[go: up one dir, main page]

JPH0412613B2 - - Google Patents

Info

Publication number
JPH0412613B2
JPH0412613B2 JP9696984A JP9696984A JPH0412613B2 JP H0412613 B2 JPH0412613 B2 JP H0412613B2 JP 9696984 A JP9696984 A JP 9696984A JP 9696984 A JP9696984 A JP 9696984A JP H0412613 B2 JPH0412613 B2 JP H0412613B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon
layer
extraction window
melting point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9696984A
Other languages
Japanese (ja)
Other versions
JPS60240124A (en
Inventor
Yoshimi Shiotani
Kyoshi Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP9696984A priority Critical patent/JPS60240124A/en
Publication of JPS60240124A publication Critical patent/JPS60240124A/en
Publication of JPH0412613B2 publication Critical patent/JPH0412613B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】 (a) 産業上の利用分野 本発明は半導体装置の電極取り出し窓における
配線層の形成に関す。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to the formation of a wiring layer in an electrode extraction window of a semiconductor device.

集積回路の高集積化に伴い、多層構造のドープ
した多結晶珪素層が配線に多く用いられるように
なつた。特にMIS素子よりなるメモリ集積回路に
おいては、ゲートに多結晶珪素層を用いる場合が
多いため、ゲートに接続されるワード線もまた多
結晶珪素層が用いられる。
As integrated circuits become more highly integrated, multilayer doped polycrystalline silicon layers are increasingly used for wiring. In particular, in memory integrated circuits made of MIS elements, a polycrystalline silicon layer is often used for the gate, and therefore a polycrystalline silicon layer is also used for the word line connected to the gate.

しかし多結晶珪素層の抵抗は金属より大きいた
め、配線抵抗と容量の積による遅延時間が問題と
なり集積回路の高速化に不利である。そのため配
線材料として高融点金属が検討されているが、イ
オン注入のマスク性が悪い、酸化しやすい、耐薬
品性が悪い、半導体基板との接触抵抗が高い等の
欠点を有する。
However, since the resistance of the polycrystalline silicon layer is higher than that of metal, a delay time due to the product of wiring resistance and capacitance becomes a problem, which is disadvantageous for increasing the speed of integrated circuits. Therefore, high-melting point metals are being considered as wiring materials, but they have drawbacks such as poor masking properties for ion implantation, easy oxidation, poor chemical resistance, and high contact resistance with semiconductor substrates.

そのため高融点金属シリサイドが用いられるよ
うになつた。例えばタングステンシリサイド、モ
リブデンシリサイド、チタンシリサイド、タンタ
ルシリサイド等が用いられる。これらのシリサイ
ドの抵抗率は10〜100μΩcmで、多結晶珪素の最低
値1000μΩcmより1〜2桁小さく、さらに珪素に
対してはオーム性接合が得られ易い。
Therefore, high melting point metal silicides have come to be used. For example, tungsten silicide, molybdenum silicide, titanium silicide, tantalum silicide, etc. are used. The resistivity of these silicides is 10 to 100 .mu..OMEGA.cm, which is one to two orders of magnitude lower than the minimum value of 1000 .mu..OMEGA.cm for polycrystalline silicon, and furthermore, it is easy to form an ohmic junction with silicon.

シリサイドを素子形成に用いる場合、シリサイ
ド単層で用いる場合と、シリサイド層の下に多結
晶珪素層を敷く所謂ポリサイド層として用いる場
合とがある。ポリサイド層は複合層であるため、
微細パターン形成のためのエツチング条件の設定
が難しい等の欠点があるが、珪素とオーム性接合
が形成され易く、また多結晶珪素の使用は実績の
あるプロセスで素子特性例えばしきい値電圧や立
ち上がり電圧等は従来と変わらず、素子製作上問
題の多い界面についても新たな問題を引き起こす
ような心配はない。
When silicide is used to form elements, there are cases where it is used as a single silicide layer, and cases where it is used as a so-called polycide layer in which a polycrystalline silicon layer is laid under the silicide layer. Since the polycide layer is a composite layer,
Although it has drawbacks such as difficulty in setting etching conditions for forming fine patterns, it is easy to form ohmic junctions with silicon, and the use of polycrystalline silicon is a proven process that improves device characteristics such as threshold voltage and rise. The voltage, etc. remains the same as before, and there is no concern that new problems will arise regarding the interface, which is often problematic in device manufacturing.

(b) 従来の技術 第2図、第3図は高集積化された半導体装置、
例えば256Kまたは1000Mビツトのダイナミツ
ク・ランダム・アクセス・メモリ(DRAM)の
電極取り出し窓を示す従来例による半導体基板の
断面図である。
(b) Conventional technology Figures 2 and 3 show highly integrated semiconductor devices;
1 is a sectional view of a conventional semiconductor substrate showing an electrode extraction window of, for example, a 256K or 1000 Mbit dynamic random access memory (DRAM).

第2図aにおいて、1は半導体基板でp型珪素
基板上に成長されたn型珪素層である。この上に
絶縁層2として気相成長により被着した厚さ1μ
mの燐珪酸ガラス(PSG)を用い、この層に電
極取り出し窓3を形成する。高集積化に伴い電極
取り出し窓3は1.5μm□以下となる。
In FIG. 2a, 1 is a semiconductor substrate and is an n-type silicon layer grown on a p-type silicon substrate. On top of this, an insulating layer 2 with a thickness of 1μ was deposited by vapor phase growth.
An electrode extraction window 3 is formed in this layer using phosphosilicate glass (PSG). With higher integration, the electrode extraction window 3 becomes less than 1.5 μm square.

第2図bにおいて、この窓を覆つて配線層4を
珪素を1〜2%含むアルミニウムを被着して形成
する場合、この程度の小面積になると接触抵抗が
大きくなり断線の心配も生ずる。接触抵抗が大き
くなる理由は、アルミニウムの基板界面における
基板よりの珪素の吸い込み、またはアルミニウム
に含まれる珪素の界面への移動によりp型の阻止
層が接触面積内で局部的に形成され、小面積の電
極取り出し窓ではこの影響が無視できなくなるた
めと思われる。
In FIG. 2b, if the wiring layer 4 is formed by depositing aluminum containing 1 to 2% silicon to cover this window, if the area is as small as this, the contact resistance will increase and there will be a risk of wire breakage. The reason why the contact resistance becomes large is that a p-type blocking layer is formed locally within the contact area due to the suction of silicon from the substrate at the aluminum substrate interface or the movement of silicon contained in aluminum to the interface. This seems to be because this effect cannot be ignored in the electrode extraction window.

第3図aにおいて、上記の接触抵抗が大きくな
る欠点を除くため、ドープした多結晶珪素5で電
極取り出し窓3を埋め込む。埋め込み方法は減圧
気相成長(CVD)法により半導体基板全面に多
結晶珪素層5を被着し、ポリツシングによるか、
またはリアクテイブ・イオン・エツチングにより
PSG上に被着された多結晶珪素層を除去するこ
とにより行う。
In FIG. 3a, the electrode extraction window 3 is filled with doped polycrystalline silicon 5 in order to eliminate the above-mentioned drawback of increased contact resistance. The embedding method is to deposit a polycrystalline silicon layer 5 on the entire surface of the semiconductor substrate using a low pressure vapor deposition (CVD) method, and then polish it.
or by reactive ion etching.
This is done by removing the polycrystalline silicon layer deposited on the PSG.

第3図bにおいて、平坦化された半導体基板上
に多結晶珪素層5を覆つてアルミニウム層4を被
着する。このようにすると段差被覆は改善され、
前記の小面積の電極取り出し窓特有の接触抵抗の
増大も防止できるが多結晶珪素5自身の電気抵抗
が金属に比し高いために電極配線の抵抗も高くな
るという問題がある。
In FIG. 3b, an aluminum layer 4 is deposited over the polycrystalline silicon layer 5 on the planarized semiconductor substrate. In this way, the step coverage will be improved,
Although it is possible to prevent the increase in contact resistance peculiar to the above-mentioned small-area electrode extraction window, there is a problem that the resistance of the electrode wiring also increases because the electrical resistance of the polycrystalline silicon 5 itself is higher than that of metal.

また、特開昭50−75769号公報に記載されてい
るごとく、上記の多結晶珪素にかえて、エピタキ
シヤル成長させた単結晶珪素を用いることが提案
されている。この方法では、確かに多結晶珪素よ
り抵抗は低くすることはできるものの、材料が半
導体であるので、その抵抗を低くするにはおのず
と限界があつた。
Further, as described in Japanese Patent Application Laid-Open No. 50-75769, it has been proposed to use epitaxially grown single crystal silicon instead of the above-mentioned polycrystalline silicon. Although this method can certainly lower the resistance than polycrystalline silicon, since the material is a semiconductor, there is a limit to how low the resistance can be made.

さらに、特開昭50−50881号公報に記載されて
いるごとく、一旦電極取り出し窓に埋めこんだ多
結晶珪素に500℃程度以上の温度で六弗化タング
ステンを作用させ、多結晶珪素をタングステンに
置換させることにより、電極取り出し窓内にタン
グステンを埋めこむことも提案されている。しか
し、この方法では、反応が過剰に進むと、下地の
半導体素子を構成する珪素基板の部分まで浸食さ
れてしまい、甚だしくは半導体素子を構成する
PN接合が破壊されるなどの不都合があつた。
Furthermore, as described in Japanese Patent Application Laid-open No. 50-50881, tungsten hexafluoride is applied to polycrystalline silicon once embedded in the electrode extraction window at a temperature of about 500°C or higher, and the polycrystalline silicon is converted into tungsten. It has also been proposed to embed tungsten in the electrode extraction window by replacing it. However, with this method, if the reaction progresses excessively, the underlying silicon substrate that makes up the semiconductor element will be eroded, and even worse, the silicon substrate that makes up the semiconductor element will be eroded.
There were inconveniences such as destruction of the PN junction.

(c) 発明が解決しようとする課題 上記のごとく、第2図に記載の従来の構成では
電極取り出し窓が小さくなるとアルミニウム等の
配線層4の段差被覆が悪くなり、さらに、基板と
の接触抵抗が大きくなるという問題があり、また
第3図のごとく電極取り出し窓に多結晶珪素もし
くはエピタキシヤル成長させた単結晶珪素を埋め
こむ方法では、配線層4の段差被覆は改善される
ものの、一方、埋めこまれるのが半導体であるの
でその抵抗を低くするのに限界がある。また、多
結晶珪素をタングステンに置換させる方法では、
基板に珪素基板を用いた場合、半導体素子を構成
する基板の部分まで浸食されて甚だしくは半導体
素子を構成するPN接合が破壊されるという問題
があつた。
(c) Problems to be Solved by the Invention As mentioned above, in the conventional configuration shown in FIG. 2, as the electrode extraction window becomes smaller, the step coverage of the wiring layer 4 made of aluminum or the like deteriorates, and furthermore, the contact resistance with the substrate increases. There is a problem that the area becomes large, and the method of burying polycrystalline silicon or epitaxially grown single crystal silicon in the electrode extraction window as shown in FIG. 3 improves the step coverage of the wiring layer 4, but on the other hand, Since the material to be buried is a semiconductor, there is a limit to how low its resistance can be made. In addition, in the method of replacing polycrystalline silicon with tungsten,
When a silicon substrate is used as the substrate, there is a problem in that the portion of the substrate that constitutes the semiconductor element is eroded, and even the PN junction that constitutes the semiconductor element is destroyed.

本発明の課題は、かかる従来の方法の欠点を除
き、電極配線自身の抵抗も、また半導体基板との
接触抵抗もともに小さく、更に、段差被覆にすぐ
れた平坦化された電極配線構造を形成する方法を
提供することにある。
The object of the present invention is to eliminate the drawbacks of such conventional methods, to form a flattened electrode wiring structure that has low resistance of the electrode wiring itself and low contact resistance with the semiconductor substrate, and has excellent step coverage. The purpose is to provide a method.

(d) 課題を解決するための手段 この課題は、半導体基板上に被着形成した絶縁
層に電極取り出し窓を開けて該半導体基板を表出
させた後、該電極取り出し窓内に多結晶珪素もし
くは非晶質珪素を埋め込む工程と、300℃乃至450
℃の温度で該多結晶珪素もしくは非晶質珪素を高
融点金属の化合物と反応させることにより、該電
極取り出し窓内の該該多結晶珪素もしくは非晶質
珪素の少なくとも一部を該高融点金属のシリサイ
ドに変換する工程とを有する本発明の半導体装置
の製造方法により解決される。
(d) Means for Solving the Problem This problem involves opening an electrode take-out window in an insulating layer deposited on a semiconductor substrate to expose the semiconductor substrate, and then inserting polycrystalline silicon into the electrode take-out window. Or a process of embedding amorphous silicon and heating at 300℃ to 450℃.
By reacting the polycrystalline silicon or amorphous silicon with a compound of a high melting point metal at a temperature of This problem is solved by the method for manufacturing a semiconductor device of the present invention, which includes a step of converting into silicide.

(e) 作用 本発明の発明者は、温度をかえて非単結晶珪素
と六弗化タングステンとを反応させる実験を行つ
た結果、温度が500℃以上のごとく高い場合は前
記の特開昭50−50881号公報に記載されているご
とく非単結晶珪素と置換するように金属タングス
テンが析出するものの、300〜450℃の温度で非単
結晶珪素に六弗化タングステンを作用させると、
主としてW5Si3のごときタングステンシリサイド
が形成されることを実験的に見いだし、この新知
見に基づき本発明を創作するに到つたものであ
る。本発明によれば、電極取り出し窓内に埋めら
れた多結晶珪素もしくは非晶質珪素の1部または
全部を高融点金属の化合物と反応させて高融点金
属シリサイドに変換することにより、自身の抵抗
率を下げ、またアルミニウムと半導体基板間に高
融点金属シリサイド層を介在させることにより前
述の理由による接触抵抗の増加を防止し、さらに
電極取り出し窓が高融点金属シリサイドで埋めら
れているため半導体基板の平坦性がよく、従つて
アルミニウムの段差被覆は問題にならない。
(e) Effect The inventor of the present invention conducted an experiment in which non-single crystal silicon and tungsten hexafluoride were reacted by changing the temperature. As described in Publication No. 50881, metallic tungsten precipitates to replace non-single-crystal silicon, but when tungsten hexafluoride is applied to non-single-crystal silicon at a temperature of 300 to 450°C,
It was experimentally discovered that tungsten silicides such as W 5 Si 3 are mainly formed, and the present invention was created based on this new knowledge. According to the present invention, by reacting a part or all of the polycrystalline silicon or amorphous silicon buried in the electrode extraction window with a compound of a high melting point metal and converting it into a high melting point metal silicide, its own resistance can be increased. In addition, by interposing a high melting point metal silicide layer between the aluminum and the semiconductor substrate, an increase in contact resistance due to the above reasons is prevented. Furthermore, since the electrode extraction window is filled with high melting point metal silicide, the semiconductor substrate The flatness of the surface is good, so step coverage of aluminum is not a problem.

シリサイドが形成される機構をまだよくわかつ
ていないが、まず多結晶もしくは非晶質珪素によ
つて高融点金属の化合物が還元されて高融点金属
が形成され、ついでこの高融点金属と残余の珪素
とが互いに反応して高融点金属のシリサイドを形
成するものと考えられる。高融点金属の化合物と
して、たとえば六弗化タングステンを用いた場
合、上記の反応の反応式は、以下のようになる。
Although the mechanism by which silicide is formed is not yet well understood, first a compound of a high melting point metal is reduced by polycrystalline or amorphous silicon to form a high melting point metal, and then this high melting point metal and the remaining silicon are reduced. It is thought that these react with each other to form high melting point metal silicide. When, for example, tungsten hexafluoride is used as the high melting point metal compound, the reaction formula for the above reaction is as follows.

3Si+2WF6→2W+3SiF4 xW+ySi→WxSiy そして、多結晶珪素の場合は表面だけでなくそ
の結晶粒界にそつて、また、非晶質珪素の場合は
その水素含有部分などの反応しやすい部分で同時
多発的に置換反応がおこり、そこで析出したWな
どの高融点金属がその周辺の残余の珪素と反応し
て、全体的にシリサイド化されていくものと推定
される。
3Si + 2WF 6 → 2W + 3SiF 4 xW + ySi → WxSiy In the case of polycrystalline silicon, multiple reactions occur not only on the surface but also along its grain boundaries, and in the case of amorphous silicon, in easily reactive areas such as hydrogen-containing parts. It is presumed that a substitution reaction occurs, in which the precipitated high-melting point metal such as W reacts with the remaining silicon around it, and the entire surface becomes silicided.

なお、シリサイドを構成するSiまでもが高融点
金属と置換されるに至るまで反応を過剰に行う
と、甚だしくは、下地の半導体基板を構成するシ
リコンまでも局部的に浸食されるという不都合を
生ずるようになるが、本発明では、シリサイド化
された時点で反応をとめるので、かかる不都合も
生じない。
Furthermore, if the reaction is carried out excessively to the point where even the Si constituting the silicide is replaced with the high melting point metal, there will be a problem in that even the silicon constituting the underlying semiconductor substrate will be locally eroded. However, in the present invention, such inconvenience does not occur because the reaction is stopped at the time of silicidation.

(f) 実施例 第1図は高集積化されたDRAMの電極取り出
し窓を示す本発明による半導体基板の断面図であ
る。
(f) Embodiment FIG. 1 is a sectional view of a semiconductor substrate according to the present invention showing an electrode extraction window of a highly integrated DRAM.

第1図aにおいて、1は半導体基板でp型珪素
基板上に被着されたn型珪素層である。この上に
絶縁層2として気相成長により被着した厚さ1μ
mの燐珪酸ガラスを用い、この層に電極取り出し
窓3を形成する。
In FIG. 1a, 1 is a semiconductor substrate and is an n-type silicon layer deposited on a p-type silicon substrate. On top of this, an insulating layer 2 with a thickness of 1μ was deposited by vapor phase growth.
An electrode extraction window 3 is formed in this layer using phosphosilicate glass of m.

第1図bにおいて、ドープした多結晶珪素もし
くは非晶質珪素5で電極取り出し窓3を埋め込
む。
In FIG. 1b, the electrode extraction window 3 is filled with doped polycrystalline silicon or amorphous silicon 5. In FIG.

埋め込み方法は多結晶珪素層の場合は、620℃
で0.2〜0.3TorrのシランSiH4の熱分解による減圧
気相成長法により半導体基板全面に多結晶珪素層
を被着し、ポリツシングや、リアクテイブ・イオ
ン・エツチング等の手段を用いてPSG上に被着
された多結晶珪素層を除去することにより行う。
また非晶質珪素の場合は13.56MHzRF電力を数
100W加えて0.1〜1.0Torrのアルゴンにより数%
に希釈されたシランSiH4によるプラズマ気相成
長法を用いる。
The embedding method is 620℃ in the case of polycrystalline silicon layer.
A polycrystalline silicon layer is deposited on the entire surface of the semiconductor substrate by a low pressure vapor phase growth method using thermal decomposition of silane SiH 4 at 0.2 to 0.3 Torr, and then coated on the PSG using means such as polishing and reactive ion etching. This is done by removing the deposited polycrystalline silicon layer.
In the case of amorphous silicon, the 13.56MHz RF power is
100W plus 0.1 to 1.0 Torr of argon for a few%
Plasma vapor phase epitaxy with silane SiH4 diluted to 100% is used.

つぎに多結晶珪素層もしくは非晶質珪素5を六
弗化タングステンWF6と反応させてその1部ま
たは全部をタングステンシリサイドに変換する。
Next, the polycrystalline silicon layer or amorphous silicon 5 is reacted with tungsten hexafluoride WF 6 to convert part or all of it into tungsten silicide.

この反応は通常の気相成長装置を用いて、300
〜450℃、0.2〜0.3Torrで六弗化タングステンを
30c.c./分と窒素またはアルゴンを400c.c./分流し
て行う。なお、特開昭50−50881号公報に記載さ
せているごとく温度を500℃以上にも高くすると、
シリサイドを構成すべきSiまでもが高融点金属と
置換されて高融点金属自身が直接析出するように
なり、甚だしくは下地のSi基板も局部的に浸食さ
れ置換した高融点金属が基板に食い込むようにな
るので、かかる不都合を生じないようにするため
には、反応の温度を前記のごとく450℃以下にす
ることが好ましい。一方温度を低くするとそれと
ともに反応速度も遅くなりスループツトが低下す
るので、実用的なスループツトを確保するという
観点から、この反応温度を300℃以上にすること
が好ましい。
This reaction is carried out at 300% using a normal vapor phase growth apparatus.
Tungsten hexafluoride at ~450℃, 0.2~0.3Torr
This is done with a flow of 30 c.c./min and nitrogen or argon at 400 c.c./min. Furthermore, as described in Japanese Patent Application Laid-open No. 50-50881, when the temperature is increased to 500°C or higher,
Even the Si that should constitute the silicide is replaced with the high melting point metal, and the high melting point metal itself is directly precipitated, and even the underlying Si substrate is locally eroded and the replaced high melting point metal bites into the substrate. Therefore, in order to avoid such inconvenience, it is preferable to keep the reaction temperature at 450° C. or lower as described above. On the other hand, lowering the temperature also slows down the reaction rate and reduces the throughput, so from the viewpoint of ensuring a practical throughput, it is preferable to set the reaction temperature to 300° C. or higher.

シリサイド化の有無とその程度は、例えばX線
回折法を適用することにより、容易に知ることが
できる。350℃の温度で多結晶珪素に六弗化タン
グステンを作用させた試料についてX線回折測定
をしてみたところ、シリサイドのW5Si3に起因す
る強いX線回折ピークが観察され、その強度は、
Wに起因するX線回折ピークの10倍以上であつ
た。あらかじめ、所定の反応条件において、反応
時間とシリサイド化の程度の関係を測定しておく
ことにより、例えば反応時間をかえることにより
シリサイド化を容易に制御することができる。
The presence or absence of silicidation and its degree can be easily determined by applying X-ray diffraction, for example. When we performed X-ray diffraction measurements on a sample of polycrystalline silicon treated with tungsten hexafluoride at a temperature of 350°C, we observed a strong X-ray diffraction peak due to the silicide W 5 Si 3 , and its intensity was ,
It was more than 10 times the X-ray diffraction peak caused by W. By measuring the relationship between the reaction time and the degree of silicidation in advance under predetermined reaction conditions, silicidation can be easily controlled, for example, by changing the reaction time.

このようにして、電極取り出し窓に埋めこんだ
非単結晶珪素の少なくとも一部をより電気抵抗の
低い高融点金属シリサイドに変換させた後、この
平坦化された基板上にアルミニウム層を被着し公
知の手法でパターニングして配線層4を形成する
と、第1図cに示すごとき電極配線構造が完成す
る。
In this way, at least a portion of the non-single crystal silicon embedded in the electrode extraction window is converted into high melting point metal silicide with lower electrical resistance, and then an aluminum layer is deposited on this flattened substrate. When the wiring layer 4 is formed by patterning using a known method, an electrode wiring structure as shown in FIG. 1c is completed.

(g) 発明の効果 以上詳細に説明したように本発明によれば、電
極配線自身の抵抗も、また半導体基板との接触抵
抗もともに小さく、更に、段差被覆にすぐれた平
坦化された電極配線構造を形成することができ
る。
(g) Effects of the Invention As explained in detail above, according to the present invention, the resistance of the electrode wiring itself and the contact resistance with the semiconductor substrate are both small, and furthermore, the flattened electrode wiring has excellent step coverage. structure can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は高集積化されたDRAMの電極取り出
し窓を示す本発明による半導体基板の断面図であ
る。第2図、第3図は高集積化されたDRAMの
電極取り出し窓を示す従来例による半導体基板の
断面図である。 図において、1は半導体基板、2は絶縁層、3
は電極取り出し窓、4は配線層、5は多結晶珪素
層もしくは非晶質珪素層を示す。
FIG. 1 is a sectional view of a semiconductor substrate according to the present invention showing an electrode extraction window of a highly integrated DRAM. FIGS. 2 and 3 are cross-sectional views of a conventional semiconductor substrate showing an electrode extraction window of a highly integrated DRAM. In the figure, 1 is a semiconductor substrate, 2 is an insulating layer, and 3 is a semiconductor substrate.
4 indicates an electrode extraction window, 4 indicates a wiring layer, and 5 indicates a polycrystalline silicon layer or an amorphous silicon layer.

Claims (1)

【特許請求の範囲】[Claims] 1 半導体基板上に被着形成した絶縁層に電極取
り出し窓を開けて該半導体基板を表出させた後、
該電極取り出し窓内に多結晶珪素もしくは非晶質
珪素を埋め込む工程と、300℃乃至450℃の温度で
該多結晶珪素もしくは非晶質珪素を高融点金属の
化合物と反応させることにより、該電極取り出し
窓内の該該多結晶珪素もしくは非晶質珪素の少な
くとも一部を該高融点金属のシリサイドに変換す
る工程とを有することを特徴とする半導体装置の
製造方法。
1. After opening an electrode extraction window in the insulating layer deposited on the semiconductor substrate to expose the semiconductor substrate,
The electrode is formed by embedding polycrystalline silicon or amorphous silicon in the electrode extraction window and reacting the polycrystalline silicon or amorphous silicon with a high melting point metal compound at a temperature of 300°C to 450°C. A method for manufacturing a semiconductor device, comprising the step of converting at least a portion of the polycrystalline silicon or amorphous silicon in the extraction window into silicide of the high melting point metal.
JP9696984A 1984-05-15 1984-05-15 Manufacture of semiconductor device Granted JPS60240124A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9696984A JPS60240124A (en) 1984-05-15 1984-05-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9696984A JPS60240124A (en) 1984-05-15 1984-05-15 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS60240124A JPS60240124A (en) 1985-11-29
JPH0412613B2 true JPH0412613B2 (en) 1992-03-05

Family

ID=14179054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9696984A Granted JPS60240124A (en) 1984-05-15 1984-05-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60240124A (en)

Also Published As

Publication number Publication date
JPS60240124A (en) 1985-11-29

Similar Documents

Publication Publication Date Title
US5933758A (en) Method for preventing electroplating of copper on an exposed surface at the edge exclusion of a semiconductor wafer
US4873205A (en) Method for providing silicide bridge contact between silicon regions separated by a thin dielectric
EP0279588B1 (en) Contact in a contact hole in a semiconductor and method of producing same
US6376371B1 (en) Method of forming a semiconductor device
US6830820B2 (en) Chemical vapor deposition of titanium
US5861675A (en) Semiconductor device having WNF film and method of manufacturing such a device
JP2966406B2 (en) Semiconductor element wiring forming method
US11631640B2 (en) Metal loss prevention in conductive structures
EP0509835A2 (en) Method for forming contact portion of semiconductor device
US6372643B1 (en) Method for forming a selective contact and local interconnect in situ and semiconductor devices carrying the same
US7923322B2 (en) Method of forming a capacitor
JPH06302542A (en) Low resistance contact structure of semiconductor device and method of forming the same
US5639678A (en) Method of making semiconductor device with metal silicide nitride layer and metal silicide
EP1412976B1 (en) Boron-doped titanium nitride layer for high aspect ratio semiconductor devices
US6888252B2 (en) Method of forming a conductive contact
EP0472804B1 (en) Copper germanium compounds capable of being produced at low temperature
US6245674B1 (en) Method of forming a metal silicide comprising contact over a substrate
JPH10233447A (en) Semiconductor device and manufacturing method thereof
KR100705397B1 (en) Low resistance tungsten film formation method
US6649518B2 (en) Method of forming a conductive contact
JPH0412613B2 (en)
US6329274B1 (en) Method of producing semiconductor device
JP2932484B2 (en) Refractory metal multilayer film formation method
US7858518B2 (en) Method for forming a selective contact and local interconnect in situ
EP0321746B1 (en) Method for providing bridge contact between regions separated by a thin dielectric