JPH04122471A - Method and device for gelling web coating layer - Google Patents
Method and device for gelling web coating layerInfo
- Publication number
- JPH04122471A JPH04122471A JP24151590A JP24151590A JPH04122471A JP H04122471 A JPH04122471 A JP H04122471A JP 24151590 A JP24151590 A JP 24151590A JP 24151590 A JP24151590 A JP 24151590A JP H04122471 A JPH04122471 A JP H04122471A
- Authority
- JP
- Japan
- Prior art keywords
- web
- gas
- support means
- coating layer
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 239000011247 coating layer Substances 0.000 title claims abstract description 33
- 238000007667 floating Methods 0.000 claims abstract description 10
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 8
- 238000002347 injection Methods 0.000 claims description 26
- 239000007924 injection Substances 0.000 claims description 26
- 239000000499 gel Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 abstract description 49
- 239000011248 coating agent Substances 0.000 abstract description 45
- 238000001879 gelation Methods 0.000 abstract description 9
- 239000007921 spray Substances 0.000 abstract 2
- 238000007664 blowing Methods 0.000 description 15
- 108010010803 Gelatin Proteins 0.000 description 8
- 239000008273 gelatin Substances 0.000 description 8
- 229920000159 gelatin Polymers 0.000 description 8
- 235000019322 gelatine Nutrition 0.000 description 8
- 235000011852 gelatine desserts Nutrition 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 239000010410 layer Substances 0.000 description 4
- 239000011148 porous material Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000011324 bead Substances 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000000463 material Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 1
- 241000257465 Echinoidea Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- -1 polyethylene terephthalate Polymers 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C—APPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05C5/00—Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
- B05C5/007—Slide-hopper coaters, i.e. apparatus in which the liquid or other fluent material flows freely on an inclined surface before contacting the work
Landscapes
- Coating Apparatus (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ウェブ塗布層のゲル化方法とその装置に係り
、特にハロゲン化銀写真感光材料、レントゲンフィルム
などのように、−面にケル化された塗布層を有し、他面
にゲル化前の塗布層を有する両面塗布ウェブを、無接触
状態で支持し連続的に搬送しながら、ケル化前塗布層を
ゲル化する場合に有効に適用されるゲル化方法およびそ
の装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for gelling a web coating layer and an apparatus therefor, and particularly relates to a gelling method and an apparatus for gelling a web coating layer. Effective for gelling a double-sided coated web that has a gelled coating layer on one side and a pre-gelled coating layer on the other side while supporting and continuously conveying the coating layer in a non-contact state. The present invention relates to a gelling method applied to and an apparatus therefor.
従来、被塗布ウェブの両面に塗布層を有する写真感光材
料等の製造においては、前記被塗布ウェブの片面に塗布
液を塗布し、ケル化・乾燥さぜた後、同じ工程をもう一
度通過させて、もう一方の面に塗布液を塗布・ケル化・
乾燥させていたが、近年生産効率の向」−の要請から、
塗布・ゲル化・乾燥工程を−・度のライン通過により行
う1ライン工程両面塗布方法が種々提案されている。Conventionally, in the production of photographic materials having coating layers on both sides of a web to be coated, a coating solution is applied to one side of the web to be coated, and after being gelled and dried, the same process is passed through again. , apply coating liquid to the other side, kelize it,
However, in recent years, due to the demand for improved production efficiency,
Various one-line double-sided coating methods have been proposed in which the coating, gelling, and drying steps are performed by passing through a line at -.degree.
この種の両面塗布方法としては、たとえば、特公昭48
−44171号公報、特公昭48−44171号公報に
記載される塗布方法などを挙げることができる。本出願
人においても、先の昔願固−菰トー175旦(ト)」引
分lにおいて、連続的に走行するウェブを挟んで、互い
に対向する位置にコータと気体噴射器とを配設し、前記
気体噴射器から前記ウェブに向かって気体を噴射するこ
とによって、前記ウェブを浮上支持しながら、前記コー
タにより塗布を行う方゛法を開示し、実用に供してきた
。This type of double-sided coating method includes, for example,
Examples include coating methods described in Japanese Patent Publication No. 44171-44171 and Japanese Patent Publication No. 48-44171. The present applicant also proposed a method in which a coater and a gas injector were disposed at positions facing each other across a continuously running web in the previous application. have disclosed and put to practical use a method in which coating is carried out by the coater while floating and supporting the web by injecting gas toward the web from the gas injector.
一方、前述の如(両面塗布層の形成されたウェブは、片
面にゲル化した塗布層を、反対面にゲル化前の塗布層を
有しており、ゲル化工程に連続的に送られるが、かかる
未乾燥状態の塗布層を両面に有するウェブは、塗布済層
の傷つきを防止するためには、無接触の状態で浮上支持
搬送しながらゲル化する必要がある。On the other hand, as described above, a web with double-sided coating layers has a gelled coating layer on one side and an ungelled coating layer on the other side, and is continuously sent to the gelling process. In order to prevent the coated layer from being damaged, a web having such undried coated layers on both sides needs to be gelled while being floated and conveyed in a non-contact state.
かかるゲル化方法としては、たとえば、特公昭48−4
4171号公報、特公昭4421102号公報、特公昭
51−45819号公報および特開昭54−72847
号公報等に記載のゲル化方法を挙げることができる。As such a gelling method, for example, Japanese Patent Publication No. 48-4
4171 Publication, Japanese Patent Publication No. 4421102, Japanese Patent Publication No. 51-45819, and Japanese Patent Application Publication No. 1987-72847
Examples of gelling methods include those described in Japanese Patent Publication No.
しかしながら、前記ゲル化方法にあっても、ウェブの吹
かれムラ、バタッキおよびバタッキによる塗布ムラなど
の問題があり、これらの問題点を解決すべく、改良ゲル
化方法を本出願人は先の特公昭62−24148号公報
において開示した。However, even with the above gelling method, there are problems such as uneven web blowing, flutter, and uneven coating due to flutter.In order to solve these problems, the present applicant has developed an improved gelling method as described in the previous patent. It was disclosed in Publication No. 62-24148.
前記特開昭62−24148号公報に開示されるゲル化
方法は、第7図に示されるように、先ず図示されていな
い塗布コータによって、片面に塗布およびケル化が行わ
れた後、この塗布およびゲル化完了した面側に中空円筒
体23のエア吹出し口23a、23a・・・よりエアを
吹出し、前記ウェブ22を浮上搬送させながら、塗布コ
ータ20により、他面側に塗布層21を形成させた後、
両面塗布ウェブ22を連続的に、それぞれ気体噴射口が
形成されるとともに無接触曲面を有する気体供給体A、
Bが対向的かつ千鳥状に配設された冷風ゾーンへ導き
、ケル化乾燥するものである。In the gelling method disclosed in JP-A-62-24148, as shown in FIG. Then, air is blown from the air outlets 23a, 23a... of the hollow cylindrical body 23 onto the side where gelation has been completed, and the coating layer 21 is formed on the other side by the coating coater 20 while the web 22 is floated and conveyed. After letting
The double-sided coated web 22 is continuously supplied with a gas supply body A each having a gas injection port and a non-contact curved surface;
B is guided to cold air zones arranged oppositely and in a staggered manner, where it is kelized and dried.
前記発明においては、特にケル化前の塗布層の吹かれム
ラを防止するとともに、所謂バタツキを抑えて塗布に悪
影響を及ぼさないなどのために、上側に配設される気体
供給体Aの無接触面の曲率を、下側に配設される気体供
給体Bの無接触面の曲率より小さく、具体的には、たと
えば、気体供給体Bの無接触曲面の曲率を1150〜1
/150とし、気体供給体Aの無接触面の曲率を前記
気体供給体Bのl/2〜1/4程度として構成して、こ
の気体供給体A、Bの間を波状に、かつ無接触状態にて
搬送しつつ、前記ゲル生前塗布層21のゲル化・乾燥を
行うものである。In the invention, in particular, in order to prevent uneven blowing of the coating layer before gelatinization and to suppress so-called flapping so as not to adversely affect the coating, the gas supply body A disposed on the upper side is provided in a non-contact manner. The curvature of the surface is smaller than the curvature of the non-contact surface of the gas supply body B disposed below, specifically, for example, the curvature of the non-contact curved surface of the gas supply body B is set to 1150 to 1.
/150, and the curvature of the non-contact surface of the gas supply body A is about 1/2 to 1/4 of that of the gas supply body B, and the gap between the gas supply bodies A and B is wavy and non-contact. While being conveyed in this state, the gel pre-treatment coating layer 21 is gelled and dried.
近年、高速塗布、あるいは製品の現像処理の迅速化など
の要求に対処するため、薄膜塗布およびゼラチン含有率
の減少化に向かっている。しかし、一般的にゼラチン含
有率の低下させた場合には、必然的にゲル化の際に塗布
膜が流動し易い状況となるため、より吹かれムラが発生
し易くなる。また、ウェブの高速塗布に伴い、ゲル化工
程で発生するウェブの振動などの影響を受は易くなる、
などの問題が発生している。In recent years, in order to meet the demands for high-speed coating and rapid development of products, there has been a trend towards thin film coating and reduced gelatin content. However, in general, when the gelatin content is lowered, the coating film is inevitably more likely to flow during gelation, making it more likely that uneven blowing will occur. In addition, as the web is coated at high speed, it becomes more susceptible to web vibrations that occur during the gelling process.
Problems such as this are occurring.
前記特公昭62−24148号公報に記載される方法に
関しても、従来の低速塗布、高ゼラチン含有塗布におい
ては、その効果を発揮するが、前述のように、高速塗布
、低ゼラチン含有率化などの要請には答えることはでき
ず、吹かれムラ、高速搬送に伴うゲル化工程でのウェブ
振動などが増大していた。これに対処するために、片側
の気体供給体の無接触面の曲率を小さくした場合には、
ウェブ進行方向に装置が大型化するとともに、前記無接
触面の大型化のために多数の気体噴射スリットを必要と
する。また、噴射されたエアがウェブと前記無接触面と
の間をウェブ幅手方向に大量に流れるため、この排風に
よりウェブ耳端部に流動ムラとともに、ウェブ幅方向に
冷えムラを誘発さぜる、さらには前述のように無接触面
の曲率を小さく取るために、ウェブを浮上させる風圧が
小さ(て済むが、逆に背圧が小さいために、張力変動の
際のlウェブの支持安定性に欠ける、などの問題点が発
生していた。The method described in Japanese Patent Publication No. 62-24148 is also effective in conventional low-speed coating and coating with high gelatin content, but as mentioned above, high-speed coating, low gelatin content coating, etc. The request could not be met, and problems such as uneven blowing and web vibration during the gelling process due to high-speed conveyance were increasing. To deal with this, if the curvature of the non-contact surface of one side of the gas supply body is reduced,
In addition to increasing the size of the device in the web traveling direction, a large number of gas injection slits are required to increase the size of the non-contact surface. In addition, since a large amount of the injected air flows between the web and the non-contact surface in the width direction of the web, this discharged air causes uneven flow at the edges of the web as well as cooling unevenness in the width direction of the web. Moreover, as mentioned above, in order to keep the curvature of the non-contact surface small, the wind pressure for floating the web is small (but conversely, the back pressure is small, so the support stability of the web during tension fluctuations is reduced). Problems such as lack of sexuality were occurring.
そこで、本発明の目的は、塗布ウェブのケル化方法に関
し、高速塗布条件下および低ゼラチン含有率の塗布液の
使用に際しても、吹かれムラ、流動ムラおよびウェブ振
動(バタツキ)による塗布ムラなどを誘発させないゲル
化方法およびその装置を提供することにある。SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for gelling a coated web, and to prevent uneven coating due to uneven blowing, uneven flow, and web vibration (flapping) even under high-speed coating conditions and when using a coating liquid with a low gelatin content. An object of the present invention is to provide a gelation method and device that does not induce gelation.
前記課題は、方法としては、少なくとも片面に気体の吹
付によりゲル化する塗布層を有するウェブを挟んで、気
体噴射口が形成された無接触支持手段を対向的かつ千鳥
状に配設し、ウェブを前記各無接触支持手段間を浮上状
態で波状に連続走行させて前記塗布層をゲル化させる方
法において、前記全走行領域内の少なくとも最上流側無
接触支持手段からある無接触支持手段までの風速増速領
域において、その風速増速領域内の各無接触支持手段よ
り噴射される気体のウェブ表面に対する到達風速を、ウ
ェブの進行方向位置に対応して順次増速させることで解
決できる。The above-mentioned problem can be solved by arranging non-contact support means in which gas injection ports are formed in a staggered manner facing each other, sandwiching a web having a coating layer that is gelatinized by gas spraying on at least one side of the web. In the method of gelling the coating layer by continuously traveling between the contactless support means in a floating state in a wavy manner, at least from the most upstream contactless support means to a certain contactless support means within the entire travel area. This problem can be solved by sequentially increasing the wind speed at which the gas jetted from each non-contact support means in the wind speed increasing region reaches the web surface in accordance with the position in the traveling direction of the web.
また、装置的には、少なくとも片面に気体の吹付により
ケル化する塗布層を有するウェブを挾んで、気体噴射口
が形成された無接触支持手段を対向的かつ千鳥状に配設
し、ウェブを前記各無接触支持手段間を浮」−状態で波
状に連続走行させて前記塗布層をゲル化させる装置にお
いて、前記全走行領域内の少なくとも最上流側無接触支
持手段からある無接触支持手段までの風速増速領域に配
置される無接触支持手段が、
ウェブの幅方向に沿うスリット状気体噴射口を有し、そ
の気体噴射口の開口端から奥まってスリット内に、噴出
気体流として拡散流とする透過抵抗体が配設されたこと
で解決できる。In addition, in terms of the apparatus, non-contact support means in which gas injection ports are formed are arranged oppositely and in a staggered manner, sandwiching a web having a coating layer that is sludged by blowing gas on at least one side. In the apparatus for gelling the coating layer by continuously traveling in a wave-like manner between the respective non-contact support means in a floating state, the apparatus includes at least the most upstream non-contact support means in the entire travel area to a certain non-contact support means. The non-contact support means disposed in the wind speed increasing area has a slit-shaped gas injection port along the width direction of the web, and a diffused flow is generated as a jet gas flow within the slit that is recessed from the open end of the gas injection port. This problem can be solved by providing a transmission resistor.
両面塗布の高速化およびセラチン低含有率化に対処する
ために、本発明者等は先ず、低温雰囲気かつ無風状態下
でゲル化を促進させ、その後無接触支持にて更にケル化
を進行させる方法を考えたが、この方法では、ゲル化工
程のスペースの大型化、ウェブ自重による無風領域での
ウェブ搬送が不安定となるなどの問題があり、実用化は
困難であった。In order to increase the speed of double-sided coating and reduce the content of ceratin, the present inventors first promoted gelation in a low-temperature atmosphere and windless conditions, and then further promoted gelation using non-contact support. However, this method had problems such as an increase in the space required for the gelling process and unstable web transport in windless areas due to the web's own weight, making it difficult to put it into practical use.
その後、本発明者等は、種々試験を行った後、セラチン
をバインダーとする写真感光性材料の塗布層は、その物
性などにより若干左右されるが、温度の低下に伴い徐々
に剛性が上昇すること、および吹かれムラは吹き出した
風の単位面積当りの力(風圧)ρV2 (ρ:空気密度
、V:風速)に大きく依存することに着目し、Yウェブ
の進行に伴い、すなわぢ塗布層の剛性の増加に伴い、塗
布層に向けて噴射される気体のウェブ表面に対する到達
風速を、風速増速領域内において、最上流側に配設され
る前記無接触支持手段から最終無接触支持手段まで、徐
々に増加させることによって、吹かれムラを作らず、効
率的にゲル化が行えることを知見した。また、この方法
によれば、塗布コータに最も近接した無接触支持手段か
らウェブへの到達風速は最小であるため、浮上搬送に伴
うウェブの振動があるとしても、その振動量はきわめて
小さいので、ウェブ振動に伴う塗布コータでの塗布故障
を防止できる。逆に、塗布コータからある程度離れた無
接触支持手段からのウェブへの到達風速が大きく、もっ
てウェブの振動が大きいとしても、そのウェブの振動が
塗布コータでの塗布性に与える影響は実質的に少ないの
で、良好な塗布性が得られる。Subsequently, after conducting various tests, the present inventors found that the stiffness of the coated layer of a photographic photosensitive material using ceratin as a binder gradually increases as the temperature decreases, although this depends somewhat on its physical properties. We focused on the fact that the uneven blowing greatly depends on the force (wind pressure) per unit area of the blown wind, ρV2 (ρ: air density, V: wind speed). As the rigidity of the layer increases, the final non-contact support increases the wind speed that the gas injected toward the coating layer reaches on the web surface from the non-contact support means disposed on the most upstream side within the wind speed increase area. It has been found that gelation can be efficiently performed without uneven blowing by gradually increasing the amount of water. Furthermore, according to this method, the wind speed reaching the web from the non-contact support means closest to the coating coater is minimal, so even if there is vibration of the web due to floating conveyance, the amount of vibration is extremely small. Coating failures in the coating coater due to web vibration can be prevented. On the other hand, even if the wind velocity reaching the web from a non-contact support means located a certain distance from the coating coater is high, and the vibration of the web is therefore large, the effect of the vibration of the web on the coating properties of the coating coater is substantially negligible. Since the amount is small, good applicability can be obtained.
また、本発明装置においては、吹出し風のウェブに向け
て噴射される気体風速を減少する方法として、吹出し風
を細かな噴流、すなわぢ拡散流化することによっても同
様の効果を奏することかできることに着目し、少なくと
も前記気体風速調整領域に配設される前記無接触支持手
段の気体噴射口の内方に、噴射される気体の透過抵抗体
を設けている。したがって、静圧的に気体が噴射される
ため、従来のように動圧的に気体を噴射する方法に比し
て、ウェブ振動および吹かれムラを大幅に抑えることが
できる。なお、この場合には、気体透過抵抗体により実
質的に気体噴射面積は減少するが、気体噴射口の開口面
積を拡大することによって、全体の風量を補い、ウェブ
の安定を確保することができる。Furthermore, in the device of the present invention, as a method of reducing the velocity of the gas jetted toward the web of the blown air, the same effect can be achieved by turning the blown air into a fine jet stream, that is, a diffusion flow. Focusing on this possibility, a permeation resistor for the injected gas is provided at least inside the gas injection port of the non-contact support means disposed in the gas wind speed adjustment region. Therefore, since gas is injected statically, web vibration and uneven blowing can be significantly suppressed compared to the conventional method of injecting gas dynamically. In this case, the gas injection area is substantially reduced by the gas permeation resistor, but by expanding the opening area of the gas injection port, the overall air volume can be compensated for and the stability of the web can be ensured. .
さらに、本発明装置において、気体抵抗体はスリット内
に配設されているので、ウェブが万一無接触支持手段の
ウェブ側表面に接触しても、気体抵抗体が塗布液により
汚損されることはなく、常に安定した拡散流をもって吹
き出させることができる。Furthermore, in the device of the present invention, since the gas resistor is disposed within the slit, even if the web should come into contact with the web-side surface of the non-contact support means, the gas resistor will not be contaminated by the coating liquid. It is possible to always blow out with a stable diffusion flow.
一方、両面塗布ウェブを挟んで対向的に配設されるそれ
ぞれの群の無接触支持手段の無接触面が曲率を有し、前
記特公昭62−24148号公報記載の発明のように曲
率が異なる場合には、ウェブ走行方向にウニプロ重によ
る遠心力の異なる領域が交互に連なるため、却ってウェ
ブ振動抑制の観点より好ましくなく、実質的に同曲率で
あることが望ましい。On the other hand, the non-contact surfaces of the non-contact supporting means of each group disposed facing each other with the double-sided coated web sandwiched therebetween have curvatures, and the curvatures are different as in the invention described in Japanese Patent Publication No. 62-24148. In this case, regions with different centrifugal forces due to the weight of the sea urchin are arranged alternately in the web running direction, which is rather unfavorable from the viewpoint of web vibration suppression, and it is desirable that the curvature be substantially the same.
また、両面塗布ウェブを挟んで対向的に配設される無接
触支持手段の気体噴射口の形状と17ではスリット状、
あるいは小孔状などの形状が考えられるが、本発明にお
いては前記ウェブ対向面の両端部にそれぞれウェブ幅方
向のスリブI・状の噴射口とされる。このスリット状噴
射口であれば、つ工塗布面への熱伝導率も維持しながら
、ノズル自体も比較的小型化となるため、ウェブ幅方向
に流出する空気量を抑えることができ、ウェブ耳端部に
発生ずる流動ムラおよびウェブ幅方向の冷えムラをより
効果的に抑えることができる。In addition, the shape of the gas injection port of the non-contact support means disposed oppositely with the double-sided coated web sandwiched therebetween, and the shape of the gas injection port 17 is slit-like.
Alternatively, a shape such as a small hole may be considered, but in the present invention, jet ports are formed in the shape of a sleeve I in the width direction of the web at both ends of the web facing surface. With this slit-shaped injection port, the nozzle itself can be made relatively small while maintaining thermal conductivity to the coating surface, making it possible to suppress the amount of air flowing out in the web width direction and It is possible to more effectively suppress flow unevenness occurring at the ends and cooling unevenness in the width direction of the web.
なお、本発明に係る方法と装置とを組合せれば、より効
果的であることはいうまでもない。It goes without saying that a combination of the method and apparatus according to the present invention will be more effective.
以下、本発明を具体例に基づき詳説する。 Hereinafter, the present invention will be explained in detail based on specific examples.
第1図は本発明に係るゲル化装置を示す。FIG. 1 shows a gelling device according to the invention.
ウェブ1は、既にその片面1aに、スライI・ホツバー
型塗布装置と気体噴出器との組合せなどにより塗布が行
われ、かつその後のゲル化および乾燥が完了した塗布層
を有するウェブであり、塗布コータ4により未塗布面(
他面)lbに対し塗布が行われる。The web 1 is a web having a coating layer on one side 1a which has been coated by a combination of a sly I/hotbar type coating device and a gas jet, and which has been gelled and dried. Uncoated surface (
On the other side) coating is performed on lb.
かかる塗布方法は、先ず、その円筒壁面のほぼ手内部分
に吹出し口3a、3a・が多数形成された中空のエア吹
出しドラム3に、ブロアー2が連通されており、このブ
ロアー2からのエアが各吹出し口3a、3a・・から吐
出され、ウェブ1を浮上状態で搬送させるようになって
いる。In this coating method, first, a blower 2 is connected to a hollow air blowing drum 3 in which a large number of blowing ports 3a, 3a are formed in the inner portion of the cylindrical wall surface, and the air from the blower 2 is It is discharged from each outlet 3a, 3a, etc., and the web 1 is conveyed in a floating state.
かかる気体噴射器に対して、ウェブ1が進入し、ドラム
3を巡り、気体噴射器からの吐出エア圧力により浮上搬
送される過程で、スライドホッパ型塗布コータ4からビ
ード塗布される。この塗布コータ4は、具体例では、流
出スリット4Aを有し、塗布コータ4内に形成された液
溜め部4Bに図示されないポンプを介して押し込まれた
塗布液5が前記流出スリット4Aから流出され、ウェブ
1上に向かう。この時、塗布コータ4のヘッド肩とウェ
ブ1の表面との間に僅かなりリアランスGを有しており
、かつウェブ1が連続的に搬送されているので、各塗布
液5は前記クリアランスGにてビードを形成しながら架
橋状態で連続的に塗布される。The web 1 enters the gas injector, travels around the drum 3, and is bead coated from the slide hopper type coating coater 4 while being floated and conveyed by the air pressure discharged from the gas injector. In a specific example, this application coater 4 has an outflow slit 4A, and the application liquid 5 pushed into a liquid reservoir 4B formed in the application coater 4 via a pump (not shown) flows out from the outflow slit 4A. , head over to Web 1. At this time, there is a slight clearance G between the head shoulder of the coating coater 4 and the surface of the web 1, and since the web 1 is being conveyed continuously, each coating liquid 5 is applied to the clearance G. It is applied continuously in a crosslinked state while forming beads.
前記気体噴射器からの噴射圧力としては、ドラム10の
内部圧力の基準で300〜2000mmA qが好まし
い。気体、通常エアの噴射量としては、0.3〜5.0
cc/cm27secが望ましい。エア噴射口は、ラ
ンダムに形成した円、あるいは適宜の形状のものなどと
することができる。また、ドラム3の幅方向に開口面積
率を異ならせることもできる。The injection pressure from the gas injector is preferably 300 to 2000 mmAq based on the internal pressure of the drum 10. The injection amount of gas, normal air, is 0.3 to 5.0.
cc/cm27sec is desirable. The air injection port may be a randomly formed circle or an appropriate shape. Further, the opening area ratio can also be varied in the width direction of the drum 3.
また、ドラム3の断面形状としては、通常は円形のもの
を用いるのが望ましいが、少なくともウェブ1の進入位
置からビードの形成位置までの円弧が形成されておれば
、他の部分の形状については必ずしも限定されない。Further, it is usually desirable to use a circular cross-sectional shape for the drum 3, but as long as an arc is formed from the entrance position of the web 1 to the bead formation position, the shape of other parts can be changed. Not necessarily limited.
以上のように構成される塗布装置により、ウェブ1の1
b面に塗布が行われたウェブ1は、そのゲル化工程へと
送られる。With the coating device configured as described above, one part of the web 1 can be coated.
The web 1 whose b side has been coated is sent to the gelling process.
ゲル化を行うケル化装置は、先ず搬送されるウェブ1を
挟んで対向的かつ千鳥状に複数の無接触支持手段71.
72.7.・・・が配設される。前記無接触支持手段7
(以下、単に支持手段という)は、ウェブ進行方向前後
にそれぞれウェブ幅方向に沿うスリット状の噴射ロアa
、7aが形成された2スリット型の支持手段である。ま
た、前記支持手段としては、第2図に示されるように、
ウェブ1に対向する側は、一定曲率の曲面が形成され、
かつウェブ]の幅方向に沿う複数のスリブl−1,oa
、10a・・が形成されたものも使用することもできる
。The gelling device that performs gelling first uses a plurality of non-contact support means 71.
72.7. ... will be installed. The non-contact support means 7
(hereinafter simply referred to as supporting means) are slit-shaped injection lowers a extending along the web width direction at the front and back of the web traveling direction.
, 7a is a two-slit type support means. Further, as the support means, as shown in FIG.
On the side facing the web 1, a curved surface with a constant curvature is formed,
and a plurality of ribs l-1, oa along the width direction of the web]
, 10a, etc. can also be used.
また、前記2スリット型支持手段の変形例としては、た
とえば、第3図に示されるように、ウェブ1進行方向の
両端部に形成される2本のスリブt−1,]、、 a
、 1.1 aの噴射方向が内側を向いているものでも
よい。Further, as a modification of the two-slit support means, for example, as shown in FIG. 3, two slits t-1, ], a
, 1.1 The injection direction of a may be directed inward.
本発明者等による知見によれば、ウェブ1の進行方向前
後にそれぞれ形成された前記2スリ・ソト型支持手段7
.11の方が、前記曲面多数スリ・ソト型支持手段10
に比して、両スリツ1〜間の間に静圧領域が形成され、
高速搬送時の支持安定性が向上するとともに、ウェブ1
幅方向に流れる空気量が減少し、ウェブ1耳端部の流動
ムラ、冷えムラなどが抑えられることが確認されている
。According to the findings of the present inventors, the two slit-type support means 7 are formed at the front and back of the web 1 in the traveling direction.
.. 11 is the curved surface multi-sleeve type support means 10.
Compared to this, a static pressure region is formed between the two slots 1 and 1.
Support stability during high-speed conveyance is improved, and web 1
It has been confirmed that the amount of air flowing in the width direction is reduced, and uneven flow and cooling at the edge of the web 1 are suppressed.
前記千鳥状に配設される支持手段群70.7□・・・に
対しては、ブロア6によりエア供給管9を介して圧力エ
アが供給されるとともに、各支持手段群7□、72・・
・に分岐する供給管9の中間には、風量調整弁81.8
2・・・がそれぞれ設けられている。Pressurized air is supplied by the blower 6 through the air supply pipe 9 to the support means groups 70.7□... arranged in a staggered manner, and the support means groups 70.7□, 72.・
An air volume adjustment valve 81.8 is installed in the middle of the supply pipe 9 that branches into
2... are provided respectively.
本発明においては、かかるゲル化装置の下で、最」二流
側に設置される支持手段7Iから噴射される[クエブ]
表面に対する到達風速を最小値として、その後下流側に
向かうに従い、到達風速を徐々に増加させるように調整
する。In the present invention, [QUEB] is injected from the support means 7I installed on the most second stream side under the gelling device.
Adjustment is made so that the reaching wind speed relative to the surface is set as the minimum value, and then the reaching wind speed is gradually increased toward the downstream side.
たとえば、第6図にライン進行方向の支持手段配設位置
とその支持手段による気体噴射風速との関係の一例が示
されるように、最上流側に配設される支持手段よりある
一定区間に設置される支持手段については、ライン進行
に伴い徐々に風速が増加するように前記風量調整弁8゜
、8□・・・により調整が成され、その後、一定風速と
なるように調整される。具体的数値としては、たとえば
支持手段7における最小風速値は、1〜5 m/sec
、特に2〜4m/see程度の風速とするのが望ましい
。また、前記−走風速値としては、好ましくは16m/
sec。For example, as shown in Fig. 6, which shows an example of the relationship between the position of the support means in the direction of line movement and the gas jet speed of the support means, the support means may be installed in a certain section from the support means disposed on the most upstream side. The support means used for this purpose are adjusted by the air volume adjusting valves 8°, 8□, etc. so that the wind speed gradually increases as the line progresses, and then adjusted to maintain a constant wind speed. As a specific numerical value, for example, the minimum wind speed value in the support means 7 is 1 to 5 m/sec.
In particular, it is desirable to set the wind speed to about 2 to 4 m/see. Further, the above-mentioned - wind speed value is preferably 16 m/
sec.
より好ましくは12m/secとするのが望ましい。More preferably, the speed is 12 m/sec.
また、前記風速調整区間長は、塗布層の表面温度が、セ
ラチンの流動性が著しく低下する約10°C程度になる
迄等を目安として決定することができる。一方、前述の
説明からも推測できるように、ウェブ1の搬送長が短い
場合などにおいては、ウェブ1の進行方向に沿って第1
の支持手段から最終の支持手段に至るまで、段階的に各
支持手段からの到達風速を異ならせることができる。Further, the length of the wind speed adjustment section can be determined using as a guideline until the surface temperature of the coating layer reaches about 10° C., at which point the fluidity of seratin is significantly reduced. On the other hand, as can be inferred from the above explanation, when the conveyance length of the web 1 is short, the first
From the first support means to the final support means, the wind speed reached by each support means can be made different in stages.
なお、気体噴射風速が極小さい領域、具体的には支持手
段717□などにおいては、ウェブ1の支持安定性およ
び熱伝導率が低下するが、これはスリット幅を大きくし
てスリットからの風量を増加させるなどの方法により対
処することができる。Note that in areas where the gas injection wind speed is extremely low, specifically in the support means 717□, the support stability and thermal conductivity of the web 1 decrease, but this can be solved by increasing the slit width and reducing the air volume from the slit. This can be countered by methods such as increasing the
ところで、前述のような各支持手段の気体噴射風速の調
整によらずとも、吹出し風を拡散化(小噴流化)するこ
とによっても、同様の効果を得ることができる。By the way, the same effect can be obtained by diffusing the blown air (making it into a small jet) without adjusting the gas jet wind velocity of each support means as described above.
具体的には、第4図および第5図に示されるように、支
持手段7.11の噴射口の内方に、金属メツシュ、焼結
金属、ナイロン系のネット等の気体透過抵抗体12を設
けることでもよい。Specifically, as shown in FIGS. 4 and 5, a gas permeation resistor 12 such as a metal mesh, sintered metal, or nylon net is placed inside the injection port of the support means 7.11. It is also possible to provide one.
前記気体透過抵抗体12は、仮に支持手段7とウェブ1
とが接触した場合には、気体透過抵抗体12の洗浄は困
難であり、交換が必要となるため、生産効率の低下など
の弊害を招くため、ウェブの噴射口の内側に設けられる
。なお、前記気体透過抵抗体12の噴射口からの奥まり
取付は位置lはたとえ数肛でも充分に効果を奏すること
ができる。The gas permeation resistor 12 is temporarily connected to the support means 7 and the web 1.
If the gas permeation resistor 12 comes into contact with the gas permeation resistor 12, it is difficult to clean the gas permeation resistor 12 and the gas permeation resistor 12 needs to be replaced, which causes problems such as a decrease in production efficiency. It should be noted that mounting the gas permeation resistor 12 recessed from the injection port can be sufficiently effective even if the position l is a few holes.
また、前記気体透過抵抗体12の表面の開孔率(総量孔
面積/噴射口面積)は、大き過ぎると拡散効果がなくな
り、また小さ過ぎるとウェブ1の支持安定性に欠けるこ
とになるため、10〜60%、好ましくは20〜40%
が望ましい。また、同開孔率の場合でも、より小孔化し
、小孔数を増やずのが良い。たとえば、金属メツシュの
場合には、線径を小さ(し、線密度を増すようにするの
が良い。In addition, if the porosity (total pore area/injection port area) of the surface of the gas permeation resistor 12 is too large, the diffusion effect will be lost, and if it is too small, the support stability of the web 1 will be lacking. 10-60%, preferably 20-40%
is desirable. Furthermore, even if the pore size is the same, it is better to make the pores smaller and not increase the number of pores. For example, in the case of metal mesh, it is better to reduce the wire diameter and increase the linear density.
なお、本発明におけるウェブ1としては、ポリエチレン
テレフタレーh(PET)、セルローストリアセテート
などを挙げることができる。In addition, examples of the web 1 in the present invention include polyethylene terephthalate (PET), cellulose triacetate, and the like.
さらに、本発明は、気体噴出器を用いて浮上搬送しなが
ら塗布する場合に対して有効に適用されるが、バックロ
ールなどによりウェブを接触状態で案内しながら塗布を
行う場合にも適用できる。Furthermore, although the present invention is effectively applied to coating while floating and conveying using a gas jet, it can also be applied to coating while guiding the web in contact with a back roll or the like.
また、塗布装置としては、スライドホッパー型の場合の
ほか、押出し方式などでもよい。しかも、本発明は両面
塗布に限定されることなく、片面塗布の場合におけるゲ
ル化にたいしても、良好に適用できる。In addition, the coating device may be of a slide hopper type or may be of an extrusion type. Moreover, the present invention is not limited to double-sided coating, but can be applied favorably to gelation in single-sided coating.
以下、本発明の効果を実施例に基づき詳説する。 Hereinafter, the effects of the present invention will be explained in detail based on Examples.
(実施例1)
本出願人が先に開示した特公昭62−24148号公報
によるゲル化方法によっては、塗布条件(ウェブ搬送速
度60…/sec以−し、ゼラチン含有率45%以下の
場合には、塗布層に吹かれムラ、ハタツキによる塗布障
害などの弊害が発生し、良好な塗布層を得ることが出来
なかった。そこで、第1図に示されるゲル化装置により
、塗布条件−ウェブ搬送速度6 0 m7sec、塗布
液のゼラチン含有率4,5にの条件下で両面塗布を行っ
た。(Example 1) Depending on the gelling method according to Japanese Patent Publication No. 62-24148 previously disclosed by the present applicant, coating conditions (web conveyance speed of 60.../sec or more, gelatin content of 45% or less) However, it was not possible to obtain a good coating layer due to problems such as coating failure due to unevenness and flaking of the coating layer.Therefore, a gelling device shown in Fig. 1 was used to adjust the coating conditions - web transport. Double-sided coating was performed at a speed of 60 m7 sec and a gelatin content of 4.5.
なお、各支持手段71,7□,73・における調整風速
を第1表に示す。なお、支持手段番号は上流側より1、
2、3・・・の番号とする。In addition, the adjusted wind speed in each support means 71, 7□, 73 is shown in Table 1. In addition, the support means numbers are 1 from the upstream side,
The numbers will be 2, 3, etc.
第 1 表
前記試験の結果、本発明法によれば、得られる両面塗布
ウェブの塗布層には吹かれムラ、流動ムラおよびウェブ
のハタツキによる塗布不良なども無く良好な製品を得る
ことができた。Table 1 As a result of the above test, according to the method of the present invention, a good product could be obtained with no coating defects due to uneven blowing, uneven flow, or flopping of the web in the coating layer of the obtained double-sided coated web. .
(実施例2)
実施例2においては、各支持手段の風速を調整すること
無く、第5図に示されるように、気体噴射口の内方に、
SUSメツシュを備え、噴射気体の拡散化を図った方法
により、同様の試験を行った。(Example 2) In Example 2, without adjusting the wind speed of each support means, as shown in FIG.
A similar test was conducted using a method in which a SUS mesh was used to diffuse the injected gas.
前記SUSメツシュとしては、1インチ当り50本の線
数を有し、空隙率30%のものを使用した。また、吹出
し風圧は20mmAqとして一定とした。なお、因みに
、前記吹出し風圧20mmAqの同一条件下において、
前記SUSメツシュが無い場合のウェブ表面への到達風
速を測定すると、16、5 m/seeであったのに対
し、前記SUSメツシュを備えることによって、風速は
5.8 m/secに低減できた。The SUS mesh used had a number of wires of 50 per inch and a porosity of 30%. Further, the blowing wind pressure was kept constant at 20 mmAq. Incidentally, under the same conditions of the above-mentioned blowout wind pressure of 20 mmAq,
When the wind speed reaching the web surface without the SUS mesh was measured, it was 16.5 m/sec, whereas with the SUS mesh, the wind speed was reduced to 5.8 m/sec. .
前記試験の結果、本発明法によっても、得られる両面塗
布ウェブの塗布層には吹かれムラ、流動ムラおよびウェ
ブのハタツキによる塗布不良などが無く良好であった。As a result of the above-mentioned test, the coating layer of the double-sided coated web obtained by the method of the present invention was good, with no coating defects due to uneven blowing, uneven flow, or flopping of the web.
以」−、詳説したとおり、本発明によれば、両面塗布さ
れたウェブのゲル化に際し、たとえ高速塗布および低ゼ
ラチン含有率であっても、吹かれムラ、流動ムラおよび
ウェブ振動(ハタツキ)による塗布不良を引き起こすこ
とがない。As described in detail, according to the present invention, when gelling a double-sided coated web, even with high speed coating and low gelatin content, uneven blowing, uneven flow, and web vibration (flutter) can be avoided. Does not cause coating defects.
第1図は本発明に係る両面塗布ウェブのゲル化装置を示
す図、第2図および第3図は無接触支持手段の変形例を
示す図、第4図および第5図は無接触支持手段の気体噴
射口に気体透過邸抗体を設けた図、第6図はライン進行
方向の支持手段配設位置とその支持手段による気体噴射
風圧との関係の一例を示す図、第7図は従来の両面塗布
ウェブのゲル化装置を示す図である。FIG. 1 shows a gelling device for a double-sided coated web according to the present invention, FIGS. 2 and 3 show modifications of the non-contact support means, and FIGS. 4 and 5 show a non-contact support means. 6 is a diagram showing an example of the relationship between the support means placement position in the line traveling direction and the gas injection wind pressure by the support means, and FIG. 7 is a diagram showing the conventional FIG. 2 is a diagram showing a gelling device for a double-sided coated web.
Claims (2)
布層を有するウェブを挟んで、気体噴射口が形成された
無接触支持手段を対向的かつ千鳥状に配設し、ウェブを
前記各無接触支持手段間を浮上状態で波状に連続走行さ
せて前記塗布層をゲル化させる方法において、 前記全走行領域内の少なくとも最上流側無接触支持手段
からある無接触支持手段までの風速増速領域において、
その風速増速領域内の各無接触支持手段より噴射される
気体のウェブ表面に対する到達風速を、ウェブの進行方
向位置に対応して順次増速させることを特徴とするウェ
ブ塗布層のゲル化方法。(1) Non-contact support means in which gas injection ports are formed are arranged oppositely and in a staggered manner, sandwiching a web having a coating layer that gels when sprayed with gas on at least one side, and supporting each of the above-mentioned non-contact supports In the method of gelling the coating layer by continuously traveling between supporting means in a floating state in a wavy manner, at least in a wind speed increasing region from the most upstream non-contact supporting means to a certain non-contact supporting means within the entire traveling region. ,
A method for gelling a web coating layer, the method comprising sequentially increasing the wind speed at which the gas jetted from each non-contact support means in the wind speed increasing region reaches the web surface in accordance with the position in the traveling direction of the web. .
布層を有するウェブを挟んで、気体噴射口が形成された
無接触支持手段を対向的かつ千鳥状に配設し、ウェブを
前記各無接触支持手段間を浮上状態で波状に連続走行さ
せて前記塗布層をゲル化させる装置において、 前記全走行領域内の少なくとも最上流側無接触支持手段
からある無接触支持手段までの風速増速領域に配置され
る無接触支持手段が、 ウェブの幅方向に沿うスリット状気体噴射口を有し、そ
の気体噴射口の開口端から奥まってスリット内に、噴出
気体流として拡散流とする透過抵抗体が配設されたこと
を特徴とするウェブ塗布層のゲル化装置。(2) Non-contact support means in which gas injection ports are formed are arranged facing each other in a staggered manner, sandwiching a web having a coating layer that gels when sprayed with gas on at least one side, and supporting each of the above-mentioned non-contact supports. In an apparatus that gels the coating layer by continuously traveling between support means in a floating state in a wavy manner, the wind speed is increased in a wind speed increasing region from at least the most upstream non-contact support means to a certain non-contact support means within the entire travel region. The non-contact support means arranged has a slit-shaped gas injection port along the width direction of the web, and a permeation resistor that is recessed from the open end of the gas injection port and inside the slit is arranged to make the ejected gas flow diffuse. A gelling device for a web coating layer, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24151590A JPH04122471A (en) | 1990-09-12 | 1990-09-12 | Method and device for gelling web coating layer |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP24151590A JPH04122471A (en) | 1990-09-12 | 1990-09-12 | Method and device for gelling web coating layer |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04122471A true JPH04122471A (en) | 1992-04-22 |
Family
ID=17075490
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP24151590A Pending JPH04122471A (en) | 1990-09-12 | 1990-09-12 | Method and device for gelling web coating layer |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04122471A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005089043A (en) * | 2003-09-16 | 2005-04-07 | Hitachi Zosen Corp | Air-floating belt conveyor |
JP2009046272A (en) * | 2007-08-22 | 2009-03-05 | Bellmatic Ltd | Levitation device of film-shaped article |
-
1990
- 1990-09-12 JP JP24151590A patent/JPH04122471A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005089043A (en) * | 2003-09-16 | 2005-04-07 | Hitachi Zosen Corp | Air-floating belt conveyor |
JP2009046272A (en) * | 2007-08-22 | 2009-03-05 | Bellmatic Ltd | Levitation device of film-shaped article |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7080465B2 (en) | Method of manufacturing inkjet recording sheet and drying apparatus for application film | |
US20020076499A1 (en) | Coating device and coating method | |
JPS5879566A (en) | Method and apparatus for coating | |
JPH04122471A (en) | Method and device for gelling web coating layer | |
US5136966A (en) | Web coating apparatus | |
JP2724400B2 (en) | Web coating device | |
JPH0375227B2 (en) | ||
JP2001113216A (en) | Coating product, coating production apparatus, and coating production method | |
JP2724398B2 (en) | Web coating device | |
JP2724399B2 (en) | Web coating device | |
JP2537208Y2 (en) | Double side coating device | |
JPH0822410B2 (en) | Coating method and coating device | |
JP2891360B2 (en) | Web coating device | |
JP2000176344A (en) | Coating method and coating device | |
JP4743482B2 (en) | Coating liquid coating method and coating apparatus | |
JP2821804B2 (en) | Web coating equipment | |
JPS6111173A (en) | Method and device for coating | |
JPS62244469A (en) | Apparatus for absorbing vibration of web | |
KR20090096316A (en) | Coating device | |
JP2698926B2 (en) | Web tension control device | |
JPS6224148B2 (en) | ||
JP2534901B2 (en) | Web applicator | |
JPS59206079A (en) | Coating method | |
JPH057816A (en) | Web coating device | |
EP0097494B1 (en) | Coating apparatus |