JPH04126902A - Feedwater heater - Google Patents
Feedwater heaterInfo
- Publication number
- JPH04126902A JPH04126902A JP2247187A JP24718790A JPH04126902A JP H04126902 A JPH04126902 A JP H04126902A JP 2247187 A JP2247187 A JP 2247187A JP 24718790 A JP24718790 A JP 24718790A JP H04126902 A JPH04126902 A JP H04126902A
- Authority
- JP
- Japan
- Prior art keywords
- heater
- stainless steel
- amount
- feed water
- ferritic stainless
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910001220 stainless steel Inorganic materials 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 80
- 238000010438 heat treatment Methods 0.000 claims description 21
- 238000005260 corrosion Methods 0.000 abstract description 17
- 230000007797 corrosion Effects 0.000 abstract description 17
- 230000005855 radiation Effects 0.000 abstract description 11
- 238000005498 polishing Methods 0.000 abstract description 10
- 238000010828 elution Methods 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 3
- 230000000694 effects Effects 0.000 abstract description 3
- 230000003247 decreasing effect Effects 0.000 abstract 1
- 238000009499 grossing Methods 0.000 abstract 1
- 229910000963 austenitic stainless steel Inorganic materials 0.000 description 6
- 238000000746 purification Methods 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 238000009835 boiling Methods 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000011144 upstream manufacturing Methods 0.000 description 4
- 238000010248 power generation Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000007517 polishing process Methods 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/16—Polishing
- C25F3/22—Polishing of heavy metals
- C25F3/24—Polishing of heavy metals of iron or steel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F19/00—Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F21/00—Constructions of heat-exchange apparatus characterised by the selection of particular materials
- F28F21/08—Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
- F28F21/081—Heat exchange elements made from metals or metal alloys
- F28F21/082—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys
- F28F21/083—Heat exchange elements made from metals or metal alloys from steel or ferrous alloys from stainless steel
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の目的]
(産業上の利用分野)
本発明は給水加熱器に係り、特に加熱器チュブを改良し
た給水加熱器に関する。DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a feedwater heater, and more particularly to a feedwater heater with an improved heater tube.
(従来の技術)
沸騰水型原子力発電プラントの給水加熱器は復水器から
の復水を給水として加熱し、原子炉圧力容器へ導くもの
である。給水の加熱は給水が給水加熱器の加熱器チュー
ブを流通する間に熱交換によってなされる。(Prior Art) A feed water heater for a boiling water nuclear power plant heats condensate from a condenser as feed water and guides it to a reactor pressure vessel. Heating of the feed water is accomplished by heat exchange while the feed water flows through the heater tubes of the feed water heater.
このような加熱器チューブは熱交換効率を高めるために
給水との接液面積が約20000n(と大きくなるよう
に構成されている。したかって、腐食防止の観点から従
来加熱器チューブは腐食され難いオーステナイト系ステ
ンレス鋼によって形成されている。In order to increase heat exchange efficiency, such heater tubes are designed to have a large contact area with the water supply of approximately 20,000 nm. Therefore, from the viewpoint of corrosion prevention, conventional heater tubes are difficult to corrode. Made of austenitic stainless steel.
(発明が解決しようとする課題)
このオーステナイト系ステンレス鋼は腐食速度が小さく
腐食量が第4図中、曲線1に示すように少ないものの、
Ni含有量か多い。なお、第4図はステンレス鋼の腐食
量と試験時間との関係を示している。(Problems to be Solved by the Invention) Although this austenitic stainless steel has a low corrosion rate and a small amount of corrosion as shown in curve 1 in Figure 4,
The Ni content is high. Note that FIG. 4 shows the relationship between the amount of corrosion of stainless steel and the test time.
ステンレス鋼中のNiが多いとその不純物として存在す
るCOも多くなる。一般にステンレス鋼から液体中へ溶
出するCoの溶出量はステンレス鋼の腐食速度とNi含
有率との積に比例する。したがって、加熱器チューブを
構成するステンレス鋼のNi含有蹴が多い場合にはco
が給水中へ溶出する溶出量の増大を意味することになる
。したがって、加熱器チューブがオーステナイト系ステ
ンレス鋼から構成された場合には給水中のCo濃度が増
大する。また、」二連のように加熱器チューブの接液面
積が大きいので給水中のco量の90%以」二がこの加
熱器チューブから溶出することになる。When the amount of Ni in stainless steel increases, the amount of CO present as an impurity also increases. Generally, the amount of Co eluted from stainless steel into a liquid is proportional to the product of the corrosion rate of stainless steel and the Ni content. Therefore, if the stainless steel that makes up the heater tube contains a lot of Ni, the co
This means an increase in the amount of elution into the water supply. Therefore, when the heater tube is constructed from austenitic stainless steel, the Co concentration in the feed water increases. In addition, since the wetted area of the heater tube is large as in the double series, more than 90% of the cobalt in the water supply will be eluted from the heater tube.
給水中に溶出したCoは給水中のNi Fe等ととも
に原子炉圧力容器内の炉心へ導かれて中性子照射を受け
、60Co、 ”Mn、 ”Co等の放射性核種に変化
する。このうち、”’Coは放射線量が他の核種に比べ
て著しく大きい。したかって、給水中にCoが多量に存
在すると、611 Coの発生量も増大し、ブラントの
放射線量が大きくなって、ブラントの運転員が放射線で
被曝する恐れがある。The Co eluted into the feed water is guided to the reactor core in the reactor pressure vessel together with Ni Fe, etc. in the feed water, where it is irradiated with neutrons and transformed into radionuclides such as 60Co, ``Mn,'' Co, etc. Of these, Co has a significantly higher radiation dose than other nuclides. Therefore, if a large amount of Co exists in the water supply, the amount of 611 Co generated will increase, and the radiation dose of the blunt will increase. Brandt operators may be exposed to radiation.
そこで、作業従事者の被曝低減の観点からNiを含有し
ないフェライト系ステンレス鋼を給水加熱器チューブに
適用することか検討されている。Therefore, from the viewpoint of reducing radiation exposure for workers, consideration is being given to applying ferritic stainless steel that does not contain Ni to the feed water heater tube.
このような理由によって、Niを含有しないフェライト
系ステンレス鋼を給水加熱器チューブに適用することが
望まれる。しかしながら、第4図中曲線3に示すように
、フェライト系ステンレス鋼の腐食量はオーステナイト
系ステンレス鋼(曲線1)のそれに比べて極めて多い。For these reasons, it is desirable to apply Ni-free ferritic stainless steel to the feed water heater tube. However, as shown by curve 3 in FIG. 4, the amount of corrosion in ferritic stainless steel is extremely large compared to that in austenitic stainless steel (curve 1).
したがって、鋼種の変更のみだけでは、腐食生成物の低
減あるいは作業従事者の放射線被曝低減に大きな効果を
期待することはてきない課題がある。Therefore, there is a problem in that simply changing the steel type cannot be expected to have a significant effect on reducing corrosion products or reducing worker radiation exposure.
本発明は上記課題を解決するためになされたもので、原
子力発電プラントにおける放射線量を大幅に抑制し、か
つブラントの作業従事者に対する放射線被曝低減に寄与
することができる給水加熱器を提供することにある。The present invention has been made to solve the above problems, and an object of the present invention is to provide a feed water heater that can significantly suppress the radiation dose in a nuclear power plant and contribute to reducing the radiation exposure of blunt workers. It is in.
[発明の構成]
(課題を解決するための手段)
本発明は、原子力発電プラントの給水系に設置され、本
体内部に多数の加熱器チューブが配設されて給水加熱器
が構成され、前記給水系の給水は前記加熱器チューブ内
を通過する間に熱交換されて加熱される給水加熱器にお
いて、前記加熱器チューブは電解研磨処理を施したフェ
ライト系ステンレス鋼から形成されていることを特徴と
する。[Structure of the Invention] (Means for Solving the Problems) The present invention is installed in a water supply system of a nuclear power plant, and a large number of heater tubes are arranged inside the main body to constitute a feed water heater, and the water supply heater A feed water heater in which the feed water of the system is heated by heat exchange while passing through the heater tube, wherein the heater tube is made of ferritic stainless steel subjected to electrolytic polishing treatment. do.
(作 用)
加熱器チューブをフェライト系ステンレス鋼製とし、そ
の内外両面が電解研磨によって平滑化されている。その
結果、加熱器チューブから給水中へNi、Co等の構成
元素の溶出量が減少し、また、溶出量が抑制され、これ
らの原子炉への持ち込み風が減少する。これによって、
炉心における放射性核種の生成量を低減できる。(Function) The heater tube is made of ferritic stainless steel, and its inner and outer surfaces are smoothed by electrolytic polishing. As a result, the amount of constituent elements such as Ni and Co eluted from the heater tube into the feed water is reduced, and the amount of eluted elements is also suppressed, reducing the amount of wind carried into the reactor. by this,
The amount of radionuclides produced in the reactor core can be reduced.
(実施例)
本発明に係る給水加熱器の実施例を図面に基づいて説明
する。第1図は本発明に係る給水加熱器の一実施例で、
第2図は第1図における給水加熱器をヒータドレンフォ
ワードポンプアップ方式の給水系に絹込んだ第1の例の
沸騰水型原子力発電プラントを示す系統図である。(Example) An example of the feed water heater according to the present invention will be described based on the drawings. FIG. 1 shows an embodiment of the feed water heater according to the present invention.
FIG. 2 is a system diagram showing a first example of a boiling water nuclear power plant in which the feed water heater in FIG. 1 is integrated into a heater drain forward pump-up type water supply system.
第2図において、原子炉圧力容器1内で発生した蒸気は
主蒸気ライン3を通って高圧蒸気タービン5へ導かれタ
ービンロータを駆動する。高圧蒸気タービン5て仕事を
した蒸気は湿分分離再熱器7を経て低圧蒸気タービン9
へ導かれ、タービンロータを駆動する。湿分分離再熱器
7は原子炉圧力容器]からの蒸気を導いて、高圧蒸気タ
ービン5にて仕事をした蒸気の湿分を除去し再熱するも
のである。In FIG. 2, steam generated within the reactor pressure vessel 1 is led to a high pressure steam turbine 5 through a main steam line 3 to drive a turbine rotor. The steam that has done work in the high pressure steam turbine 5 passes through the moisture separator reheater 7 and then passes through the low pressure steam turbine 9.
is guided to drive the turbine rotor. The moisture separation reheater 7 guides steam from the reactor pressure vessel, removes moisture from the steam that has done work in the high-pressure steam turbine 5, and reheats the steam.
低圧蒸気タービン9へ導かれて仕事をした蒸気は復水器
II内で冷却凝縮され復水となる。この復水は復水浄化
系13へ導かれてろ過および脱塩処理され、給水系15
へ送られて給水となる。給水系15には上流側から順次
低圧給水加熱器17、高圧給水加熱器19が設置される
。給水はこれらの給水加熱器17.19によって段階的
に加熱された後、原子炉圧力容器」へ導かれる。The steam that has been guided to the low pressure steam turbine 9 and has done work is cooled and condensed in the condenser II to become condensed water. This condensate is led to the condensate purification system 13 where it is filtered and desalinated, and then the water supply system 15
water is sent to the water supply. A low-pressure feed water heater 17 and a high-pressure feed water heater 19 are sequentially installed in the water supply system 15 from the upstream side. The feedwater is heated in stages by these feedwater heaters 17, 19 and then led to the reactor pressure vessel.
高圧給水加熱器19内で給水と熱交換してこの給水を加
熱する加熱媒体は湿分分離再熱器7において加熱媒体と
して機能し流出した蒸気か用いられる。また、低圧給水
加熱器17の加熱媒体は湿分分離再熱器7で加熱されて
低圧蒸気タービン9へ導かれる蒸気の一部が使用される
。これらの高圧、低圧給水加熱器19.17から流出し
た加熱媒体は各々高圧ドレン回収ライン20、低圧ドレ
ン回収ライン18を介して高圧給水加熱器19、低圧給
水加熱器17の上流側の給水ラインへそれぞれ送られ給
水となる。給水となった加熱媒体は他の給水とともに高
圧給水加熱器19、低圧給水加熱器17で加熱され、原
子炉圧力容器1へ導かれる。このように低圧および高圧
給水加熱器17.19の加熱媒体を浄化処理することな
く直接給水ラインへ導く給水系をヒータドレンフォワー
ドポンプアップ方式給水系という。The heating medium that heats the feed water by exchanging heat with the feed water in the high-pressure feed water heater 19 functions as a heating medium in the moisture separation reheater 7, and the steam that flows out is used. Further, as the heating medium of the low-pressure feed water heater 17, a part of the steam heated in the moisture separator reheater 7 and guided to the low-pressure steam turbine 9 is used. The heating medium flowing out from these high-pressure and low-pressure feedwater heaters 19 and 17 passes through the high-pressure drain recovery line 20 and the low-pressure drain recovery line 18 to the water supply lines upstream of the high-pressure feedwater heater 19 and the low-pressure feedwater heater 17, respectively. Water is supplied to each of them. The heating medium that has become the feed water is heated together with other feed water by the high pressure feed water heater 19 and the low pressure feed water heater 17, and is led to the reactor pressure vessel 1. A water supply system in which the heating medium of the low-pressure and high-pressure water heaters 17 and 19 is directly guided to the water supply line without being purified is called a heater drain forward pump-up water supply system.
」二連の低圧、高圧給水加熱器17.19は第1図に示
すように、本体21内部に多数本の加熱器チューブ23
が配設されて構成されたものである。つまり、本体21
は筒形状の本体胴25と、この本体胴25の両端部に取
り付けられた」二流側氷室鏡板27および下流側氷室鏡
板29から構成される。これら」二流側および下流側氷
室鏡板27.29と本体胴25との境界にそれぞれ管板
31.33が配設される。管板31および上流側氷室鏡
板27に囲まれて人t1]側水室35が、管板33およ
び下流側氷室鏡板29に囲まれて出口側水室37か形成
される。As shown in FIG.
It is configured by arranging. In other words, the main body 21
It is composed of a cylindrical body shell 25, and a second-stream ice chamber mirror plate 27 and a downstream ice chamber mirror plate 29 attached to both ends of the main body shell 25. Tube plates 31 and 33 are disposed at the boundaries between the second-stream side and downstream side ice chamber mirror plates 27 and 29 and the main body shell 25, respectively. Surrounded by the tube plate 31 and the upstream ice chamber mirror plate 27, a water chamber 35 on the person t1 side is formed, and an outlet side water chamber 37 is formed surrounded by the tube plate 33 and the downstream ice chamber mirror plate 29.
多数の加熱器チューブ23の端部は両管板31.33に
固定され、入口側および出口側氷室35.37に開口し
て設けられる。また、上流側氷室鏡板27には給水入1
」39が、下流側氷室鏡板29には給水臼[141かそ
れぞれ形成される。さらに、本体胴25には加熱媒体を
流入し、排出する加熱媒体入]」43および加熱媒体1
:11 D 45が形成される。したがって、給水人口
39から入口側水室35内へ導かれた給水は加熱器チュ
ーブ23内を通過する間加熱媒体人口43から本体胴2
5内へ導かれた加熱媒体としての蒸気によって熱交換さ
れて加熱され、出目側氷室37を経て給水出口41から
流出する。また、本体胴25内へ導かれた加熱媒体とし
ての蒸気は熱交換されて冷却され、加熱媒体出口45か
ら流出する。The ends of the plurality of heater tubes 23 are fixed to both tube sheets 31.33 and open into the inlet and outlet ice chambers 35.37. In addition, the upstream side ice chamber mirror plate 27 has a water supply container 1.
39 and a water supply mill [141] are formed on the downstream side ice chamber mirror plate 29, respectively. Further, the main body cylinder 25 has a heating medium 43 and a heating medium 1 which flows into and discharges a heating medium.
:11 D 45 is formed. Therefore, the water supplied from the water supply 39 into the inlet water chamber 35 is transferred from the heating medium 43 to the main body body 2 while passing through the heater tube 23.
5 is heated by heat exchange with steam as a heating medium, and flows out from the water supply outlet 41 via the outlet side ice chamber 37. Further, the steam as a heating medium guided into the main body shell 25 is cooled by heat exchange and flows out from the heating medium outlet 45.
加熱器チューブ23はフェライト系ステンレス鋼5US
434から構成される。本実施例ではこのチューブに電
解研磨を施している。The heater tube 23 is made of ferritic stainless steel 5US
It consists of 434. In this embodiment, this tube is subjected to electrolytic polishing.
電解研磨処理を施したフェライト系ステン1ノス鋼5U
S434の腐食速度はO,Q5mg/ cnf/20d
ays テあり、未処理のそれは0.06mg/ cn
f/20daysである。Ferritic stainless steel 5U with electrolytic polishing treatment
Corrosion rate of S434 is O, Q5mg/cnf/20d
ays te, untreated it is 0.06mg/cn
f/20 days.
(第4図曲線2)したがって、電解研磨処理をすること
により溶出量は1/IO程度に減少する。(Curve 2 in Figure 4) Therefore, by electropolishing, the elution amount is reduced to about 1/IO.
これは電解研磨処理により表面が平滑化し、表面積が小
さくなったことからと判断される。This is thought to be because the electrolytic polishing process smoothed the surface and reduced the surface area.
ここで、第4図中曲線2は電解研磨処理を施したフェラ
イト系ステンレス鋼を、曲線3は未処理のフェライト系
ステンレス鋼を、曲線1はオーステナイト系ステンレス
鋼を腐食試験における腐食量の経時変化でそれぞれ示し
ている。試験水中の溶存酸素濃度は約5oppbであり
、試験温度は280℃である。Here, curve 2 in Figure 4 shows the change over time in the amount of corrosion in a corrosion test for ferritic stainless steel subjected to electrolytic polishing, curve 3 for untreated ferritic stainless steel, and curve 1 for austenitic stainless steel. are shown respectively. The dissolved oxygen concentration in the test water is approximately 5 opppb, and the test temperature is 280°C.
しかし、電解研磨処理を施したフェライト系ステンレス
鋼を用いた加熱器チューブ23では未処理のフェライト
系ステンレス鋼を用いた場合に比べ、給水への腐食生成
物発生量が1710程度に減少することから、原子炉圧
力容器1内の炉心で生成される放射性核種の生成用も大
幅に低減する。その結果、原子力発電プラントにおける
放射線量が減少し、作業者の被曝量の低減化か可能とな
る。However, with the heater tube 23 made of ferritic stainless steel subjected to electrolytic polishing treatment, the amount of corrosion products generated in the water supply is reduced to about 1710 compared to the case of using untreated ferritic stainless steel. , the generation of radionuclides generated in the reactor core within the reactor pressure vessel 1 is also significantly reduced. As a result, the radiation dose in the nuclear power plant decreases, making it possible to reduce the radiation exposure of workers.
また、給水および蒸気中への腐食生成物が少なくなるこ
とから、給水系をヒータドレンフォワードポンプアップ
方式とすることができる。したがって、低圧および高圧
給水加熱器17.19の加熱媒体を復水浄化系13を経
ることなく直接給水加熱器1719へ導いて加熱するこ
とができる。その結果、加熱媒体を復水器11へ導いて
冷却凝固した後、復水浄化系13へ導く後述のカスケー
ド方式の給水系(第3図)に比べ熱経済上有利となる。Furthermore, since less corrosion products enter the water supply and steam, the water supply system can be of the heater drain forward pump-up type. Therefore, the heating medium of the low-pressure and high-pressure feedwater heaters 17, 19 can be led directly to the feedwater heater 1719 and heated without passing through the condensate purification system 13. As a result, it is more advantageous in terms of thermoeconomics than a cascade type water supply system (FIG. 3), which will be described later, in which the heating medium is guided to the condenser 11, cooled and solidified, and then introduced to the condensate purification system 13.
上記構成に係る給水加熱器をノアスケート方式の給水系
に組込んだ第2の例を説明する。この第2の例では、加
熱器チューブ23が前述したように酸化被膜を付与した
フェライト系ステンレス鋼から形成された給水加熱器1
7.19を第3図に示すカスケード方式の給水系に設置
したものである。このカスケード方式の給水系は高圧給
水加熱器19からの加熱媒体を低圧給水加熱器17へ導
いて再び加熱媒体として使用し、低圧給水加熱器17の
加熱媒体を復水器11へ導き、復水浄化系13で浄化す
るように構成したものである。この第2の例の場合には
熱経済」二の利点を度外視すれば加熱媒体中の腐食生成
物を復水浄化系13て確実に除去することができる。そ
のため、炉心における放射性核種の生成量を一層減少す
ることができ、プラントの放射線量をより一層低減させ
ることができる。A second example in which the feed water heater having the above configuration is incorporated into a Norskate water supply system will be described. In this second example, the heater tube 23 is made of ferritic stainless steel provided with an oxide coating as described above.
7.19 was installed in the cascade water supply system shown in Figure 3. In this cascade type water supply system, the heating medium from the high-pressure feedwater heater 19 is guided to the low-pressure feedwater heater 17 and used as a heating medium again, and the heating medium from the low-pressure feedwater heater 17 is guided to the condenser 11, where it is condensed. It is configured to be purified by a purification system 13. In the case of this second example, if the second advantage of "thermal economy" is ignored, corrosion products in the heating medium can be reliably removed by the condensate purification system 13. Therefore, the amount of radionuclides produced in the reactor core can be further reduced, and the radiation dose in the plant can be further reduced.
[発明の効果]
本発明によれば、本体内部に配設された多数の加熱器チ
ューブが電解研磨処理を施したフェライト系ステンレス
鋼から形成されたことから、この加熱器チューブから給
水中へ溶出する腐食生成物を減少させて、炉心における
放射性核種の生成量を低減させることができる。その結
果、原子力発電プラントにおける放射線量を大幅に抑制
することができる。[Effects of the Invention] According to the present invention, since a large number of heater tubes disposed inside the main body are made of electrolytically polished ferritic stainless steel, no elution from the heater tubes into the water supply occurs. It is possible to reduce the amount of radionuclides produced in the reactor core by reducing the amount of corrosion products generated. As a result, radiation doses in nuclear power plants can be significantly reduced.
第1図は本発明に係る給水加熱器を示す縦断面図、第2
図は第1図における給水加熱器をヒータドレンフォワー
ドポンプアップ方式の給水系に組込んだ第1の例の沸騰
水型原子力発電プラントを示す系統図、第3図は同じく
給水加熱器をカスケ1]−
一ド方式の給水系に組込んだ第2の例の沸騰水型原子力
発電プラントを示す系統図、第4図は本発明に係る電解
研磨処理を施したフェライト系ステンレス鋼と従来例の
未処理のフェライト系ステンレス鋼およびオーステナイ
ト系ステンレス鋼の腐食試験における腐食量の経時変化
を示す特性図である。
」・・・原子炉圧力容器 5・・高圧蒸気タービン9
・・・低圧蒸気タービン 15・・・給水系17・・・
低圧給水加熱器 19・・・高圧給水加熱器21・・
・本体 23・・・加熱器チューブ(87
33)代理人 弁理士 猪 股 祥 晃(ほか 1名)Fig. 1 is a vertical sectional view showing the feed water heater according to the present invention, Fig. 2 is a longitudinal sectional view showing the feed water heater according to the present invention;
The figure is a system diagram showing the first example of a boiling water nuclear power generation plant in which the feedwater heater in Figure 1 is incorporated into the water supply system of the heater drain forward pump-up method. ] - A system diagram showing a second example of a boiling water nuclear power generation plant incorporated in a single-door water supply system, and Figure 4 shows the ferritic stainless steel subjected to the electrolytic polishing treatment according to the present invention and the conventional example. FIG. 2 is a characteristic diagram showing changes over time in the amount of corrosion in a corrosion test of untreated ferritic stainless steel and austenitic stainless steel. ”...Reactor pressure vessel 5...High pressure steam turbine 9
...Low pressure steam turbine 15...Water supply system 17...
Low-pressure feed water heater 19... High-pressure feed water heater 21...
・Main body 23... Heater tube (87
33) Agent: Yoshiaki Inomata, patent attorney (and 1 other person)
Claims (1)
数の加熱器チューブが配設されて給水加熱器が構成され
、前記給水系の給水は前記加熱器チューブ内を通過する
間に熱交換されて加熱される給水加熱器において、前記
加熱器チューブは電解研磨処理を施したフェライト系ス
テンレス鋼から形成されていることを特徴とする給水加
熱器。It is installed in the water supply system of a nuclear power plant, and a large number of heater tubes are arranged inside the main body to constitute a feed water heater, and the feed water of the water supply system undergoes heat exchange while passing through the heater tubes. 1. A feed water heater for heating, wherein the heater tube is made of electrolytically polished ferritic stainless steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2247187A JPH04126902A (en) | 1990-09-19 | 1990-09-19 | Feedwater heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2247187A JPH04126902A (en) | 1990-09-19 | 1990-09-19 | Feedwater heater |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04126902A true JPH04126902A (en) | 1992-04-27 |
Family
ID=17159736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2247187A Pending JPH04126902A (en) | 1990-09-19 | 1990-09-19 | Feedwater heater |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04126902A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004015353A1 (en) * | 2002-07-26 | 2004-02-19 | Silvia Bader | Heating element |
JP2011179781A (en) * | 2010-03-03 | 2011-09-15 | Mitsubishi Heavy Ind Ltd | Heat exchanger |
-
1990
- 1990-09-19 JP JP2247187A patent/JPH04126902A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004015353A1 (en) * | 2002-07-26 | 2004-02-19 | Silvia Bader | Heating element |
US7357175B2 (en) | 2002-07-26 | 2008-04-15 | Jessica Hasler | Heating element |
US8227730B2 (en) | 2002-07-26 | 2012-07-24 | Swisspal Ag | Towel dryer |
JP2011179781A (en) * | 2010-03-03 | 2011-09-15 | Mitsubishi Heavy Ind Ltd | Heat exchanger |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101363381B1 (en) | Method and system for controlling water quality in power generation plant | |
JPS5876115A (en) | Method and apparatus for purifying liquid | |
JPS6323519B2 (en) | ||
JPH04126902A (en) | Feedwater heater | |
JP3667525B2 (en) | Steam generator-attached nuclear power generation turbine facility | |
JPH01272997A (en) | Feed water heater | |
JP2543905B2 (en) | Nuclear power plant turbine system | |
JP7132162B2 (en) | Corrosion suppression method for carbon steel piping | |
JPH01291005A (en) | Feed water heater | |
JPS63307393A (en) | Turbine system for nuclear power plant | |
JP2895267B2 (en) | Reactor water purification system | |
JPS62108195A (en) | Feedwater heater for nuclear reactor | |
JPS642237B2 (en) | ||
JPH01118799A (en) | Method for controlling iron concentration in feed water of nuclear power plant | |
JPH0314154B2 (en) | ||
JPS5979193A (en) | Cleaning device of feedwater heater | |
JPS6333680B2 (en) | ||
JPS6190788A (en) | Power plants and their water treatment methods | |
JPS63150504A (en) | water treatment equipment | |
JPS63113204A (en) | Turbine system of nuclear power plant | |
JPS6154199B2 (en) | ||
JPH01218611A (en) | Apparatus for purifying feed water | |
JPS5892997A (en) | Condensed water clean-up device | |
JPH0493796A (en) | Nuclear power plant | |
JPS59112292A (en) | Condensed water cleanup device |