[go: up one dir, main page]

JPH04125608A - Image-forming lens large in diameter of finite system - Google Patents

Image-forming lens large in diameter of finite system

Info

Publication number
JPH04125608A
JPH04125608A JP24786490A JP24786490A JPH04125608A JP H04125608 A JPH04125608 A JP H04125608A JP 24786490 A JP24786490 A JP 24786490A JP 24786490 A JP24786490 A JP 24786490A JP H04125608 A JPH04125608 A JP H04125608A
Authority
JP
Japan
Prior art keywords
image
aspherical
lens
layer
spherical glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24786490A
Other languages
Japanese (ja)
Other versions
JP2727373B2 (en
Inventor
Iwatatsu Fujioka
藤陵 嚴達
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mark KK
Original Assignee
Mark KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mark KK filed Critical Mark KK
Priority to JP2247864A priority Critical patent/JP2727373B2/en
Publication of JPH04125608A publication Critical patent/JPH04125608A/en
Application granted granted Critical
Publication of JP2727373B2 publication Critical patent/JP2727373B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To obtain an image-forming lens with short distance between a material and an image and with satisfactory aberration by satisfying a specific condition by a compound lens formed by joining aspherical layers made of transparent material on two planes at the material and image sides of a biconvex spherical glass lens, respectively. CONSTITUTION:A condition represented in equations I-IV can be satisfied assuming the focal distance of the whole systems as (f), image-forming magnification as (m), the apex radius of curvature of a material side aspherical plane as (r1), the radius of curvature at material side of a spherical glass lens L2 as (r2), that at image side of the lens as (r3), the apex radius of curvature of an image side aspherical plane as (r4), the thickness on axis of a material side aspherical layer L1 as (d1), the thickness on axis of the spherical glass lens L2 as (d2), the thickness on axis of an image side aspherical layer L3 as (d3), the refractive index of the material of the material side aspherical layer L1 as (n1), that of the material of the spherical glass lens L2 as (n2), that of the material of the image side aspherical layer L1 as (n3), the height of an axial edge beam of light in the image-forming magnification (m) from an optical axis on the material side aspherical plane as (h1), and the height of the axial edge beam of light in the image-forming magnification (m) from the optical axis on the image side aspherical plane as (h4). Thereby, the distance between the material and the image can be reduced, and the aberration can be improved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発駅は有限距離にある物体を縮小結像する対物レンズ
であって、回折限界の結像性能を有し、ビデオディスク
の再生に供し得る大口径レンズに関する。
[Detailed Description of the Invention] (Field of Industrial Application) The present station is an objective lens that forms a reduced image of an object at a finite distance, has diffraction-limited imaging performance, and is suitable for playing video discs. Regarding large aperture lenses.

(従来の技術と発明が解決しようとする課題)ビデオデ
ィスクの再生用の対物レンズは開口数(NA)が0.5
以上必要であり、コンパクトディスク再生用の対物レン
ズがNAO145でよいのに対しより大口径が要求され
る。
(Prior art and problem to be solved by the invention) The objective lens for playing back video discs has a numerical aperture (NA) of 0.5.
Although the objective lens for compact disc playback may be NAO145, a larger aperture is required.

また、装置のコンパクト化のた約にはコリメータを使用
せず、半導体レーザよりの有限光を直接縮小結像させる
有限系結像レンズが有利であるが、この場合 結像倍率をm 有限系の開口数をNAm 無限系に換算した開口数をNAoO とすると NAoO= (1−m)NAm (mho)なる関係式
が成立する。装置をより小型化するためには1mlを大
きくし、結像レンズの焦点距離を小さくするのが有利で
ある。
In addition, in order to reduce the size of the device, it is advantageous to use a finite system imaging lens that directly reduces and images the finite light from the semiconductor laser without using a collimator, but in this case, the imaging magnification is m. The numerical aperture is NAm.If the numerical aperture converted to an infinite system is NAoO, then the relational expression NAoO=(1-m)NAm(mho) holds true. In order to make the device more compact, it is advantageous to increase the size of 1 ml and reduce the focal length of the imaging lens.

NAm=0.5とすれば m=−0,25のとき    NAoo=0.625r
n=−0,4のとき     NAoo=O17と有限
系の結像倍率1mlを大きくするときは無限遠換算のN
Aを著しく大きくしなければならない。この大口径レン
ズを製作する方法としてプラスチックの非球面単レンズ
では素材の屈折率が低いた約、球面収差と正弦条件を回
折限界まで除去することは極めて困難である。加えて素
材の温度および湿度の変化に対する屈折率変化や体積の
膨張や収縮により球面収差が変化する。この現象はNA
OOが大きくなるほど著しいので実用限界のNAOOは
0.55にとどまる。
If NAm=0.5, when m=-0,25 NAoo=0.625r
When n = -0, 4, NAoo = O17 and when increasing the imaging magnification 1ml of a finite system, N converted to infinity.
A must be made significantly larger. As a method of manufacturing this large-diameter lens, it is extremely difficult to eliminate spherical aberration and sine conditions to the diffraction limit when using a single aspherical lens made of plastic, which has a low refractive index. In addition, spherical aberration changes due to changes in the refractive index and expansion and contraction of volume due to changes in temperature and humidity of the material. This phenomenon is NA
The larger the OO, the more significant it is, so the practical limit of NAOO remains at 0.55.

一方、ガラスのモールド成形による非球面大口径単レン
ズでは温度および湿度の変化による屈折率変化や、体積
の膨張や収縮の影響を考慮しなくても良いほど安定して
いる点と、素材の屈折率も大きいものがある点で有利で
あり、NA■が0.7以上でも球面収差および正弦条件
を良好と成し得る(特開昭64−25113号公報参照
)。
On the other hand, aspherical large-diameter single lenses made by glass molding are stable enough that there is no need to consider changes in refractive index due to changes in temperature and humidity, or the effects of expansion and contraction of volume, and the refraction of the material. It is advantageous in that it has a large ratio, and even when NA■ is 0.7 or more, it is possible to achieve good spherical aberration and sine conditions (see Japanese Patent Laid-Open No. 64-25113).

しかしガラスのモールド成形により大口径非球面レンズ
を量産するには、精密な成形工程に困難さがあり、型の
寿命も短く、コスト高にならざるを得ない現況である。
However, mass production of large-diameter aspherical lenses by glass molding is currently difficult due to the precision molding process, short mold life, and high costs.

球面ガラスレンズの物体側の凸面に透明材料製の非球面
層を接合した複合レンズは、非球面層が樹脂系のだと金
型の寿命も長く、量産時の成形も容易であるが、物体側
の面のみが非球面であるため最大NA■は0.6に止ま
り、正弦条件も完璧に補正できない欠点もある(特開平
1−145615号公報参照)。
Composite lenses are made by bonding an aspherical layer made of a transparent material to the convex surface on the object side of a spherical glass lens.If the aspherical layer is made of resin, the mold life is long and molding during mass production is easy. Since only the side surfaces are aspherical, the maximum NA■ is only 0.6, and there is also the drawback that the sine condition cannot be completely corrected (see Japanese Patent Laid-Open No. 1-145615).

両凸球面ガラスレンズの物体側および像側の両面に、そ
れぞれ透明材料製の非球面層を接合して形成するときは
、NA(X)も大きくでき、球面収差および正弦条件も
良好とすることができる。しかし両面に非球面層を接合
する複合レンズは、接合に際して光軸方向の平行偏心お
よび傾きの偏心が生じやすく、オリジナル性能を著しく
低下させるたt1不可能視されていた。また、前述のプ
ラスチックの非球面単レンズのところで述べたような温
度および湿度の変化による性能低下も、非球面層におい
て起こることも当然でこの方法の欠点である。
When aspherical layers made of transparent material are bonded to both the object side and image side of a biconvex spherical glass lens, the NA (X) can be increased, and spherical aberration and sine conditions should be good. I can do it. However, a compound lens in which aspherical layers are bonded to both surfaces is apt to cause parallel eccentricity in the optical axis direction and tilt eccentricity during bonding, which significantly degrades the original performance and has been considered impossible for t1. Furthermore, it is natural that the aspherical layer suffers from performance deterioration due to changes in temperature and humidity, as described above for the plastic aspherical single lens, which is a disadvantage of this method.

本発明は上8己欠点を下記条件によって解決することに
よりNA■が0.625以上0.7に至るも球面収差、
非点収差に加え、コマ収差も極めて良好で量産性と高性
能を備えた有限系大口径レンズとなし得るもので、加え
て装置の小型化を極限近くまで成し得たものである。
The present invention solves the above-mentioned defects according to the following conditions, so that the NA can be increased to 0.625 or more and 0.7, but the spherical aberration is
In addition to astigmatism, coma aberration is also extremely good, making it possible to create a finite-type large-diameter lens that is mass-producible and has high performance.In addition, the device can be made as compact as possible.

(課題を解決するための手段) 第1図に示すように物点Oより出た有限光を両凸の球面
ガラスレンズL2の物体側に透明材料製の非球面層Ll
+ 像側に透明材料製の非球面層L3を接合して形成し
た複合レンズLl +L2 +L3により像面■に結像
させる。Cはカバーガラスである。物点Oと複合レンズ
の間にグレーティングガラスまたはビームスプリッタを
挿入することは可能であるが本発明では省略する。ここ
でf:全系の焦点距離 m:結像倍率 rl :物体側非球面の頂点曲率半径 r2 ;球面ガラスレンズL2の物体側の曲率半径r3
 二球面ガラスレンズL2の像側の曲率半径r、:像側
非球面の頂点曲率半径 dl :物体側非球面層L1の軸上の厚みd2 :球面
ガラスレンズL2の軸上の厚みd3 :像側非球面層L
3の軸上の厚みnl :物体側非球面層L1の材質の屈
折率n2 ;球面ガラスレンズL2の材質の屈折率n3
 :像側非球面層L3の材質の屈折率h1 :結像倍率
mにおける軸上周縁光線の物体側非球面上での光軸から
の高さ h4:結像倍率mにおける軸上周縁光線の像側非非球面
上での光軸からの高さ とするとき 0、75 < r + / r 2≦1.0     
−(1)0、5 < r 4 / r 3 ≦1.0 
      ・・・(2)0、5 < r + /  
r s   < 0.8     ・・・(3)0.8
 f <d+ +dz +d3<1.2 f・・・(4
)0≦T12−nl <0.4.  O≦n2−n3<
Q、4・・・(5) 1.1<hl /h4 <1.4       ・・・
(6)なる諸条件を満足することを特徴とするものであ
る。
(Means for solving the problem) As shown in FIG.
+ An image is formed on the image plane (2) by a compound lens Ll +L2 +L3 formed by bonding an aspherical layer L3 made of a transparent material to the image side. C is a cover glass. Although it is possible to insert a grating glass or a beam splitter between the object point O and the compound lens, this is omitted in the present invention. where f: focal length of the entire system m: imaging magnification rl: radius of apex curvature r2 of the aspherical surface on the object side; radius of curvature r3 on the object side of the spherical glass lens L2
Radius of curvature r on the image side of the bispherical glass lens L2: Vertex radius of curvature dl of the aspherical surface on the image side: Thickness on the axis of the aspherical layer L1 on the object side d2: Thickness on the axis of the spherical glass lens L2 d3: Image side Aspherical layer L
3 axis thickness nl: refractive index n2 of the material of the object-side aspherical layer L1; refractive index n3 of the material of the spherical glass lens L2
: Refractive index h1 of the material of the image-side aspherical layer L3 : Height of the axial marginal ray from the optical axis on the object-side aspherical surface at the imaging magnification m h4 : Image of the axial marginal ray at the imaging magnification m When the height from the optical axis on the side aspherical surface is 0, 75 < r + / r 2 ≦ 1.0
−(1) 0, 5 < r 4 / r 3 ≦1.0
...(2) 0, 5 < r + /
r s < 0.8 ... (3) 0.8
f <d+ +dz +d3<1.2 f...(4
)0≦T12-nl<0.4. O≦n2−n3<
Q, 4...(5) 1.1<hl/h4<1.4...
It is characterized by satisfying the following conditions (6).

条件(1)は物体側非球面層L1の形状に関するもので
ある。rl/r2の値が小なるときは軸上の厚みdlも
大きくなり、非球面層り、の形状は凸メニスカス状で強
くなる。非球面層の材質の温度および湿度の変化による
屈折率の変化や、膨張、収縮により球面収差が変化する
。その量は周縁部の非球面層が厚いほどその影響も大き
い。したがって非球面層の周縁部を肉薄にする方が球面
収差の変化に対しては有利である。条件(1)の下限を
超えるときは非球面層の凸メニスカスの度合が強すぎて
、軸上部と周縁部の厚みの差が大きくなり、非球面形状
の精度の確保が難しい。
Condition (1) relates to the shape of the object-side aspherical layer L1. When the value of rl/r2 becomes small, the axial thickness dl also becomes large, and the shape of the aspherical layer becomes convex meniscus-like and strong. Spherical aberration changes due to changes in the refractive index of the material of the aspherical layer due to changes in temperature and humidity, and due to expansion and contraction. The thicker the aspherical layer at the periphery, the greater the influence of the amount. Therefore, it is more advantageous to reduce the change in spherical aberration by making the peripheral portion of the aspherical layer thinner. When the lower limit of condition (1) is exceeded, the degree of convex meniscus of the aspherical layer is too strong, the difference in thickness between the upper part of the shaft and the peripheral part becomes large, and it is difficult to ensure the accuracy of the aspherical shape.

上限を超えるときは非球面層が凹メニスカス状となり、
温度や湿度の変化に対する球面収差の変化が大きくなる
When the upper limit is exceeded, the aspherical layer becomes a concave meniscus,
Changes in spherical aberration increase with changes in temperature and humidity.

条件(2)は像側非球面層L3の形状に関するものであ
る。r4/r3の値が小さくなるときは軸上の厚みd3
も大きくなり、非球面層L3の形状は凸メニスカス状で
強くなる。非球面層の材質の温度および湿度の変化によ
る屈折率の変化や、膨張。
Condition (2) relates to the shape of the image-side aspherical layer L3. When the value of r4/r3 becomes small, the thickness on the axis d3
Also, the shape of the aspherical layer L3 becomes convex meniscus-like and strong. Changes in refractive index and expansion due to changes in temperature and humidity of the material of the aspherical layer.

収縮により球面収差が変化する。その量はLlの場合と
同様に周縁部の非球面層が厚いほどその影響も大きい。
Spherical aberration changes due to contraction. As in the case of Ll, the thicker the aspherical layer in the peripheral portion, the greater the influence.

したがって、非球面層の周縁部を肉薄にする方が球面収
差の変化に対しては有利である。条件(2)の下限を超
えるときは非球面層の凸メニスカスの度合が強すぎて軸
上部と周縁部の厚みの差が大きくなり、非球面形状の精
度の確保が難しい。上限を超えるときは非球層が凹メニ
スカス状となり、温度や湿度の変化に対する球面収差の
変化が大きくなる。
Therefore, it is more advantageous to reduce the change in spherical aberration by making the peripheral portion of the aspherical layer thinner. When the lower limit of condition (2) is exceeded, the degree of convex meniscus of the aspherical layer is too strong, and the difference in thickness between the upper part of the shaft and the peripheral edge becomes large, making it difficult to ensure the accuracy of the aspherical shape. When the upper limit is exceeded, the aspheric layer takes on a concave meniscus shape, and changes in spherical aberration due to changes in temperature and humidity become large.

条件(3)は物体側と像側の非球面の頂点曲率半径の比
に関するもので、物体側と像側の屈折力配分を定め、大
口径レンズの球面収差と正弦条件を同時に良好とするた
約のものである。非球面を導入すれば球面収差はOとす
ることができるが正弦条件をも同時に0とするためには
物体側および像側の空気接触面の屈折力分担を適切に定
める必要がある。条件(3)の下限を超えるときは物体
側の屈折力が強すぎ、正弦条件がアンダーとなる。上限
を超えるときは物体側の屈折力が弱すぎ正弦条件はオー
バーとなるので共に良い結果が得られない。
Condition (3) concerns the ratio of the apex curvature radii of the aspheric surfaces on the object side and the image side, and is used to determine the distribution of refractive power on the object side and image side, and to simultaneously improve the spherical aberration and sine conditions of the large-diameter lens. It is about. If an aspherical surface is introduced, the spherical aberration can be made zero, but in order to make the sine condition zero at the same time, it is necessary to appropriately determine the refractive power sharing between the air contact surfaces on the object side and the image side. When the lower limit of condition (3) is exceeded, the refractive power on the object side is too strong and the sine condition becomes under. When the upper limit is exceeded, the refractive power on the object side is too weak and the sine condition is exceeded, making it impossible to obtain good results.

条件(4)は非点隔差のない平坦な像面を得るた約のも
のである。下限を超えるときは像面がアンダーとなる。
Condition (4) is for obtaining a flat image surface without astigmatism. When the lower limit is exceeded, the image plane becomes undersized.

上限を超えるときは像面がオーバーとなる他、レンズが
重くなる。また結像倍率 m が小さいときは必要な作
動距離が確保できなくなる。
When the upper limit is exceeded, the image plane becomes oversized and the lens becomes heavier. Furthermore, when the imaging magnification m is small, the necessary working distance cannot be secured.

条件(5)はそれぞれ。Condition (5) is respectively.

球面ガラスレンズと物体側非球面層。Spherical glass lens and object side aspherical layer.

球面ガラスレンズと像側非球面層 の材質の屈折率の差に関するものである。Spherical glass lens and image side aspherical layer This relates to the difference in the refractive index of the materials.

非球面層と球面ガラスレンズとの接合時の光軸方向の平
行偏心や傾きの偏心に対しては両者の材質の屈折率の差
が小さい方が影響も少ない。非球面層に用いる材質には
高屈折率が望めないので、球面ガラスレンズの材質に低
屈折率のものを選べば非球面量が増加し、物体側および
像側の非球面相互の偏心による性能低下が大きくなる。
When the aspherical layer and the spherical glass lens are bonded together, the smaller the difference in the refractive index of the two materials, the less the influence on the parallel eccentricity in the optical axis direction and the tilting eccentricity. Since the material used for the aspherical layer cannot have a high refractive index, choosing a material with a low refractive index for the spherical glass lens increases the amount of aspherical surface, and improves performance due to mutual eccentricity of the aspherical surfaces on the object side and image side. The decline becomes larger.

物体側の非球面層の材質の屈折率n1と像側の非球面層
の材質の屈折率n3は同じでなくてよいことは勿論であ
る。条件(5)の下限を超えるときは物体側および像側
の非球面相互の偏心による性能低下が大きくなり、上限
を超えるときは非球面層と球面ガラスレンズとの偏心に
よる性能低下が大きくなる。
Of course, the refractive index n1 of the material of the aspherical layer on the object side and the refractive index n3 of the material of the aspherical layer on the image side need not be the same. When the lower limit of condition (5) is exceeded, performance degradation due to eccentricity between the aspherical surfaces on the object side and image side increases; when the upper limit is exceeded, performance degradation due to eccentricity between the aspherical layer and the spherical glass lens increases.

条件(6)は結像倍率mにおける軸上周縁光線の物体側
非球面上での光軸からの高さhlと像側非球面上での光
軸からの高さり、との比に関するもので、球面ガラスレ
ンズに非球面層を接合し、複合レンズとするときの偏心
による性能低下を防ぐためのものである。下限を超える
ときは物体側の屈折力が弱く、像側非球面の偏心による
影響が大きくなる。上限を超えるときは像側の屈折力が
弱く、物体側非球面の偏心による影響が大きくなる。条
件(6)の式は結像倍率mとの関係が大きい。
Condition (6) concerns the ratio of the height hl of the axial marginal ray from the optical axis on the object-side aspherical surface to the height from the optical axis on the image-side aspherical surface at the imaging magnification m. This is to prevent performance degradation due to eccentricity when a composite lens is made by bonding an aspherical layer to a spherical glass lens. When the lower limit is exceeded, the refractive power on the object side is weak, and the influence of eccentricity of the aspherical surface on the image side becomes large. When the upper limit is exceeded, the refractive power on the image side is weak, and the influence of eccentricity of the aspherical surface on the object side becomes large. The expression of condition (6) has a strong relationship with the imaging magnification m.

このときは 1.5< (h+ /h4 )  ・(1−m) <1
.8 −C7)なる条件式となる。条件(7)の下限を
超えるときはと像側非球面の偏心による影響が大きく、
上限を超えるときは物体側非球面の偏心による影響が大
きくなる。
In this case, 1.5<(h+/h4)・(1-m)<1
.. 8-C7) becomes the conditional expression. When the lower limit of condition (7) is exceeded, the influence of eccentricity of the image-side aspherical surface is large;
When the upper limit is exceeded, the influence of eccentricity of the object-side aspherical surface increases.

(実施例) 本発明の有限系大口径結像レンズの実施例を図面を参照
して説明する。
(Example) An example of the finite system large-diameter imaging lens of the present invention will be described with reference to the drawings.

第1図は、本発明レンズの実施状態における断面図で図
面の左側よりOは物点、L、、L2.L3は接合された
複合結像レンズでLlは両凸球面ガラスレンズL2の物
体側に接合された非球面層。
FIG. 1 is a cross-sectional view of the lens according to the present invention in an implemented state, and from the left side of the drawing, O is the object point, L, , L2, . L3 is a cemented composite imaging lens, and Ll is an aspherical layer cemented to the object side of the biconvex spherical glass lens L2.

L3はL2の像側に接合された非球面層である。L3 is an aspherical layer bonded to the image side of L2.

Cはカバーガラス、■は像面、WDは作動距離。C is the cover glass, ■ is the image plane, and WD is the working distance.

TLは物像間距離である。物点Oと複合レンズLL2.
L3の間にグレーティングガラスまたはビームスプリッ
タを挿入することは可能であるが本発明ではこれを省略
する。物点Oより軸上周縁光線が物体側非球面(rl)
上での入射点P1の光軸からの高さをhl+像側非球面
(r、)上での入射点P、の光軸からの高さをり、とす
る。
TL is the object-image distance. Object point O and compound lens LL2.
Although it is possible to insert a grating glass or a beam splitter between L3, this is omitted in the present invention. The peripheral ray on the axis from the object point O is an aspheric surface on the object side (rl)
The height of the incident point P1 on the image side aspherical surface (r,) from the optical axis is hl+the height of the incident point P on the image side aspherical surface (r,) from the optical axis.

f:全系の焦点距離 m:結像倍率 rl :物体側非球面の頂点曲率半径 r2 二球面ガラスレンズL2の物体側の曲率半径r3
 :球面ガラスレンズL2の像側の曲率半径r、:像側
非球面の頂点曲率半径 dl ;物体側非球面層り、の軸上の厚みd2 :球面
ガラスレンズL2の軸上の厚みd3 :像側非球面層L
3の軸上の厚みnl :物体側非球面層L1の材質の屈
折率n2 二球面ガラスレンズL2の材質の屈折率n3
 :像側非球面層L3の材質の屈折率t:カバーガラス
(像側)の軸上の厚みno :カバーガラス(像側)の
材質の屈折率WD;作動距離 TL:物、像間距離 h+/ha+結像倍率m結像倍率軸上周縁光線の物体側
非球面上での光軸からの高さと像側非球面上での光軸か
らの高さとの比 非球面の形状の式は X:非球面上の点のレンズ面頂点における接平面からの
距離 h:光軸からの高さ C;非球面頂点の曲率 に:円錐定数 A21=非球面係数 とするとき (=1/r) で表される。
f: Focal length of the entire system m: Imaging magnification rl: Radius of curvature of the vertex of the aspherical surface on the object side r2 Radius of curvature on the object side of the bispherical glass lens L2 r3
: radius of curvature r on the image side of the spherical glass lens L2, : vertex radius of curvature dl of the aspherical surface on the image side; axial thickness d2 of the aspherical surface layer on the object side: axial thickness d3 of the spherical glass lens L2: image Side aspherical layer L
Thickness nl on the axis of 3: refractive index n2 of the material of the object-side aspherical layer L1 refractive index n3 of the material of the bispherical glass lens L2
: refractive index t of the material of the image side aspherical layer L3 : axial thickness no of the cover glass (image side) : refractive index WD of the material of the cover glass (image side); working distance TL : distance between object and image h+ /ha + Imaging magnification m Imaging magnification Ratio of the height from the optical axis on the object-side aspherical surface of the axial peripheral ray to the height from the optical axis on the image-side aspherical surface The formula for the shape of the aspherical surface is X : Distance from the tangential plane at the apex of the lens surface of a point on the aspherical surface h: Height from the optical axis C; Curvature of the aspherical apex: When conic constant A21 = aspherical coefficient (=1/r). expressed.

また波長 λ=785nmにおける軸上光束の波面収差
のRMSを偏心0の場合と非球面が製作可能な範囲内で
平行偏心および傾きの偏心があった場合について各実施
例ごとに記載する。
In addition, the RMS of the wavefront aberration of the axial light beam at wavelength λ=785 nm is described for each example in the case where the eccentricity is 0 and in the case where there is parallel eccentricity and tilt eccentricity within the range in which an aspherical surface can be manufactured.

(以下余白) f=  2.75 rt  =  2.405 第 1 表(第1実施例) N^=0.5    m=−1/3J3(−0,300
3)d+  =0.03 r2−2.8 d2 =2.77 6.0 d、 =0.03 r、 =−3,8831 WD=1.461 t=1.25 TL=16.701 非球面係数 n、  −1,51550 n、 =1.69043 n、 =1.51550 口。 =1.48600 hl  /h4  =1.281 (h+/hs>  ・ (1−m) λ=785nmにおける軸上 偏心       O rl 平行偏心  0.0 O5 r4 平行偏心  0. OO5 r1 傾きの偏心  3′ r、 傾きの偏心  3′ =1.666 MS O,OO2λ 0.011 λ 0.023λ 0、040 λ 0、039 λ f= 2.7502 r二2.5 第 2 表(第2実施例) N^=0.5    m=−1/3.33(・−0,3
003)r、 =  2.5 r、 =−4,31 r、 =−4,31 11D=1.486 0.005 d2=2.77 d、 =0.005 t= 1.25 TL=16.699 非球面係数 =1.50100 n2 =1.69043 n3=1.501C10 nc=1.48600 hl / h*  =1.279 (h+/ht)  ・ (1−m) λ=785nmにおける軸上 偏心       O rl 平行偏心  0.005 r、 平行偏心  0.005 rl 傾きの偏心  3′ r4 傾きの偏心  3′ =1.664 MS O,002λ 0、025 λ 0、030 λ 0、036 λ 0.035λ f= 2.75 r=2.73 第 3 表(第3実施例) N^=0.5    m=−1/ 3.33(=−0,
3003)=0.03 n、 =1.50059 r2 =3.27 d2 =3.02 0、=1.79044 rs =−5,6 ds =0.02 n3 =1.50059 rs ニー4.17062 稠D= 1.453 t4.25     rlc TL=  1 6.867 非球面係数 = 1.48600 11+/ha=1.263 (hl /ha )  ・ (1−m)=1.642 λ=785nmにおける軸上 MS 傾きの偏心 3′ 0、040λ 第 f=2.6 rt  =  2.4 r= = 2.8 r、 =−4,3 r、 =−3,35714 WD= 1.656 4 表(第4実施例) N^=0.5    m=−0,4 =0.025 1.50050 d2”2.65 n2 =1.69043 d、=0.015 1、50050 t=1.25     nc=1.48600TL=1
3.895 非球面係数 り、 /h、  =1.166 (hl/1ta)  ・ (1−m) λ=785nmにおける軸上 偏心       O r、 平行偏心  0. O05 r4 平行偏心  0. O05 r1 傾きの偏心  3′ r、 傾きの偏心  3′ =1.632 MS O,001λ 0.046 λ 0.013 λ 0、043 λ 0、050 λ f=2.6 第 5 表(第5実施例) N^= 0.5    m=−0,4 2,95 n、 =1.79044 HD=  1.571 t=1.25 TL=14.072 非球面係数 n e=1.48600 傾きの偏心 3′ 0.042% f、3 rt  =  2.6 第 6 表(第6実施例) N^=0.5     m=−0,25cl、=0.0
3 r、=3.0 112=3.07 r、 =−5,45 d3=  0.01 ra =−4,48042 WD=1.499 t=  1.25 TL=20.D47 非球面係数 n、  =1.50050 nz =1.69043 ns =1.50050 nc=1.48600 h、  /h、  =1.326 (h、/h、)・ (1−rn) λ=785nrnにおける軸上 偏心       O rl  平行偏心  0.005 r4 平行偏心  0.005 r、 傾きの偏心  3′ r、 傾きの偏心  3′ =1.658 MS 0000λ 0.018 λ 0.018 λ 0、 O35λ 0.036 λ 第 f=3 r、−3,05 r2−3.65 rs =−5,2 r4=−4,40316 111D=1.501 7 表(第7実施例) N^= (1,5m=−0,25 ;00口3 = 1.50050 d2 =3.41 n2 =1.79044 d3=0.015 n3=1.50050 t= 1.25 TL=20.221 非球面係数 nc=1.48600 hI /h、  =1.280 (h+/ha)  ・ (1−m) λ=785nmにおける軸上 偏心       O rl 平行偏心  0. OO5 r、 平行偏心  0.005 r1 傾きの偏心  3′ r、 傾きの偏心  3′ =L600 MS O,000λ 0.056 λ 0、022 λ 0.023λ 0、042 λ f、3 r、  =  2.3 第 8 表(第8実施例) N^= 0.5    m=−0,25d1=0.03 r、=2.6 d2=2.65 rs =−4,7 d、 =0.01 r、 =−4,15713 111D=1.628 t=1.25 TL=19.856 非球面係数 n、  =1.5[105(] n2 =1.59302 n3=1.50050 me =1.48600 hI /h4 =1.272 (hl/h4)  ・ (1−m) λ=785nmにおける軸上 偏心       O rl 平行偏心  0. OO5 r、 平行偏心  0. OO5 r1 傾きの偏心  3′ r、 傾きの偏心  3′ =1.590 MS O,001λ 0.018 λ 0、043 λ 0.050 λ 0.038λ 第1実施例の球面収差と正弦条件は第2図(A)に、非
点収差は第2図(B)に、コマ収差は第2図(C)に示
す。同様に、第2実施例から第8実施例までの各収差は
第3図から第9図までに順に示す。
(Margin below) f = 2.75 rt = 2.405 Table 1 (1st example) N^ = 0.5 m = -1/3J3 (-0,300
3) d+ =0.03 r2-2.8 d2 =2.77 6.0 d, =0.03 r, =-3,8831 WD=1.461 t=1.25 TL=16.701 Aspheric surface Coefficient n, -1,51550 n, =1.69043 n, =1.51550 Mouth. =1.48600 hl /h4 =1.281 (h+/hs> ・ (1-m) On-axis eccentricity at λ=785nm O rl Parallel eccentricity 0.0 O5 r4 Parallel eccentricity 0. OO5 r1 Inclination eccentricity 3' r , Eccentricity of inclination 3' = 1.666 MS O,OO2λ 0.011 λ 0.023λ 0,040 λ 0,039 λ f= 2.7502 r22.5 Table 2 (Second Example) N^ =0.5 m=-1/3.33(・-0,3
003) r, = 2.5 r, = -4,31 r, = -4,31 11D = 1.486 0.005 d2 = 2.77 d, = 0.005 t = 1.25 TL = 16. 699 Aspheric coefficient = 1.50100 n2 = 1.69043 n3 = 1.501C10 nc = 1.48600 hl / h* = 1.279 (h+/ht) ・ (1-m) On-axis eccentricity at λ = 785 nm O rl parallel eccentricity 0.005 r, parallel eccentricity 0.005 rl tilt eccentricity 3' r4 tilt eccentricity 3' =1.664 MS O,002λ 0,025 λ 0,030 λ 0,036 λ 0.035λ f= 2.75 r=2.73 Table 3 (Third Example) N^=0.5 m=-1/ 3.33 (=-0,
3003) = 0.03 n, = 1.50059 r2 = 3.27 d2 = 3.02 0, = 1.79044 rs = -5,6 ds = 0.02 n3 = 1.50059 rs knee 4.17062 D= 1.453 t4.25 rlc TL= 1 6.867 Aspheric coefficient = 1.48600 11+/ha=1.263 (hl/ha) ・(1-m)=1.642 On axis at λ=785 nm MS Tilt eccentricity 3' 0,040λ th f=2.6 rt = 2.4 r= = 2.8 r, =-4,3 r, =-3,35714 WD= 1.656 4 Table (4th Example) N^=0.5 m=-0,4 =0.025 1.50050 d2"2.65 n2 =1.69043 d, =0.015 1, 50050 t=1.25 nc=1. 48600TL=1
3.895 Aspheric coefficient, /h, = 1.166 (hl/1ta) ・ (1-m) On-axis eccentricity Or, parallel eccentricity at λ=785nm 0. O05 r4 Parallel eccentricity 0. O05 r1 Eccentricity of inclination 3' r, Eccentricity of inclination 3' = 1.632 MS O,001λ 0.046 λ 0.013 λ 0,043 λ 0,050 λ f=2.6 Table 5 (5th implementation Example) N^= 0.5 m=-0,4 2,95 n, =1.79044 HD= 1.571 t=1.25 TL=14.072 Aspheric coefficient n e=1.48600 Inclination eccentricity 3' 0.042% f, 3 rt = 2.6 Table 6 (Sixth Example) N^=0.5 m=-0,25cl, =0.0
3 r, = 3.0 112 = 3.07 r, = -5,45 d3 = 0.01 ra = -4,48042 WD = 1.499 t = 1.25 TL = 20. D47 Aspheric coefficient n, = 1.50050 nz = 1.69043 ns = 1.50050 nc = 1.48600 h, /h, = 1.326 (h, /h,) (1-rn) λ = 785nrn On-axis eccentricity O rl Parallel eccentricity 0.005 r4 Parallel eccentricity 0.005 r, Tilt eccentricity 3' r, Tilt eccentricity 3' = 1.658 MS 0000λ 0.018 λ 0.018 λ 0, O35λ 0. 036 λ fth = 3 r, -3,05 r2-3.65 rs = -5,2 r4 = -4,40316 111D = 1.501 7 Table (7th example) N^ = (1,5m = -0,25 ;00 mouth 3 = 1.50050 d2 = 3.41 n2 = 1.79044 d3 = 0.015 n3 = 1.50050 t = 1.25 TL = 20.221 Aspheric coefficient nc = 1.48600 hI /h, =1.280 (h+/ha) ・ (1-m) On-axis eccentricity at λ=785nm O rl Parallel eccentricity 0. OO5 r, Parallel eccentricity 0.005 r1 Inclination eccentricity 3' r, Inclination eccentricity Eccentricity 3' = L600 MS O,000λ 0.056 λ 0,022 λ 0.023λ 0,042 λ f,3 r, = 2.3 Table 8 (Eighth Example) N^= 0.5 m= -0,25d1=0.03 r, =2.6 d2=2.65 rs =-4,7 d, =0.01 r, =-4,15713 111D=1.628 t=1.25 TL= 19.856 Aspherical coefficient n, =1.5[105(] n2 =1.59302 n3=1.50050 me =1.48600 hI /h4 =1.272 (hl/h4) ・ (1-m) λ = On-axis eccentricity at 785 nm O rl Parallel eccentricity 0. OO5 r, Parallel eccentricity 0. OO5 r1 Tilt eccentricity 3' r, Tilt eccentricity 3' = 1.590 MS O,001λ 0.018 λ 0,043 λ 0 .050 λ 0.038λ The spherical aberration and sine conditions of the first example are shown in Fig. 2 (A), the astigmatism is shown in Fig. 2 (B), and the coma aberration is shown in Fig. 2 (C). The aberrations of the second embodiment to the eighth embodiment are sequentially shown in FIGS. 3 to 9.

第1表から第8表までに明らかなように、これらの実施
例では焦点距離が2.6〜3と短く、結像倍率の大きさ
 m は0.4〜0.25と大きく、物。
As is clear from Tables 1 to 8, in these examples, the focal length is short, 2.6 to 3, and the imaging magnification m is large, 0.4 to 0.25.

像間距離は13.9〜20.2と極限近くまで短く、し
かもNAoOは0.7〜0.625と大きい。球面収差
と正弦条件を同時に良好にできる限界のNAoOは0.
7071との定説もある。本発明のNA■=0.7の実
施例はそれに近く、しかも球面収差、正弦条件に加えて
非点収差、コマ収差も極めて良好に補正されていること
は各収差図から明らかである。
The inter-image distance is extremely short at 13.9 to 20.2, and the NAoO is large at 0.7 to 0.625. The limit NAoO that can simultaneously satisfy spherical aberration and sine conditions is 0.
There is also an established theory that it is 7071. It is clear from the aberration diagrams that the embodiment of the present invention with NA■=0.7 is close to that, and that in addition to spherical aberration and sine conditions, astigmatism and coma are also very well corrected.

偏心による性能低下は記載の繁雑を避けるため、軸上光
束についてのみ記したが、各実施例の収差曲線に示した
最大像高における波面収差のRMSも0.07λ以内で
ある。
In order to avoid the complexity of the description, the performance degradation due to eccentricity is described only for the axial light beam, but the RMS of the wavefront aberration at the maximum image height shown in the aberration curves of each example is also within 0.07λ.

(発明の効果) 以上説明したように本発明は、有限距離の物体を縮小結
像するレンズにおいて、両凸の球面ガラスレンズの光源
側および像側の両面に、それぞれ透明材料製の非球面層
を接合して複合レンズとすることにより、NAoOが最
大0.7にも達し、物。
(Effects of the Invention) As explained above, the present invention provides an aspherical layer made of a transparent material on both the light source side and the image side of a biconvex spherical glass lens in a lens that reduces and forms an image of an object at a finite distance. By cementing these together to form a compound lens, the NAoO can reach a maximum of 0.7.

像間距離が最小例では13.9と極限近くまで短く、装
置の小型化が可能で収差の良好な結像レンズであり、偏
心に対する性能低下も少ない。
The minimum image distance is 13.9, which is close to the minimum, making it possible to miniaturize the device, making it an imaging lens with good aberrations, and little deterioration in performance due to eccentricity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明レンズの実施状態を示す断面図である。 第2図(A>は第1実施例の球面収差と正弦条件の収差
曲線図、第2図(B)は第1実施例の非点収差曲線図、
第2図(C)は第1実施例のコマ収差曲線図である。 第3図から第9図までは第2実施例から第8実施例まで
における第2図と同様の収差曲線図であるである。 ■ :物点 L2.L3 :カバーガラス :像面 :本発明レンズ
FIG. 1 is a sectional view showing a state in which the lens of the present invention is implemented. FIG. 2 (A> is an aberration curve diagram of the spherical aberration and sine condition of the first embodiment, FIG. 2 (B) is an astigmatism curve diagram of the first embodiment,
FIG. 2(C) is a coma aberration curve diagram of the first embodiment. FIG. 3 to FIG. 9 are aberration curve diagrams similar to FIG. 2 in the second to eighth embodiments. ■: Object point L2. L3: Cover glass: Image plane: Lens of the present invention

Claims (1)

【特許請求の範囲】 両凸の球面ガラスレンズの物体側および像側の両面に、
それぞれ透明材料製の非球面層を接合して形成した複合
レンズよりなる有限距離の物体を縮小結像するレンズに
おいて、 f:全系の焦点距離 m:結像倍率 r_1:物体側非球面の頂点曲率半径 r_2:球面ガラスレンズの物体側の曲率半径r_3:
球面ガラスレンズの像側の曲率半径r_4:像側非球面
の頂点曲率半径 d_1:物体側非球面層の軸上の厚み d_2:球面ガラスレンズの軸上の厚み d_3:像側非球面層の軸上の厚み n_1:物体側非球面層の材質の屈折率 n_2:球面ガラスレンズの材質の屈折率 n_3:像側非球面層の材質の屈折率 h_1:結像倍率mにおける軸上周縁光線の物体側非球
面上での光軸からの高さ h_4:結像倍率mにおける軸上周縁光線の像側非球面
上での光軸からの高さ とするとき 0.75<r_1/r_2≦1.0・・・(1)0.5
<r_4/r_3≦1.0・・・(2)0.5<r_1
/|r_4|<0.8・・・(3)0.8f<d_1+
d_2+d_3<1.2f・・・(4)0≦n_2−n
_1<0.4、0≦n_2−n_3<0.4・・・(5
) 1.1<h_1/h_4<1.4・・・(6)なる諸条
件を満足することを特徴とする有限系大口径結像レンズ
[Claims] On both the object side and image side of a biconvex spherical glass lens,
In a lens that forms a reduced image of an object at a finite distance, each consisting of a compound lens formed by bonding aspherical layers made of a transparent material, f: Focal length of the entire system m: Imaging magnification r_1: Vertex of the aspherical surface on the object side Radius of curvature r_2: Radius of curvature r_3 on the object side of the spherical glass lens:
Radius of curvature on the image side of the spherical glass lens r_4: Vertex radius of curvature of the aspherical surface on the image side d_1: Thickness on the axis of the aspherical layer on the object side d_2: Thickness on the axis of the spherical glass lens d_3: Axis of the aspherical layer on the image side Upper thickness n_1: Refractive index of the material of the object-side aspherical layer n_2: Refractive index of the material of the spherical glass lens n_3: Refractive index of the material of the image-side aspherical layer h_1: Object of the axial marginal ray at the imaging magnification m Height from the optical axis on the side aspherical surface h_4: Height from the optical axis on the image side aspherical surface of the axial peripheral ray at the imaging magnification m: 0.75<r_1/r_2≦1.0 ...(1)0.5
<r_4/r_3≦1.0...(2) 0.5<r_1
/|r_4|<0.8...(3) 0.8f<d_1+
d_2+d_3<1.2f...(4)0≦n_2-n
_1<0.4, 0≦n_2-n_3<0.4...(5
) 1.1<h_1/h_4<1.4...(6) A finite system large-diameter imaging lens characterized by satisfying the following conditions.
JP2247864A 1990-09-18 1990-09-18 Finite system large aperture imaging lens Expired - Fee Related JP2727373B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2247864A JP2727373B2 (en) 1990-09-18 1990-09-18 Finite system large aperture imaging lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2247864A JP2727373B2 (en) 1990-09-18 1990-09-18 Finite system large aperture imaging lens

Publications (2)

Publication Number Publication Date
JPH04125608A true JPH04125608A (en) 1992-04-27
JP2727373B2 JP2727373B2 (en) 1998-03-11

Family

ID=17169774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2247864A Expired - Fee Related JP2727373B2 (en) 1990-09-18 1990-09-18 Finite system large aperture imaging lens

Country Status (1)

Country Link
JP (1) JP2727373B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107674A (en) * 2000-09-28 2002-04-10 Fuji Photo Optical Co Ltd Collimator lens and optical scanner
KR100529312B1 (en) * 2002-09-17 2005-11-17 삼성전자주식회사 Hybrid lens and Projection optical system comprising the same
CN115933020A (en) * 2022-12-12 2023-04-07 森思泰克河北科技有限公司 Lens astigmatism correction method, device, terminal and storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203401A (en) * 1985-03-05 1986-09-09 Mitsubishi Electric Corp Integral hybrid lens and apparatus for producing said lens
JPS6425113A (en) * 1987-07-21 1989-01-27 Mark Kk Finite system large aperture single lens

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61203401A (en) * 1985-03-05 1986-09-09 Mitsubishi Electric Corp Integral hybrid lens and apparatus for producing said lens
JPS6425113A (en) * 1987-07-21 1989-01-27 Mark Kk Finite system large aperture single lens

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002107674A (en) * 2000-09-28 2002-04-10 Fuji Photo Optical Co Ltd Collimator lens and optical scanner
JP4689805B2 (en) * 2000-09-28 2011-05-25 富士フイルム株式会社 Optical scanning device
KR100529312B1 (en) * 2002-09-17 2005-11-17 삼성전자주식회사 Hybrid lens and Projection optical system comprising the same
CN115933020A (en) * 2022-12-12 2023-04-07 森思泰克河北科技有限公司 Lens astigmatism correction method, device, terminal and storage medium

Also Published As

Publication number Publication date
JP2727373B2 (en) 1998-03-11

Similar Documents

Publication Publication Date Title
JPH0442650B2 (en)
JPS61215512A (en) Objective for optical information reader
JPH04125608A (en) Image-forming lens large in diameter of finite system
CN218332133U (en) Fixed focus lens
JP3455309B2 (en) Objective lens for endoscope
JP2000162503A (en) Reflection micro-optical system
JPS59174810A (en) Objective lens
JP2725198B2 (en) Glass molded aspheric single lens
JPS5912412A (en) Large-diameter condenser lens
JP4364328B2 (en) Objective lens for high-density optical recording media
JPS5887521A (en) Reproducing objective lens of video disk or the like
JPH11258497A (en) Objective lens optics
JPH02223906A (en) Finite system large-diameter aspherical lens
SU1659955A1 (en) 1,5 magnification projection objective
JPS6259912A (en) Large-diameter single lens
JPH02245715A (en) Aspherical single lens formed by molding of low dispersion glass
JPH01161308A (en) Lens for optical recording and reproducing device
JPS599619A (en) Large diameter condenser lens
JPS60250321A (en) Large aperture single lens
JPS62123419A (en) Focusing lens
JP2511275B2 (en) Optical system for recording / reproducing optical information media
JP2003167189A (en) Objective lens for optical disk
JPH0651198A (en) Single plano-convex aspherical cllimator lens
JPH085910A (en) Image forming lens system
JPS60172010A (en) Refractive index distribution type lens for optical pickup

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees