[go: up one dir, main page]

JPH0412114B2 - - Google Patents

Info

Publication number
JPH0412114B2
JPH0412114B2 JP58239396A JP23939683A JPH0412114B2 JP H0412114 B2 JPH0412114 B2 JP H0412114B2 JP 58239396 A JP58239396 A JP 58239396A JP 23939683 A JP23939683 A JP 23939683A JP H0412114 B2 JPH0412114 B2 JP H0412114B2
Authority
JP
Japan
Prior art keywords
oil
lipase
units
regioselectivity
triglyceride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58239396A
Other languages
Japanese (ja)
Other versions
JPS60130396A (en
Inventor
Yukinobu Murase
Kazuaki Suzuki
Eiji Nakai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP58239396A priority Critical patent/JPS60130396A/en
Publication of JPS60130396A publication Critical patent/JPS60130396A/en
Publication of JPH0412114B2 publication Critical patent/JPH0412114B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

【発明の詳細な説明】 本発明は、リパーゼを用いて高分解率でかつ後
処理の容易な長鎖不飽和脂肪酸を含む油脂の加水
分解方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for hydrolyzing fats and oils containing long-chain unsaturated fatty acids with a high decomposition rate and easy post-treatment using lipase.

油脂の加水分解方法には、ケン化分解法、高圧
分解法、トイツチエル分解法などがあり、これら
の方法によつて得られた脂肪酸は着色が著しく、
後処理工程として蒸留が不可欠である。
Methods for hydrolyzing fats and oils include saponification, high-pressure decomposition, and Teutschiel decomposition, and the fatty acids obtained by these methods are markedly colored;
Distillation is essential as a post-processing step.

しかし、炭素数20以上の長鎖不飽和脂肪酸は沸
点が高いため、高真空下、高温というエネルギ
ー・コストがかかるだけでなく、高温にさらされ
るため、重合などによる蒸留残渣が増加し、蒸留
収率が低下するとともに魚、鯨油などのようにテ
トラエン以上のポリエン酸を多量に含む場合は、
それらが蒸留されたとしても、二重結合の異性化
が起り、ポリエン酸の異性体を多量に作り出すと
いう結果を生じてしまう欠点がある。
However, long-chain unsaturated fatty acids with carbon atoms of 20 or more have a high boiling point, so not only do they require energy and cost under high vacuum and high temperatures, but exposure to high temperatures increases the amount of distillation residue due to polymerization, reducing the distillation yield. When the percentage decreases and a large amount of polyenoic acid of tetraene or higher is contained, such as fish or whale oil,
Even if they are distilled, they have the disadvantage that double bond isomerization occurs, resulting in the production of large amounts of polyenoic acid isomers.

そこで、化学的な加水分解には不可欠の蒸留と
いう操作を必要としないリパーゼ酵素分解方法が
知られているが、通常の方法では、炭素数20以上
の長鎖不飽和脂肪酸を含有する油脂は含有しない
油脂に比べて加水分解されにくく、実質的には分
解率が約60%までしか進行しないというのが従来
の加水分解結果であつた。すなわち、炭素数18以
下の脂肪酸は非常に加水分解され易く、炭素数20
以上の脂肪酸は加水分解されにくいことがわかつ
ている。これを利用すると特開昭58−165796号公
報に記載されているように、炭素数18以下の脂肪
酸を加水分解し、炭素数20以上の脂肪酸をグリセ
リドとして分離することが可能となるのである。
Therefore, a lipase enzymatic decomposition method is known that does not require distillation, which is essential for chemical hydrolysis. Conventional results of hydrolysis have shown that the decomposition rate actually progresses to only about 60%. In other words, fatty acids with carbon numbers of 18 or less are very easily hydrolyzed;
It is known that the above fatty acids are difficult to be hydrolyzed. Utilizing this, as described in JP-A-58-165796, it becomes possible to hydrolyze fatty acids with 18 or fewer carbon atoms and separate fatty acids with 20 or more carbon atoms as glycerides.

そこで本発明者らは、長鎖不飽和脂肪酸を含有
する油脂の分解率を高めるために、酵素の量、水
のPH、水の量、添加剤の有無などの反応方法を鋭
意検討したがトリグリセリド位置選択性を有する
油脂分解酵素では2−位の脂肪酸を加水分解しな
いため、最大でも約60%、また、トリグリセリド
位置選択性を有しない油脂分解酵素では、水の
量、酵素添加量などの加水分解条件を工業的に実
用性のない条件(例えば油:水=1:50〜100、
油1gに対して酵素2万ユニツト)で長時間反応
させた場合でも最大分解率で70%止まりであつ
た。
Therefore, in order to increase the decomposition rate of oils and fats containing long-chain unsaturated fatty acids, the present inventors have intensively investigated reaction methods such as the amount of enzyme, the pH of water, the amount of water, and the presence or absence of additives. Since lipolytic enzymes with regioselectivity do not hydrolyze fatty acids at the 2-position, the maximum hydrolysis rate is approximately 60%, and lipolytic enzymes without triglyceride regioselectivity do not hydrolyze the amount of water or amount of enzyme added. Change the decomposition conditions to industrially impractical conditions (e.g. oil:water = 1:50-100,
Even when reacting for a long time with 20,000 units of enzyme per gram of oil, the maximum decomposition rate remained at 70%.

そこで、トリグリセリド位置選択性の有無によ
る油脂分解酵素による分解物組成等をさらに深く
掘り下げて検討を進めた結果、特定の酵素を組合
せることにより炭素数20以上の長鎖不飽和脂肪酸
含有油脂の加水分解率を高め、高収率で中和価の
高い脂肪酸が得られることを見い出し本発明に到
つた。
Therefore, as a result of further delving into the composition of decomposed products by fat-degrading enzymes depending on the presence or absence of triglyceride regioselectivity, we found that by combining specific enzymes, fats and oils containing long-chain unsaturated fatty acids with carbon atoms of 20 or more can be hydrated. The inventors have discovered that it is possible to increase the decomposition rate and obtain fatty acids with high yield and high neutralization value, leading to the present invention.

即ち、本発明は炭素数20以上の長鎖不飽和脂肪
酸含有油脂を、トリグリセリド位置選択性を有す
るリパーゼとトリグリセリド位置選択性を有しな
いリパーゼを併用して加水分解する際に、該トリ
グリセリド位置選択性を有するリパーゼと該トリ
グリセリド位置選択性を有しないリパーゼを、油
脂加水分解活性単位の比で1:1〜30とすること
を特徴とする該油脂の加水分解方法に係わるもの
である。
That is, the present invention provides a method for hydrolyzing fats and oils containing long-chain unsaturated fatty acids having 20 or more carbon atoms using a lipase that has triglyceride regioselectivity and a lipase that does not have triglyceride regioselectivity. The present invention relates to a method for hydrolyzing fats and oils, characterized in that the ratio of fat and oil hydrolyzing activity units of the lipase having the above and the lipase having no triglyceride regioselectivity is 1:1 to 30.

本発明の実施にあたつては、長鎖不飽和脂肪酸
を含有する油脂類に、トリグリセリド位置選択性
を有するリパーゼと有しないリパーゼを同時ある
いは、後者を反応途中に加えて加水分解を行な
い、次いでそれらのリパーゼおよび水相を分離す
ることによつて高分解率の分解生成物を得る。
In carrying out the present invention, fats and oils containing long-chain unsaturated fatty acids are hydrolyzed by adding a lipase with and without triglyceride regioselectivity simultaneously or during the reaction, and then By separating the lipase and aqueous phases, high degradation products are obtained.

本発明における長鎖不飽和脂肪酸とは炭素数20
以上のモノエン酸、ジエン酸、トリエン酸、テト
ラエン酸、ペンタエン酸、ヘキサエン酸などで、
これらを多量に含む天然油脂としては魚油、鯨
油、高エルカ酸なたね油、からし油などがあげら
れるが、本発明に使用できる原料は、これらのど
れかを含む混合油や共役異性化油あるいは水添油
でもよい。
In the present invention, the long chain unsaturated fatty acid has 20 carbon atoms.
The above monoenoic acids, dienoic acids, trienoic acids, tetraenoic acids, pentaenoic acids, hexaenoic acids, etc.
Natural oils and fats that contain large amounts of these include fish oil, whale oil, high erucic acid rapeseed oil, mustard oil, etc., but the raw materials that can be used in the present invention are mixed oils, conjugated isomerized oils, or water containing any of these. Added oil may also be used.

本発明においてトリグリセリド位置選択性を有
するリパーゼとして用いられるのは微生物起源の
アスペルギルス(Aspergillus)属、リゾプス
(Rhizopus)属および動物起源のすい臓
(Pancreatin)から得られるリパーゼ等である
が、特に、アスペルギルス・ニガー
(Aspergillus niger)、リゾプス・デレマー
(Rhizopus delemar)およびすい臓
(Pancreatin)から得られるリパーゼが好まし
い。
In the present invention, the lipases having triglyceride regioselectivity used include lipases obtained from the genus Aspergillus and Rhizopus of microbial origin, and pancreatin of animal origin. Lipases obtained from Aspergillus niger, Rhizopus delemar and Pancreatin are preferred.

また、トリグリセリド位置選択性を有しないリ
パーゼとしては微生物起源のペニシリウム
(Penicillium)属、ジオトリクム(Geotricum)
属、キヤンデイダ(Candida)属等を用いること
ができ、特に、ジオトリクム・キヤンデイダム
(Geotrichum candidum)、キヤンデイダ・シリ
ンドラシエ(Candida cylindracea)から得られ
るリパーゼを用いるのが好ましい。
In addition, lipases without triglyceride regioselectivity include those of the genus Penicillium and Geotricum, which originate from microorganisms.
In particular, lipases obtained from Geotrichum candidum and Candida cylindracea are preferably used.

加水分解条件は公知の方法に従い行なえばよい
が、リパーゼの使用量は、位置選択性を有するリ
パーゼと位置選択性を有しないリパーゼを、油脂
加水分解活性単位の比で1:1〜30とし、さらに
は、油脂加水分解活性を示すU(ユニツト)で示
すと、反応基質(油)1gに対して、位置選択性
を有するリパーゼが60〜1000U、位置選択性を有
しないリパーゼが200〜3000Uとするのが好まし
い。更に望ましくは、前者と後者のリパーゼを、
油脂加水分解活性単位の比で1:3〜15とし、前
者のリパーゼが100〜500U、後者のリパーゼが
300〜1500Uとするものである。
The hydrolysis conditions may be carried out according to known methods, but the amount of lipase used is such that the ratio of lipase with regioselectivity to lipase without regioselectivity is 1:1 to 30 in terms of fat and oil hydrolyzing activity units; Furthermore, when expressed as U (unit), which indicates fat and oil hydrolysis activity, lipase with regioselectivity has 60 to 1000 U, and lipase without regioselectivity has 200 to 3000 U, per 1 g of reaction substrate (oil). It is preferable to do so. More preferably, the former and latter lipases are
The ratio of fat and oil hydrolyzing activity units is 1:3 to 15, with the former lipase being 100 to 500 U, and the latter lipase being 1:3 to 15.
It should be 300 to 1500U.

水の添加量は油脂に対して30〜500%(重量基
準、以下同じ)が好ましく、50〜200%が更に好
ましい。少量の水では平衡反応により加水分解が
進行しにくい。また、500%を超えると経済的な
分解ができない。
The amount of water added is preferably 30 to 500% (by weight, same hereinafter), more preferably 50 to 200%, based on the fat or oil. In a small amount of water, hydrolysis does not proceed easily due to an equilibrium reaction. Moreover, if it exceeds 500%, economical decomposition is not possible.

水のPHは4.5〜8.5の範囲が好ましく、このPHを
調節するために緩衝液を用いるとさらに効果的
で、PHとして5.5〜8.0が特に望ましい範囲であ
る。さらに、より効果的な反応を行うためには、
乳化剤例えば、ポリビニルアルコール、脂肪酸エ
ステルなどを用いることもでき、また、加水分解
活性を高めるために胆汁酸塩の添加も効果があ
る。加水分解反応は、大気下で行なつても良い
が、魚油・鯨油のように長鎖の高度不飽和酸を多
量に含む場合は、不活性ガス下、例えば窒素ガ
ス、炭酸ガスの雰囲気にしておくと脂肪酸の劣化
を防ぐばかりでなく、酵素の失活をも防止でき
る。また、酸化防止剤、例えばトコフエロール、
TBHQ、BHA、BHTを併用しても良い。
The pH of water is preferably in the range of 4.5 to 8.5, and it is more effective to use a buffer to adjust the pH, with a particularly desirable pH range of 5.5 to 8.0. Furthermore, for a more effective reaction,
Emulsifiers such as polyvinyl alcohol and fatty acid esters can also be used, and addition of bile salts is also effective in increasing hydrolysis activity. The hydrolysis reaction may be carried out in the atmosphere, but if it contains a large amount of long-chain highly unsaturated acids, such as fish oil or whale oil, it may be carried out under an inert gas atmosphere, such as nitrogen gas or carbon dioxide atmosphere. Leaving it for a long time not only prevents deterioration of fatty acids, but also prevents enzyme deactivation. Also, antioxidants, such as tocopherols,
TBHQ, BHA, and BHT may be used together.

加水分解反応は20〜60℃で行なうのが好まし
い。20℃未満では反応が遅く、60℃を超えると酵
素が失活する。30〜50℃で行うのが更に好まし
い。
The hydrolysis reaction is preferably carried out at 20-60°C. Below 20°C, the reaction is slow, and above 60°C, the enzyme is inactivated. It is more preferable to carry out the reaction at a temperature of 30 to 50°C.

また、反応は撹拌した方が、望ましいが、乳化
状態にして静置反応もできる。さらに、反応は一
段反応でも良いが、さらに反応を効率的に早く進
めるために、多段反応でもかまわない。また、連
続反応として、固定化酵素カラムの使用もでき
る。
Although it is preferable to stir the reaction, the reaction can also be carried out in an emulsified state and allowed to stand still. Further, the reaction may be a single-stage reaction, but may also be a multi-stage reaction in order to proceed more efficiently and quickly. An immobilized enzyme column can also be used for continuous reaction.

以上のようにして炭素数20以上の長鎖不飽和脂
肪酸を含有する油脂を加水分解した場合、トリグ
リセリド位置選択性を有するリパーゼおよびトリ
グリセリド位置選択性を有しないリパーゼをそれ
ぞれ多量のユニツト数を用いて単独に加水分解し
た場合よりも分解率の高い加水分解油脂が得られ
る。即ち、本法による分解率は、単独法のものに
比べておよそ20%向上する。
When fats and oils containing long-chain unsaturated fatty acids with carbon atoms of 20 or more are hydrolyzed as described above, lipase having triglyceride regioselectivity and lipase not having triglyceride regioselectivity are used in large numbers, respectively. Hydrolyzed fats and oils with a higher decomposition rate than when hydrolyzed alone can be obtained. That is, the decomposition rate by this method is approximately 20% higher than that by the single method.

以下に実施例を示す。 Examples are shown below.

実施例 1 魚油(=172.5)20gに、キヤンデイダ・シ
リンドラシエより得られたリパーゼ(36万ユニツ
ト/g)を18000ユニツト加え、さらにリゾプ
ス・デレマーにより得られたリパーゼ(3500ユニ
ツト/g)を10000ユニツト加え、蒸留水を25ml
加えた。撹拌しながら40℃で5時間反応した。そ
の後水層を分離し、分解油を得た。この分解油の
中和価は149.3、ケン化価は190.1であつた(分解
率78.5%)。
Example 1 To 20 g of fish oil (=172.5), 18,000 units of lipase (360,000 units/g) obtained from Candida cylindrasiae was added, and 10,000 units of lipase obtained from Rhizopus deremer (3,500 units/g) were added. , 25ml distilled water
added. The reaction was carried out at 40°C for 5 hours while stirring. Thereafter, the aqueous layer was separated to obtain cracked oil. The neutralization value of this cracked oil was 149.3, and the saponification value was 190.1 (decomposition rate 78.5%).

実施例 2 実施例1と同様にして、24時間反応した。得ら
れた分解油の中和価は、169.2、ケン化価は191.5
であつた(分解率88.4%)。
Example 2 The reaction was carried out in the same manner as in Example 1 for 24 hours. The neutralization value of the resulting cracked oil is 169.2, and the saponification value is 191.5.
(decomposition rate 88.4%).

実施例 3 魚油(=169.2)20gにキヤンデイダ・シリ
ンドラシエより得られたリパーゼ(36万ユニツ
ト/g)を18000ユニツト加え、さらに豚のすい
臓リパーゼ(2500U/g)を1500ユニツト加え、
PH7.0の0.1Mリン酸緩衝液を20ml加え、窒素下、
35℃で24時間反応した。分解油の中和価は189.5、
ケン化価は191.9であつた(分解率98.7%)。
Example 3 To 20 g of fish oil (=169.2), 18,000 units of lipase obtained from Candeida Cylindrassie (360,000 units/g) were added, and further 1,500 units of pig pancreatic lipase (2,500 U/g) were added.
Add 20 ml of 0.1M phosphate buffer with pH 7.0, under nitrogen,
The reaction was carried out at 35°C for 24 hours. The neutralization value of cracked oil is 189.5,
The saponification value was 191.9 (decomposition rate 98.7%).

実施例 4 実施例1と同様に5時間反応した分解油をさら
に同様に二段階目の反応を5時間行なつた。得ら
れた分解油の中和価は188.5、ケン化価は192.0で
あつた(分解率98.2%)。
Example 4 The cracked oil that had been reacted for 5 hours in the same manner as in Example 1 was further subjected to a second stage reaction for 5 hours. The resulting cracked oil had a neutralization value of 188.5 and a saponification value of 192.0 (decomposition rate 98.2%).

実施例 5 高エルカ酸なたね油(=104.2、エルカ酸含
量42.8%)20gにジオトリクム・キヤンデイダム
起源のリパーゼ(9000U/g)1500ユニツト加
え、さらにリゾプス・デレマー起源のリパーゼ
(3500ユニツト/g)を1000ユニツト加え、蒸留
水を40ml加え、大気下40℃で撹拌しながら5時間
反応した。得られた分解油の中和価は169.7、ケ
ン化価は179.0であつた(分解率94.6%)。
Example 5 To 20 g of high erucic acid rapeseed oil (=104.2, erucic acid content 42.8%), 1500 units of lipase originating from Diotrichum candidum (9000 U/g) was added, and further 1000 units of lipase originating from Rhizopus deremer (3500 units/g) was added. Then, 40 ml of distilled water was added, and the mixture was reacted for 5 hours with stirring at 40°C in the atmosphere. The resulting cracked oil had a neutralization value of 169.7 and a saponification value of 179.0 (decomposition rate 94.6%).

比較例 1 魚油(=169.2)20gにキヤンデイダ・シリ
ンドラシエより得られたリパーゼ(36万ユニツ
ト/g)を36000ユニツト加え蒸留水25ml加え、
窒素下40℃で24時間反応した。分解油の中和価は
123.8、ケン化価は190.0であつた(分解率65.2
%)。
Comparative Example 1 36,000 units of lipase obtained from Candeida Cylindrassie (360,000 units/g) was added to 20 g of fish oil (=169.2), and 25 ml of distilled water was added.
The reaction was carried out for 24 hours at 40°C under nitrogen. The neutralization value of cracked oil is
123.8, saponification value was 190.0 (decomposition rate 65.2
%).

比較例 2 高エルカ酸なたね油(=104.2、エルカ酸含
量42.8%)20gにリゾプス・デレマー起源のリパ
ーゼ(37000ユニツト/g)を36000ユニツト加
え、蒸留水を40ml加え、大気下40℃で撹拌しなが
ら5時間反応した。得られた分解油の中和価は
120.6、ケン化価は178.1であつた(分解率67.7
%)。
Comparative Example 2 To 20 g of high erucic acid rapeseed oil (=104.2, erucic acid content 42.8%), 36,000 units of lipase originating from Rhizopus deremer (37,000 units/g) was added, 40 ml of distilled water was added, and the mixture was stirred at 40°C in the atmosphere. The reaction took place for 5 hours. The neutralization value of the obtained cracked oil is
120.6, and the saponification value was 178.1 (decomposition rate 67.7).
%).

比較例 3 魚油(=169.2)20gにキヤンデイダ・シリ
ンドラシエより得られたリパーゼ(36万ユニツ
ト/g)を12000ユニツトと、リゾプス・デレマ
ーより得られたリパーゼ(3500ユニツト/g)を
24000ユニツト加え、蒸留水を25ml加えて、撹拌
しながら40℃で24時間反応した。この後、水層を
分離し、分解油を得た。この分解油の中和価は
116.8、ケン化価は190.1であつた(分解率61.4
%)。
Comparative Example 3 20 g of fish oil (=169.2), 12,000 units of lipase obtained from Candida cylindrasiae (360,000 units/g), and lipase (3,500 units/g) obtained from Rhizopus deremer.
24,000 units were added, 25 ml of distilled water was added, and the mixture was reacted at 40°C for 24 hours with stirring. After this, the aqueous layer was separated to obtain cracked oil. The neutralization value of this decomposed oil is
116.8, and the saponification value was 190.1 (decomposition rate 61.4).
%).

比較例 4 魚油(=169.2)20gにキヤンデイダ・シリ
ンドラシエより得られたリパーゼ(36万ユニツ
ト/g)を35000ユニツトと、リゾプス・デレマ
ーより得られたリパーゼ(3500ユニツト/g)を
700ユニツト加え、蒸留水を25ml加えて、撹拌し
ながら40℃で24時間反応した。この後、水層を分
離し、分離油を得た。この分解油の中和価は
121.5、ケン化価は190.5であつた(分解率63.8
%)。
Comparative Example 4 20 g of fish oil (=169.2) was mixed with 35,000 units of lipase obtained from Candida cylindrasiae (360,000 units/g) and 35,000 units of lipase obtained from Rhizopus deremer (3,500 units/g).
700 units were added, 25 ml of distilled water was added, and the mixture was reacted at 40°C for 24 hours with stirring. After this, the aqueous layer was separated to obtain a separated oil. The neutralization value of this decomposed oil is
121.5, saponification value was 190.5 (decomposition rate 63.8
%).

Claims (1)

【特許請求の範囲】 1 炭素数20以上の長鎖不飽和脂肪酸含有油脂
を、トリグリセリド位置選択性を有するリパーゼ
とトリグリセリド位置選択性を有しないリパーゼ
を併用して加水分解する際に、該トリグリセリド
位置選択性を有するリパーゼと該トリグリセリド
位置選択性を有しないリパーゼを、油脂加水分解
活性単位の比で1:1〜30とすることを特徴とす
る該油脂の加水分解方法。 2 炭素数20以上の長鎖不飽和脂肪酸含有油脂が
魚油、鯨油、なたね油又はからし油である特許請
求の範囲第1項記載の加水分解方法。 3 油脂に対する水の量が30〜500重量%である
特許請求の範囲第1又は2項記載の加水分解方
法。 4 加水分解の反応温度が20〜60℃である特許請
求の範囲第1〜3項のいずれか一項に記載の加水
分解方法。
[Scope of Claims] 1. When hydrolyzing fats and oils containing long-chain unsaturated fatty acids having 20 or more carbon atoms using a lipase that has triglyceride regioselectivity and a lipase that does not have triglyceride regioselectivity, the triglyceride position A method for hydrolyzing fats and oils, characterized in that the lipase having selectivity and the lipase not having triglyceride regioselectivity are used in a ratio of fat and oil hydrolyzing activity units of 1:1 to 30. 2. The hydrolysis method according to claim 1, wherein the long-chain unsaturated fatty acid-containing fat or oil having 20 or more carbon atoms is fish oil, whale oil, rapeseed oil, or mustard oil. 3. The hydrolysis method according to claim 1 or 2, wherein the amount of water relative to the fat or oil is 30 to 500% by weight. 4. The hydrolysis method according to any one of claims 1 to 3, wherein the hydrolysis reaction temperature is 20 to 60°C.
JP58239396A 1983-12-19 1983-12-19 Hydrolysis of fats and oils containing long-chain unsaturated fatty acid Granted JPS60130396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58239396A JPS60130396A (en) 1983-12-19 1983-12-19 Hydrolysis of fats and oils containing long-chain unsaturated fatty acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58239396A JPS60130396A (en) 1983-12-19 1983-12-19 Hydrolysis of fats and oils containing long-chain unsaturated fatty acid

Publications (2)

Publication Number Publication Date
JPS60130396A JPS60130396A (en) 1985-07-11
JPH0412114B2 true JPH0412114B2 (en) 1992-03-03

Family

ID=17044152

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58239396A Granted JPS60130396A (en) 1983-12-19 1983-12-19 Hydrolysis of fats and oils containing long-chain unsaturated fatty acid

Country Status (1)

Country Link
JP (1) JPS60130396A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01257485A (en) * 1988-04-07 1989-10-13 Kanegafuchi Chem Ind Co Ltd Method for synthesizing triglyceride by enzyme
JP5770178B2 (en) * 2009-07-17 2015-08-26 コリア アドバンスド インスティチュート オブ サイエンス アンド テクノロジィ Method for producing fatty acid alkyl ester using microorganisms capable of producing oil

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576480A (en) * 1980-06-13 1982-01-13 Nec Corp Buffer memory control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS576480A (en) * 1980-06-13 1982-01-13 Nec Corp Buffer memory control system

Also Published As

Publication number Publication date
JPS60130396A (en) 1985-07-11

Similar Documents

Publication Publication Date Title
CA2299704C (en) Process for producing diglycerides
KR930009511B1 (en) Method for preparing glycerides in the presence of lipase
US4956286A (en) Process for the preparation of esters
HUT76707A (en) Refining oil compositions
JP3970669B2 (en) Conjugated fatty acid-containing monoglyceride and method for producing the same
JP3840459B2 (en) Glyceride and method for producing the same
JPS63287492A (en) Method for ester interchange reaction of fats or oils
EP0349606B1 (en) Process for producing highly pure oleic acid by hydrolysis of sunflower oil
JPH0533988B2 (en)
JPS60234588A (en) Production of long-chain highly unsaturated fatty acid alcohol ester
JPH0412114B2 (en)
JPH11123097A (en) Production of diglyceride
JP2002088392A (en) Method for ester interchange of oils or fats
JPS62228290A (en) Substitute fat for cacao butter
JPH07268382A (en) Production of fats and oils containing long-chain highly unsaturated fatty acid
JPH06116585A (en) Method for purifying fat and oil
US20040014184A1 (en) Method for obtaining 12-hydroxystearic acid
JP4335196B2 (en) Conjugated fatty acid-containing monoglyceride and method for producing the same
JPH0665310B2 (en) Method for producing diglyceride
JP3719732B2 (en) Process for producing highly unsaturated fatty acid glycerides
JP2718650B2 (en) Method for producing highly unsaturated fatty acid alcohol ester
JP2006288404A (en) Method for producing diglyceride
JPH01187089A (en) Production of palmitoleic acid and glyceride thereof
JPH01108990A (en) Production of oil and fat
JPH09238693A (en) Method for purifying highly unsaturated fatty acids