[go: up one dir, main page]

JPH04125950A - Ceramic package - Google Patents

Ceramic package

Info

Publication number
JPH04125950A
JPH04125950A JP24602490A JP24602490A JPH04125950A JP H04125950 A JPH04125950 A JP H04125950A JP 24602490 A JP24602490 A JP 24602490A JP 24602490 A JP24602490 A JP 24602490A JP H04125950 A JPH04125950 A JP H04125950A
Authority
JP
Japan
Prior art keywords
silicon nitride
ceramic
package
alumina
heat dissipation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24602490A
Other languages
Japanese (ja)
Inventor
Shinsuke Yano
信介 矢野
Hiroaki Sakai
博明 阪井
Takao Soma
隆雄 相馬
Manabu Isomura
学 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP24602490A priority Critical patent/JPH04125950A/en
Priority to US07/760,145 priority patent/US5294750A/en
Priority to DE69115408T priority patent/DE69115408T2/en
Priority to EP19910308469 priority patent/EP0476971B1/en
Publication of JPH04125950A publication Critical patent/JPH04125950A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1515Shape
    • H01L2924/15153Shape the die mounting substrate comprising a recess for hosting the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/15165Monolayer substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/156Material
    • H01L2924/15786Material with a principal constituent of the material being a non metallic, non metalloid inorganic material
    • H01L2924/15787Ceramics, e.g. crystalline carbides, nitrides or oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16152Cap comprising a cavity for hosting the device, e.g. U-shaped cap

Landscapes

  • Ceramic Products (AREA)

Abstract

PURPOSE:To manufacture the title ceramic package in excellent heat dissipation characteristics compared with alumina by a method wherein a semiconductor chip is mounted in the silicon nitride body containing specific amount of aluminum and crystal grains. CONSTITUTION:The slurry produced by adding rare earth oxide as a sintering assistant to the silicon nitride powder in different Al2O3 contents is molded in specific shape. Next, the mold is baked in specific nitrogen atmosphere to manufacture a ceramic base 3 and a ceramic cap 4. Next, the thermal conductivity of a silicon nitride diffused substrate and the package thermal resistance are adjusted meeting the requirements for the silicon nitride crystal grains existing in the space per linear distance of 10mum not exceeding 20 each and the containing Al2O3 amount not exceeding 0.3weight%. Through these procedures, the silicon nitride base ceramic package in excellent heat dissipation characteristics compared with alumina can be manufactured.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、熱伝導率の高い窒化珪素焼結体を使用した熱
放散性に優れたサーデイツプ型、サークワット型および
フラット型のセラミックパッケージに関するものである
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a ceramic package of circa dip type, circuquat type, and flat type that uses a silicon nitride sintered body with high thermal conductivity and has excellent heat dissipation properties. It is.

(従来の技術) 半導体チップの高集積化や高速化に伴い、発生する熱量
が増大している。特にバイポーラ系の回路を有するチッ
プに関してその傾向は顕著で、近年はこれらのチップを
搭載するパッケージとして、放熱性の優れたつまり熱伝
導率の良好な材料を使用したセラミックパッケージが要
求されるようになった。
(Prior Art) As semiconductor chips become more highly integrated and faster, the amount of heat generated is increasing. This trend is particularly noticeable for chips with bipolar circuits, and in recent years, ceramic packages using materials with excellent heat dissipation, that is, good thermal conductivity, have been required as packages for mounting these chips. became.

従来このようなチップには、アルミナセラミックを材料
にしたセラミックパッケージが、樹脂を使用した基板に
比較して信頼性が高く熱放散性が良好な為に広く使用さ
れていた。例えば、第1図に示したような半導体チップ
1をAu導体層2を介して搭載するセラミックベース3
とセラミックキャップ4をガラスや樹脂接着剤からなる
封着剤5により封着し、半導体チップ1とボンディング
ワイヤ6を介して電気的に接続する金属製のリードフレ
ーム7を有するサーデイツプ型、サークワッド型やフラ
ット型のパッケージが知られている。
Conventionally, ceramic packages made of alumina ceramic have been widely used for such chips because they are more reliable and have better heat dissipation than substrates made of resin. For example, a ceramic base 3 on which a semiconductor chip 1 is mounted via an Au conductor layer 2 as shown in FIG.
and a ceramic cap 4 are sealed with a sealing agent 5 made of glass or resin adhesive, and a metal lead frame 7 is electrically connected to the semiconductor chip 1 via a bonding wire 6. and flat-type packages are known.

しかしながら、最近のますます増大する半導体チップの
発熱量に対しては、アルミナパッケージの放熱性では不
充分であり、熱放熱性の優れたパッケージが要望されて
いた。また、アルミナパッケージはアルミナセラミック
の脆さ、つまり破壊靭性値が低いためにパッケージのエ
ッチが欠ケやすい問題点や半導体チップの材質であるシ
リコンの熱膨張係数と整合しておらず、チップに熱応力
が生じたり、場合によっては熱ストレスにより破壊した
りする問題があった。
However, the heat dissipation properties of alumina packages are insufficient for the recent increase in the amount of heat generated by semiconductor chips, and a package with excellent heat dissipation properties has been desired. In addition, alumina packages have problems with alumina ceramics, such as the brittleness of alumina ceramics, that is, low fracture toughness, which makes it easy to chip the etch of the package. There was a problem in that stress was generated and in some cases, thermal stress caused destruction.

最近では熱伝導性がより優れ、また熱膨張係数もシリコ
ンと整合のとれた窒化アルミニウムセラミックやBeO
を少量添加した炭化珪素セラミックがパッケージセラミ
ック材料として使用され始めている。しかしながら、窒
化アルミニウムセラミックは耐水性や耐アルカリ性など
耐環境性が悪い問題点があった。また、BeOを少量添
加した炭化珪素セラミックは、セラミックの粒界しか絶
縁性になっていないので耐電圧性が悪く、ホットプレス
焼成でないと緻密化しないのでプロセスコストが高かっ
た。
Recently, aluminum nitride ceramics, which have better thermal conductivity and a coefficient of thermal expansion matching that of silicon, and BeO
Silicon carbide ceramics with small amounts of added are beginning to be used as package ceramic materials. However, aluminum nitride ceramics have problems with poor environmental resistance such as water resistance and alkali resistance. In addition, silicon carbide ceramics to which a small amount of BeO is added have poor voltage resistance because only the grain boundaries of the ceramic are insulating, and they cannot be densified unless hot press firing, resulting in high process costs.

一方、窒化珪素焼結体をパッケージのセラミック材質と
して使用した場合、耐環境性や機械的強度は従来のセラ
ミックより優れているが、熱伝導率がアルミナ並で小さ
く、熱放散性の優れたパッケージを得ることが出来なか
った。
On the other hand, when silicon nitride sintered bodies are used as the ceramic material for packages, they have better environmental resistance and mechanical strength than conventional ceramics, but their thermal conductivity is as low as that of alumina, resulting in packages with excellent heat dissipation. I couldn't get it.

この為、耐環境性、機械的強度、熱放散性の優れたセラ
ミックパッケージが要望されていた。
For this reason, there has been a demand for ceramic packages with excellent environmental resistance, mechanical strength, and heat dissipation.

(発明が解決しようとする課題) 本発明では、窒化珪素焼結体を基板材料として使用する
が、良く知られているように、窒化珪素は強度が非常に
強く、耐環境性にも優れている。
(Problems to be Solved by the Invention) In the present invention, a silicon nitride sintered body is used as the substrate material, but as is well known, silicon nitride has extremely high strength and excellent environmental resistance. There is.

また、熱膨張係数もアルミナの6〜7ppm/’Cに比
較するとシリコンの熱膨張係数3〜4ppm/℃に近く
、より整合がとれているので、半導体チップを搭載した
場合の信頼性も高い。しかし、通常の窒化珪素は室温お
よび高温での機械的強度を追求した組成のものが多く、
これらの熱伝導率は小さくアルミナセラミックと同等で
あった。従って、熱放散性の良い基板を得ることはでき
なかった。
In addition, the coefficient of thermal expansion is closer to that of silicon, 3 to 4 ppm/'C, compared to that of alumina, 6 to 7 ppm/'C, and is more consistent, so it is highly reliable when a semiconductor chip is mounted. However, most silicon nitrides have compositions that pursue mechanical strength at room and high temperatures.
The thermal conductivity of these materials was low and comparable to that of alumina ceramics. Therefore, it was not possible to obtain a substrate with good heat dissipation properties.

本発明の目的は上述した課題を解消し、熱放散性の良好
なサーデイツプ型等のセラミックパッケージを提供しよ
うとするものである。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and provide a ceramic package such as a ceramic package having good heat dissipation properties.

(課題を解決するための手段) 本発明のセラミックパッケージは、半導体素子を搭載す
るセラミックベースと、このベース基板にガラスもしく
は樹脂接着剤により接着されるセラミックキャップと、
金属リードフレームよりなるセラミックパッケージにお
いて、そのセラミックベースが窒化珪素焼結体よりなる
ことを特徴とする放熱性に優れたセラミックパッケージ
に関するものである。
(Means for Solving the Problems) A ceramic package of the present invention includes: a ceramic base on which a semiconductor element is mounted; a ceramic cap bonded to the base substrate with a glass or resin adhesive;
The present invention relates to a ceramic package having a metal lead frame and having excellent heat dissipation properties, the ceramic base being made of a sintered silicon nitride body.

(作 用) 本発明では、アルミナ換算でアルミニウムを0.3重量
%以下含む窒化珪素焼結体によりセラミックベースが構
成される。焼成後、この窒化珪素焼結体は直線距離lO
μmに窒化珪素結晶粒子が20個以下含まれることで特
徴づけられる。
(Function) In the present invention, the ceramic base is constituted by a silicon nitride sintered body containing 0.3% by weight or less of aluminum in terms of alumina. After firing, this silicon nitride sintered body has a linear distance lO
It is characterized by containing 20 or less silicon nitride crystal particles per μm.

本発明に使用する窒化珪素焼結体は、熱伝導率が40 
W/mk以上、代表的には100 W/mkとアルミナ
の20 W/mk程度よりも充分に大きいのでパッケー
ジの熱放散性がよく、また強度も非常に強く、耐環境性
にも優れ、熱膨張係数もシリコンの熱膨張係数と整合が
とれており、極めて優れた特性のセラミックパッケージ
が得られる。
The silicon nitride sintered body used in the present invention has a thermal conductivity of 40
W/mk or more, typically 100 W/mk, which is much larger than the 20 W/mk of alumina, so the package has good heat dissipation, is very strong, has excellent environmental resistance, and has excellent heat resistance. The coefficient of expansion matches the coefficient of thermal expansion of silicon, resulting in a ceramic package with extremely excellent characteristics.

セラミックキャップは、本発明で使用する窒化珪素焼結
体と同じものを使用しても良いが、アルミナ系セラミッ
ク、ムライト系セラミックやガラスセラミック等の値段
の安いセラミックを使用してもよい。キャップは直接半
導体チップを搭載しないので、パッケージの熱放散性に
は大きく寄与しないからアルミナ系セラミックやムライ
ト系セラミックやガラスセラミックのような熱伝導率の
悪いセラミックでも使用できる。ただし、ベースとキャ
ップの熱膨張係数は整合していたほうが信頼性が高くな
るので、ムライト系セラミックや熱膨張係数が2〜5p
pm/℃のガラスセラミックが望ましい。アルミナ系セ
ラミックをキャップに使用する場合は、本発明で使用す
る窒化珪素焼結体との中間の熱膨張係数のガラスを封着
用に使用したり、やはり中間の熱膨張係数を有する緩衝
用の枠体をベースとキャップの間に挟んで使用すること
が望ましい。以下に本発明基板の優れた特徴をさらに詳
細に述べる。
The ceramic cap may be the same as the silicon nitride sintered body used in the present invention, or may be made of inexpensive ceramic such as alumina ceramic, mullite ceramic, or glass ceramic. Since the cap does not directly mount a semiconductor chip, it does not significantly contribute to the heat dissipation of the package, so it can also be used with ceramics with poor thermal conductivity such as alumina ceramics, mullite ceramics, and glass ceramics. However, reliability will be higher if the thermal expansion coefficients of the base and cap match, so use mullite ceramics with a thermal expansion coefficient of 2 to 5p.
pm/°C glass ceramic is preferred. When alumina-based ceramic is used for the cap, a glass with a thermal expansion coefficient intermediate to that of the silicon nitride sintered body used in the present invention may be used for sealing, or a buffer frame which also has an intermediate thermal expansion coefficient may be used. It is preferable to use the device by sandwiching the body between the base and the cap. The excellent features of the substrate of the present invention will be described in more detail below.

〔高熱放散性〕[High heat dissipation]

本発明でベースに使用するセラミックは、前述のような
アルミナ換算でアルミニウムを0.3重量%以下含む窒
化珪素焼結体が使用され、好ましくは更に、直線距離1
10l1に窒化珪素結晶粒子が20個以下含まれること
で特徴づけられる。窒化珪素焼結体は、通常焼結助剤と
して焼成中に液相を形成する成分が添加される。代表的
には、希土類の酸化物、アルカリ土類金属の酸化物、そ
の他金属酸化物が考えられる。また、パッケージ用セラ
ミックに特有の添加物としてモリブデンやタングステン
金属、もしくはこれらの酸化物や化合物が着色用に添加
される場合もある。本発明には、アルミニウムが上記の
限定量以下であるならば、基本的にはどのような組成系
の窒化珪素焼結体にも適用できる。これは、窒化珪素焼
結体の熱伝導率がアルミニウム量に最も大きく影響され
るためであり、上記の限定量以下であれば40W/mk
以上の窒化珪素系セラミックが得られ、アルミナに比較
して優れた熱放散性を有するパッケージが得られるので
ある。アルミナ換算でアルミニウムを0.3重量%を超
える窒化珪素焼結体を使用するとセラミックの熱伝導率
が劣化し熱放散性の悪いパッケージになる。
The ceramic used for the base in the present invention is a silicon nitride sintered body containing 0.3% by weight or less of aluminum in terms of alumina, and preferably further has a linear distance of 1
It is characterized by containing 20 or less silicon nitride crystal particles in 10l1. A component that forms a liquid phase during firing is usually added to the silicon nitride sintered body as a sintering aid. Typically, rare earth oxides, alkaline earth metal oxides, and other metal oxides are considered. Furthermore, molybdenum, tungsten metal, or oxides or compounds thereof may be added as additives specific to package ceramics for coloring. The present invention can basically be applied to silicon nitride sintered bodies of any composition as long as the amount of aluminum is below the above-mentioned limit. This is because the thermal conductivity of the silicon nitride sintered body is most influenced by the amount of aluminum, and if the amount is below the above limit, it will be 40W/mk
The silicon nitride ceramic described above can be obtained, and a package can be obtained which has superior heat dissipation properties compared to alumina. If a silicon nitride sintered body containing more than 0.3% by weight of aluminum in terms of alumina is used, the thermal conductivity of the ceramic will deteriorate, resulting in a package with poor heat dissipation.

〔高強度〕[High strength]

本発明の窒化珪素基板は、強度が大きいことも重要な特
徴である。従来のアルミナ基板は、抗折強度こそ30 
kg / mm ”程度であるが、セラミック特有の脆
さからパッケージのエッチが欠けやすかった。しかしな
がら、本発明の窒化珪素セラミック基板は、抗折強度も
30kg/mm’以上あると伴に、破壊靭性値5 MP
am”と大きいので脆さもアルミナ基板に比較すると大
幅に改善されている。
Another important feature of the silicon nitride substrate of the present invention is that it has high strength. Conventional alumina substrates have a bending strength of 30
kg/mm'', but the etch of the package was easily chipped due to the brittleness peculiar to ceramics.However, the silicon nitride ceramic substrate of the present invention has a bending strength of more than 30 kg/mm', and has a high fracture toughness. Value 5 MP
am”, so the brittleness is also significantly improved compared to an alumina substrate.

〔高信頼性〕[High reliability]

耐環境性の良いことも重要な特徴である。すなわち、セ
ラミック基板の大きな特徴は耐水性などの耐環境性が樹
脂基板に比較して優れている結果、信頼性が高いことに
あり、例えばアルミナ基板は、充分に高い信頼性を有す
るとの評価をえていた。
Another important feature is good environmental resistance. In other words, a major feature of ceramic substrates is that they have superior environmental resistance such as water resistance compared to resin substrates, resulting in high reliability.For example, alumina substrates have been evaluated as having sufficiently high reliability. I was getting a lot of money.

しかしながら、熱放散性の優れたセラミック基板である
窒化アルミニウム基板は、耐水性や耐アルカリ性などの
耐環境性が悪いので、セラミック基板の大きな特徴であ
る信頼性に問題があった。これに対し本発明の窒化珪素
基板材料は、耐環境性も優れており窒化アルミニウムで
生ずるような問題はない。
However, aluminum nitride substrates, which are ceramic substrates with excellent heat dissipation properties, have poor environmental resistance such as water resistance and alkali resistance, so there has been a problem with reliability, which is a major feature of ceramic substrates. On the other hand, the silicon nitride substrate material of the present invention has excellent environmental resistance and does not have the problems that occur with aluminum nitride.

〔電気的特性〕[Electrical characteristics]

電気絶縁性は、非常に優れており、炭化珪素基板のよう
な耐電圧が低い問題はない。
The electrical insulation properties are very good, and there is no problem of low withstand voltage as with silicon carbide substrates.

以上、述べたように本発明で得られるセラミックパッケ
ージは、従来のアルミナパッケージは勿論のこと窒化ア
ルミニウムや炭化珪素を使用したパッケージと比較して
も優れた特性を有する。
As described above, the ceramic package obtained by the present invention has superior characteristics compared to not only conventional alumina packages but also packages using aluminum nitride or silicon carbide.

(実施例) 第1図および第2図はそれぞれ本発明のセラミックパッ
ケージの一例の構成を示す断面図である。
(Example) FIG. 1 and FIG. 2 are sectional views each showing the structure of an example of the ceramic package of the present invention.

上述したように、第1図および第2図に示す例では、半
導体チップ1をAu導体層2を介して搭載する好ましく
は所定の性質を有する窒化珪素からなるセラミックベー
ス3とセラミックキャップ4をガラスや樹脂接着剤から
なる封着剤5により封着し、半導体チップlとボンディ
ングワイヤー6を介して電気的に接続する金属製のリー
ドフレーム7を有するサーデイツプ型のパッケージを示
している。
As described above, in the example shown in FIGS. 1 and 2, the ceramic base 3 and the ceramic cap 4, preferably made of silicon nitride having predetermined properties, on which the semiconductor chip 1 is mounted via the Au conductor layer 2, are made of glass. The package is of a cer-deep type and has a metal lead frame 7 which is sealed with a sealing agent 5 made of a resin adhesive and is electrically connected to a semiconductor chip 1 via a bonding wire 6.

以下、実際の例について説明する。An actual example will be explained below.

寒施桝上 AAxOs含有量のことなる窒化珪素粉末に焼結助剤と
して表1に示す希土類酸化物を添加し、水を加えて窒化
珪素玉石と樹脂製ポットを用いて湿式混合した。得られ
たスラリーをスプレードライヤーにより乾燥造粒した。
Rare earth oxides shown in Table 1 were added as sintering aids to silicon nitride powders with different AAxOs contents, water was added, and wet mixing was performed using silicon nitride cobblestones and a resin pot. The obtained slurry was dried and granulated using a spray dryer.

造粒粉末を金型を使用して通常の乾式プレス成形により
所定の形状に成形した。成形体を9.5気圧の窒素雰囲
気下で表1に示すように、1750〜1950℃、1〜
10時間焼成し、セラミックベースとセラミックキャッ
プを得た。
The granulated powder was molded into a predetermined shape by ordinary dry press molding using a mold. The molded body was heated at 1750 to 1950°C under a nitrogen atmosphere of 9.5 atm as shown in Table 1.
After firing for 10 hours, a ceramic base and a ceramic cap were obtained.

これらのセラミックベースとセラミックキャップについ
て、熱伝導率をレーザフラッシュ法により測定した。ま
た、焼結体中の窒化珪素粒子の数を直線距離10μmあ
たりに存在する窒化珪素粒子の数から求めた。焼結体中
のAj’203量を蛍光X線分析法により測定した。こ
れらの測定値を表1に示す。また、熱膨張係数はどの焼
結体においても2〜4ppm/’Cであった。
Thermal conductivity of these ceramic bases and ceramic caps was measured by a laser flash method. Further, the number of silicon nitride particles in the sintered body was determined from the number of silicon nitride particles present per 10 μm of linear distance. The amount of Aj'203 in the sintered body was measured by fluorescent X-ray analysis. These measured values are shown in Table 1. Moreover, the coefficient of thermal expansion was 2 to 4 ppm/'C in all the sintered bodies.

得られたセラミックベースとセラミックキャップを使用
して第1図に示す構造で160ピンの半導体チップパッ
ケージを試作した。実際に半導体チップを実装して発熱
させ、風速4m/sで空冷してパッケージの熱抵抗を測
定した。その結果を表1に示した。なお、アルミナを用
いてパッケージを試作した時の熱抵抗は27°C/Wで
あった。
Using the obtained ceramic base and ceramic cap, a 160-pin semiconductor chip package was prototyped with the structure shown in FIG. 1. A semiconductor chip was actually mounted to generate heat, and the package was cooled with air at a wind speed of 4 m/s to measure the thermal resistance of the package. The results are shown in Table 1. Note that when a package was prototyped using alumina, the thermal resistance was 27°C/W.

釆施■至 次に、第2図の構造でリード数120ピンのパッケージ
を実施例1と同様に試作した。実際に半導体チップを実
装して発熱させ、風速4m/sで空冷してパッケージの
熱抵抗を測定した。この結果を表2に示した。なお、ア
ルミナを用いてパッケージを試作した時の熱抵抗は24
°C/Wであった。
Next, a package having the structure shown in FIG. 2 and having 120 lead pins was fabricated in the same manner as in Example 1. A semiconductor chip was actually mounted to generate heat, and the package was cooled with air at a wind speed of 4 m/s to measure the thermal resistance of the package. The results are shown in Table 2. The thermal resistance when the package was prototyped using alumina was 24
°C/W.

表1,2から、窒化珪素の放熱基板はアルミナと比較し
て放熱特性が優れるのがわかる。また、窒化珪素焼結体
においても、直線距離10μmあたりに存在する窒化珪
素粒子の数が20個以下で、含有するAl2O3量が0
.3wt%以下であればさらに優れるのがわかる。この
理由は、直線距離lOμmあたりに存在する窒化珪素粒
子の数が20個以上であると、粒界での熱の散乱が小さ
くなって熱伝導度が高くなるためと考えられ、Al2O
3量が0.3wt%を超えると、窒化珪素粒子内に固溶
し、窒化珪素粒子の熱伝導度を低下させるためと考えら
れる。
From Tables 1 and 2, it can be seen that the silicon nitride heat dissipation substrate has better heat dissipation characteristics than alumina. Also, in the silicon nitride sintered body, the number of silicon nitride particles present per 10 μm of linear distance is 20 or less, and the amount of Al2O3 contained is 0.
.. It can be seen that if it is 3 wt% or less, it is even better. The reason for this is thought to be that when the number of silicon nitride particles existing per linear distance lOμm is 20 or more, the scattering of heat at grain boundaries becomes smaller and the thermal conductivity becomes higher.
It is thought that this is because when the amount of 3 exceeds 0.3 wt%, it forms a solid solution within the silicon nitride particles, reducing the thermal conductivity of the silicon nitride particles.

(発明の効果) 以上の説明から明らかなように、本発明のセラミックパ
ッケージによれば、サーデイツプ型等のセラミックベー
スを窒化珪素、好ましくはアルミナ換算でアルミニウム
を0.3重量%以下含み、直線距離10μmに結晶粒子
を20個以下含む窒化珪素系のセラミックスを使用して
いるため、熱放散特性の良好なセラミックパッケージを
得ることができる。
(Effects of the Invention) As is clear from the above description, according to the ceramic package of the present invention, the ceramic base of the ceramic base, such as a ceramic base, is made of silicon nitride, preferably contains 0.3% by weight or less of aluminum in terms of alumina, and the straight line distance is Since silicon nitride ceramics containing 20 or less crystal grains per 10 μm are used, a ceramic package with good heat dissipation characteristics can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図はそれぞれ本発明のセラミックパッ
ケージの一例の構成を示す断面図である。 1・・・半導体チップ   2・・・Au導体層3・・
・セラミックベース 4・・・セラミックキャップ5・
・・封着剤 6・・・ボンディングワイヤ 7・・・リードフレーム 第1図 第2図 手 続 補 正 書 平成 3年 3月 5日
FIG. 1 and FIG. 2 are sectional views each showing the structure of an example of the ceramic package of the present invention. 1... Semiconductor chip 2... Au conductor layer 3...
・Ceramic base 4...Ceramic cap 5・
... Sealing agent 6 ... Bonding wire 7 ... Lead frame Figure 1 Figure 2 Procedural amendment March 5, 1991

Claims (1)

【特許請求の範囲】 1、半導体素子を搭載するセラミックベースと、このベ
ース基板にガラスもしくは樹脂接着剤により接着される
セラミックキャップと、金属リードフレームよりなるセ
ラミックパッケージにおいて、そのセラミックベースが
窒化珪素焼結体よりなることを特徴とする放熱性に優れ
たセラミックパッケージ。 2、距離10μmに窒化珪素の結晶粒子を20個以下含
む窒化珪素焼結体である請求項1記載のセラミックパッ
ケージ。 3、前記窒化珪素焼結体が、アルミナ換算でアルミニウ
ムを0.3重量%以下含む請求項1又は2記載のセラミ
ックパッケージ。
[Claims] 1. In a ceramic package consisting of a ceramic base on which a semiconductor element is mounted, a ceramic cap bonded to the base substrate with a glass or resin adhesive, and a metal lead frame, the ceramic base is made of silicon nitride sintered material. A ceramic package with excellent heat dissipation that is characterized by being made of a solid body. 2. The ceramic package according to claim 1, which is a silicon nitride sintered body containing 20 or less silicon nitride crystal grains at a distance of 10 μm. 3. The ceramic package according to claim 1 or 2, wherein the silicon nitride sintered body contains 0.3% by weight or less of aluminum in terms of alumina.
JP24602490A 1990-09-18 1990-09-18 Ceramic package Pending JPH04125950A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP24602490A JPH04125950A (en) 1990-09-18 1990-09-18 Ceramic package
US07/760,145 US5294750A (en) 1990-09-18 1991-09-16 Ceramic packages and ceramic wiring board
DE69115408T DE69115408T2 (en) 1990-09-18 1991-09-17 Ceramic packings and ceramic circuit boards
EP19910308469 EP0476971B1 (en) 1990-09-18 1991-09-17 Ceramic packages and ceramic wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24602490A JPH04125950A (en) 1990-09-18 1990-09-18 Ceramic package

Publications (1)

Publication Number Publication Date
JPH04125950A true JPH04125950A (en) 1992-04-27

Family

ID=17142315

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24602490A Pending JPH04125950A (en) 1990-09-18 1990-09-18 Ceramic package

Country Status (1)

Country Link
JP (1) JPH04125950A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294244B1 (en) * 1997-12-22 2001-09-25 Kyocera Corporation Wiring board having excellent heat-radiating property

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626770A (en) * 1979-08-06 1981-03-14 Sumitomo Electric Industries Ceramic material for gaassic
JPH0244066A (en) * 1988-04-07 1990-02-14 Toyota Central Res & Dev Lab Inc Silicon nitride sintered body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626770A (en) * 1979-08-06 1981-03-14 Sumitomo Electric Industries Ceramic material for gaassic
JPH0244066A (en) * 1988-04-07 1990-02-14 Toyota Central Res & Dev Lab Inc Silicon nitride sintered body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6294244B1 (en) * 1997-12-22 2001-09-25 Kyocera Corporation Wiring board having excellent heat-radiating property

Similar Documents

Publication Publication Date Title
JP3127754B2 (en) Semiconductor device
JPS62207789A (en) Surface structure for aluminum nitride material and manufacture
US5407871A (en) Glass-ceramic composite
JP2883787B2 (en) Substrate for power semiconductor device
US20080171647A1 (en) Low temperature cofired ceramic materials
JPH04125950A (en) Ceramic package
JPH0727995B2 (en) Ceramic wiring board
JPH04125952A (en) Ceramic package
JPS62197375A (en) Aluminum nitride substrate
JP3450167B2 (en) Package for storing semiconductor elements
JPH0725617B2 (en) Aluminum nitride substrate and manufacturing method thereof
JPH0661387A (en) Semiconductor device heat dissipating board
JPS61261270A (en) Manufacture of aluminum nitride sintered body
US5292552A (en) Method for forming metallized layer on an aluminum nitride sintered body
CN118619662A (en) An electronic packaging ceramic material thermally matched with GaAs semiconductor and a preparation method thereof
Chiou et al. Fabrication and properties of alumino-borosilicate glass-ceramic systems
JPH04949B2 (en)
JP2699775B2 (en) Manufacturing method of aluminum nitride sintered body
JPH05294736A (en) Ceramic substrate material and its production
JP2770666B2 (en) Aluminum nitride sintered body
JPH0450186A (en) Method for forming metallized layer on aluminum nitride substrate
JPH02296773A (en) Aluminum nitride sintered body and production thereof
JPH06152085A (en) Insulation printed circuit board for circuit
JPS61295275A (en) High heat conductive aluminum nitride aluminum sintered body
JPS61146765A (en) Aluminum nitride sintered body and manufacture