第1図に示すように、ストライプ状メサ部のクラッド
層15の上層部の幅A(図中に示す)よりもキャップ層
16の幅B(図中に示す)をサイドエッチ量を制御し狭
くする。ここでは、幅Aが5μm2幅Bが3μmとした
。Next, as shown in FIG. 1, H, PO4H202, H
The p-(Aρ0,6 Ga(1,4).'5InO6p cladding layer 15 is etched to the middle using an etching solution of 20 mixed i and H2SO4 to reduce the thickness of the cladding layer 15 on both sides of the striped mesa part. 0.2~0.3μ
Control is performed so that m. Next, H8P 04, H
pGao, 5 I n using a mixture of 202 and H20
o, 5 Only the P character 1 layer 16 is selectively etched, and as shown in FIG. The width B (shown in the figure) is narrowed by controlling the amount of side etching. Here, the width A was 5 μm and the width B was 3 μm.
次いで、2回目のM○VPE成長によってストライプ状
の5iOzlluマスクを除くメサ部に厚さ0.6tt
m (平坦部)のn−GaAs電流阻止層17(n濃度
I X 1018c m−’)を選択的に成長形成する
。その後S i 02膜マスクを除去した後、3回目の
MOVPE成長によって全面に厚さ3μmのp−GaA
sコンタクト層18(p濃度5 X 1018c m−
’)成長形成し、コンタクト層18上にP側型119n
−GaAs基板11上にn側電極20を形成することに
よって本発明の半導体レーザが完成する。Next, by second M○VPE growth, a 0.6tt thick layer was formed on the mesa area excluding the striped 5iOzllu mask.
An n-GaAs current blocking layer 17 (n concentration I x 1018 cm-') of m (flat portion) is selectively grown. After that, after removing the Si02 film mask, a 3 μm thick p-GaA film was grown on the entire surface by the third MOVPE growth.
S contact layer 18 (p concentration 5 x 1018c m-
') Grow and form a P-side type 119n on the contact layer 18.
- By forming the n-side electrode 20 on the GaAs substrate 11, the semiconductor laser of the present invention is completed.
ここで、レーザ発振のための電流注入幅Aが活性層14
に平行な方向の作りつけの実効屈折率分布の幅Cに比べ
て充分小さいなめレーザ光の波面のゆがみが小さくなり
非点隔差が5μm以下と小さくなる。Here, the current injection width A for laser oscillation is
Since the width C of the built-in effective refractive index distribution in the direction parallel to is sufficiently small compared to the width C of the built-in effective refractive index distribution, the distortion of the wavefront of the slanted laser beam becomes small, and the astigmatism difference becomes small to 5 μm or less.
よってレーザ光を17zm程度の微小スポットに絞り込
むことが可能となる。Therefore, it becomes possible to narrow down the laser beam to a minute spot of about 17 zm.
第2図は本発明の実施例2の横断面図である。FIG. 2 is a cross-sectional view of Embodiment 2 of the present invention.
MOVPE法によるダブルヘテロ構造の成長は前述の実
施例と同じ方法で行なう。The growth of the double heterostructure by MOVPE is carried out in the same manner as in the previous embodiment.
ここでは、1回目のMOVPE成長によりp−(A 、
(10,6Ga、、4 ) 0.5 I nO,5P
クラッド層15の中間に厚さ40^のp−Gao、5
I no、sPエツチング停止層21(p濃度3X10
”cm3)を成長形成している点が前述の実施例1と異
なる。この他は前述の実施例と同じである。Here, p-(A,
(10,6Ga,,4)0.5I nO,5P
In the middle of the cladding layer 15, there is a p-Gao layer with a thickness of 40^, 5
I no, sP etching stop layer 21 (p concentration 3×10
This embodiment differs from the above-mentioned embodiment 1 in that the film is grown and formed.Other than this, it is the same as the above-mentioned embodiment.
この実施例では、エツチング停止層21が形成されてい
ることにより、ストライプ状メサ部の両側のP CA
l1o、b Gao、a > 0.5 I no、s
Pクラッド層15の厚さをエツチング停止性を利用い制
御性良く製作できる利点を有している。In this embodiment, since the etching stop layer 21 is formed, the PCA on both sides of the striped mesa portion is
l1o, b Gao, a > 0.5 I no, s
This has the advantage that the thickness of the P cladding layer 15 can be manufactured with good controllability by utilizing the etching stop property.
また、エツチング停止層21の厚さはレーザ発振光に対
して吸収を受けないようにするために40Aと薄く形成
している。Further, the thickness of the etching stop layer 21 is set to be as thin as 40 Å in order to prevent the laser oscillation light from being absorbed.
以上説明したように本発明によれば、活性層14に平行
方向の作りつけの実効屈折率分布の幅が電流注入幅より
充分広くなっているために、レーザ光の波面のゆがみが
小さく非点隔差が5μm以下と小さくなり、低非点隔差
を有する基本横モード発振する槽モード制御型レーザを
実現できる。As explained above, according to the present invention, since the width of the built-in effective refractive index distribution in the direction parallel to the active layer 14 is sufficiently wider than the current injection width, the distortion of the wavefront of the laser beam is small and the astigmatism The distance difference is reduced to 5 μm or less, and a tank mode controlled laser that oscillates in the fundamental transverse mode and has a low astigmatism difference can be realized.
また、電流注入幅を小さくすることにより、高出力動作
時においても基本横モード発振を維持でき、低発振しき
い値電流を実現できる。Furthermore, by reducing the current injection width, fundamental transverse mode oscillation can be maintained even during high output operation, and a low oscillation threshold current can be achieved.
第1図、第2図は本発明の実施例を示すAAGaInP
系半導体レーザの横断面図、第3図は従来の半導体レー
ザの横断面図を示す。
図において、
]、] ]1−−−n−GaAs基板2.12・ nG
aAsバッファー層、3−n−AJ!Ga I nPク
ラッド層、4・・・G a I n P活性層、5・・
・p −AJ2GaInPクラッド層、6−p−GaI
nPキャップ層、7,17・・・n−GaAs電流阻止
層、8.18−・−p−GaAsコンタクト層、9゜1
9・ p電極、10.20・−n電極、13 ・n(A
no6Ga0.4 )o、s I no5Pクラッド層
、] 4−Gao、q T no、5 P活性層、15
−p(A!2.)、6 Ga、)、4) o、5 I
no、5 Pクラッド層、l 6−・−p−GaO,5
I no、5 Pキャップ層、21−p−〇a、、5
I no、5 Pエツチング停止層を各々示す。FIG. 1 and FIG. 2 are AAGaInP showing an embodiment of the present invention.
FIG. 3 shows a cross-sectional view of a conventional semiconductor laser. In the figure, ],] ]1---n-GaAs substrate 2.12・nG
aAs buffer layer, 3-n-AJ! GaInP cladding layer, 4...GaInP active layer, 5...
・p-AJ2GaInP cladding layer, 6-p-GaI
nP cap layer, 7,17...n-GaAs current blocking layer, 8.18-...-p-GaAs contact layer, 9°1
9.p electrode, 10.20.-n electrode, 13.n(A
no6Ga0.4 ) o, s I no5P cladding layer, ] 4-Gao, q T no, 5 P active layer, 15
-p(A!2.), 6 Ga, ), 4) o, 5 I
no, 5 P cladding layer, l 6-・-p-GaO, 5
I no, 5 P cap layer, 21-p-○a, 5
I no and 5 P etch stop layers are shown, respectively.
Claims (1)
j_XGa_1_−_X)_0_._5In_0_._
5P系からなる半導体レーザにおいて、少なくとも活性
層が第1導電型第1クラッド層と第2導電型のストライ
プ状メサ形状を有した第2クラッド層とで挟まれ、第2
クラッド層上部に積層した第3の半導体層のメサ形状幅
が下地第2クラッド層のメサ形状幅よりも狭く、前記半
導体層を除く第2クラッド層表面に第1導電型で活性層
より屈折率の大きい第4の半導体層を具備し、第3の半
導体層から電流注入がなされるようにしたことを特徴と
する半導体レーザ。The double heterojunction structure formed on the semiconductor substrate is (A
j_XGa_1_−_X)_0_. _5In_0_. _
In a 5P-based semiconductor laser, at least an active layer is sandwiched between a first cladding layer of a first conductivity type and a second cladding layer having a striped mesa shape of a second conductivity type;
The mesa shape width of the third semiconductor layer laminated on the upper part of the cladding layer is narrower than the mesa shape width of the underlying second cladding layer, and the surface of the second cladding layer excluding the semiconductor layer has a first conductivity type and a refractive index higher than that of the active layer. 1. A semiconductor laser comprising: a fourth semiconductor layer having a large diameter; and current is injected from the third semiconductor layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24917390A JPH04127595A (en) | 1990-09-19 | 1990-09-19 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24917390A JPH04127595A (en) | 1990-09-19 | 1990-09-19 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04127595A true JPH04127595A (en) | 1992-04-28 |
Family
ID=17188996
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24917390A Pending JPH04127595A (en) | 1990-09-19 | 1990-09-19 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04127595A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6084899A (en) * | 1994-09-14 | 2000-07-04 | Rohm Co. Ltd. | Semiconductor light emitting device and manufacturing method |
-
1990
- 1990-09-19 JP JP24917390A patent/JPH04127595A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6084899A (en) * | 1994-09-14 | 2000-07-04 | Rohm Co. Ltd. | Semiconductor light emitting device and manufacturing method |
US6115399A (en) * | 1994-09-14 | 2000-09-05 | Rohm Co. Ltd. | Semiconductor light emitting device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4845724A (en) | Semiconductor laser device having optical guilding layers of unequal resistance | |
JP2778178B2 (en) | Semiconductor laser | |
JPH0196980A (en) | Semiconductor laser element and manufacture thereof | |
JPS6220392A (en) | Semiconductor laser element | |
JP3183683B2 (en) | Window type semiconductor laser device | |
JP2792177B2 (en) | Semiconductor laser | |
JP2564813B2 (en) | A (1) GaInP semiconductor light emitting device | |
JPH05251813A (en) | Semiconductor laser element | |
JP2702871B2 (en) | Semiconductor laser and method of manufacturing the same | |
JPH04127595A (en) | Semiconductor laser | |
JPH07240560A (en) | Semiconductor laser | |
JPH02116187A (en) | Semiconductor laser | |
JPH06196812A (en) | Semiconductor laser element | |
JP2502835B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP2946781B2 (en) | Semiconductor laser | |
JPH08316563A (en) | Semiconductor laser device | |
JPH0537078A (en) | Quantum well semiconductor laser element and manufacture thereof | |
JPH07321395A (en) | Self oscillation semiconductor laser element | |
JP3078553B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH05121828A (en) | Semiconductor laser | |
JPH04208586A (en) | Semiconductor laser | |
JP2909133B2 (en) | Semiconductor laser device | |
JPH0362585A (en) | Semiconductor laser device | |
JPH08274403A (en) | Semiconductor laser | |
JPH0537070A (en) | Manufacture of distributed feedback type semiconductor laser element |