[go: up one dir, main page]

JPH04113299A - X-ray irradiation device and x-ray intensity distribution correcting filter - Google Patents

X-ray irradiation device and x-ray intensity distribution correcting filter

Info

Publication number
JPH04113299A
JPH04113299A JP2230656A JP23065690A JPH04113299A JP H04113299 A JPH04113299 A JP H04113299A JP 2230656 A JP2230656 A JP 2230656A JP 23065690 A JP23065690 A JP 23065690A JP H04113299 A JPH04113299 A JP H04113299A
Authority
JP
Japan
Prior art keywords
ray
intensity distribution
ray intensity
film
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2230656A
Other languages
Japanese (ja)
Inventor
Takashi Kaneko
隆司 金子
Yasunao Saito
斉藤 保直
Kenichi Kuroda
研一 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2230656A priority Critical patent/JPH04113299A/en
Publication of JPH04113299A publication Critical patent/JPH04113299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Particle Accelerators (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To improve pattern width accuracy within an exposure zone by inserting, between an X-ray generating part and a part to be irradiated, an X-ray intensity distribution correcting filter, constituted of membranes of which thickness or X-ray permeability is different from each other so as to make the distribution of X-ray strength at the part to be irradiated be uniform. CONSTITUTION:An X-ray intensity distribution adjustment filter 3 constituted of membranes of which X-ray permeability or thickness is different from each other so as to make the distribution of X-ray strength be uniform, is arranged between an X-ray generating part and a part to be irradiated. The distribution adjustment filter 3 of X-ray strength is constituted of an inorganic membrane (SiN, SiC, BN and so on), an organic membrane (a polyimide, a polypropyrene, a polyester, etc.) and a metallic membrane (Be, Ti, Al, etc.), all of which have different thickness distribution, or otherwise is constituted of inorganic, organic, metallic metallic membranes, etc., having different thickness distribution on a thin membrane base plate 13 which consists of the inorganic, the organic, the metallic membranes, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高密度集積回路の製造、材料等の分析に使用
するX線照射装置およびX線強度分布補正用フィルタに
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray irradiation device and an X-ray intensity distribution correction filter used for manufacturing high-density integrated circuits and analyzing materials.

[従来の技術] X線照射装置には、シンクロトロン放射光を利用する際
に使用するSOR露光用ビームライン、あるいは分析用
ビームライン等があり、これらのX線照射装置のうち代
表的な装置として、X線発生部に蓄積リング、被照射装
置に露光用アライナを持つSOR露光用ビームラインに
ついて述べる。
[Prior Art] X-ray irradiation equipment includes SOR exposure beam lines used when synchrotron radiation is used, analysis beam lines, etc., and among these X-ray irradiation equipment, typical Here, we will describe an SOR exposure beamline that has a storage ring in the X-ray generating section and an exposure aligner in the irradiated device.

最近、微細バタン転写にX線を使用することが試みられ
、xig光が微細バタン転写に有効であることが報告さ
れている。また、高出力X線発生装置として、シンクロ
トロン放射光が注目され、集積回路の製造、材料等の分
析に幅広く利用されようとしている。
Recently, attempts have been made to use X-rays for fine batten transfer, and it has been reported that xig light is effective for fine batten transfer. In addition, synchrotron radiation has attracted attention as a high-power X-ray generator, and is being widely used in the manufacture of integrated circuits and the analysis of materials.

第8図は、従来使用されているX線露光装置の一例を説
明する概略斜視図で、1は蓄積リング、2は集光ミラー
 4は放射光、6はマスク・ウェハ、7はX線取り出し
窓である。第8図において、蓄積リング1と放射光4を
輸送するビームラインは10−’ ” Torr台の超
高真空となっている。放射光4はX線取り出し窓7で大
気中に取り出される。
FIG. 8 is a schematic perspective view illustrating an example of a conventionally used X-ray exposure device, in which 1 is a storage ring, 2 is a condensing mirror, 4 is synchrotron radiation, 6 is a mask/wafer, and 7 is an X-ray extraction It's a window. In FIG. 8, the storage ring 1 and the beam line that transports the synchrotron radiation 4 are in an ultra-high vacuum on the order of 10-''' Torr. The synchrotron radiation 4 is extracted into the atmosphere through the X-ray extraction window 7.

ウェハ上にバタン転写するためには、マスクとウェハを
同時に移動させることにより露光される。
In order to transfer the pattern onto the wafer, exposure is performed by moving the mask and the wafer at the same time.

放射光4は、水平方向に広い角度で放射されており、こ
の放射光を効率良く使うため、集光ミラー2で集光して
利用している。放射光4を集光するために現在、石英基
板やSiC基板上にAuやPtをコートしたトロイダル
ミラーが使われている。
The synchrotron radiation 4 is emitted at a wide angle in the horizontal direction, and in order to use the synchrotron radiation efficiently, it is condensed by a condenser mirror 2 for use. To collect the synchrotron radiation 4, a toroidal mirror in which a quartz substrate or a SiC substrate is coated with Au or Pt is currently used.

トロイダルミラーで集光した放射光は、大きな集光角を
とるとX線強度が不均一となり易く、第6図(a)に示
すように数十%の強度むらを生じる場合が多い。
When a large convergence angle is used, the X-ray intensity of the synchrotron radiation collected by a toroidal mirror tends to become non-uniform, and as shown in FIG. 6(a), intensity non-uniformity of several tens of percent often occurs.

[発明が解決しようとする課題] 一方、LSI製造に使用されている露光装置では、転写
パタンのパタン幅制御を正確に行うため、露光むらを1
ないし2%に抑えている。X線露光では回折、干渉の影
響が小さいため、ホト露光よりも露光むらの影響を受け
にくい可能性はあるが、露光むらを5ないし10%以下
にする必要がある。
[Problems to be Solved by the Invention] On the other hand, in an exposure device used in LSI manufacturing, in order to accurately control the pattern width of a transferred pattern, exposure unevenness is reduced to 1.
It is kept at 2%. Since X-ray exposure is less affected by diffraction and interference, it may be less affected by exposure unevenness than photoexposure, but it is necessary to keep exposure unevenness to 5 to 10% or less.

現在、有効な方法はなく、露光時間を犠牲にして平面ミ
ラーで集光しないで露光するか、あるいは、マスクコン
トラストを向上させて最もX線強度の弱い部分の強度に
合わせて露光しているのが現状である。
Currently, there is no effective method. Either sacrifice exposure time and expose without condensing the light with a plane mirror, or improve the mask contrast and expose to match the intensity of the weakest part of the X-ray. is the current situation.

本発明の目的は、xmn光強度分布を均一にし、露光領
域内のバタン幅の精度の向上を図ることにある。
An object of the present invention is to make the xmn light intensity distribution uniform and to improve the accuracy of the batten width within the exposure area.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために、本発明のX線照射装置は
、X線発生部と被照射部を有するX線照射装置において
、上記xIIA発生部と上記被照射部との間に、上記被
照射部のX線強度分布が均一となるように、X線透過率
または膜厚の異なる分布をもつ膜から構成されるX線強
度分布補正用フィルタを配置したことを特徴とする。
In order to achieve the above object, the X-ray irradiation device of the present invention has an X-ray generation section and an irradiated section, in which the xIIA generation section and the irradiated section are provided with a The present invention is characterized in that an X-ray intensity distribution correction filter made of films having different distributions of X-ray transmittance or film thickness is arranged so that the X-ray intensity distribution of the irradiation part is uniform.

また、本発明のX線強度分布補正用フィルタは、X線照
射装置のX線発生部と被照射部との間に配置されて使用
されるX線強度分布補正用フィルタにおいて、上記被照
射部のX線強度分布が均一となるように、X線透過率ま
たは膜厚の異なる分布をもつ膜から構成されていること
を特徴とする。
Further, the X-ray intensity distribution correction filter of the present invention is a filter for X-ray intensity distribution correction that is disposed between an X-ray generating section and an irradiated section of an X-ray irradiation device. It is characterized by being composed of films having different distributions of X-ray transmittance or film thickness so that the X-ray intensity distribution is uniform.

さらに、本発明のX線強度分布補正用フィルタは、上記
膜が、膜厚の異なる分布をもつ少なくとも1層の無機膜
(例えば、S i N、S i C,BN等)、有機膜
(例えば、ポリイミド、ポリプロピレン、ポリエステル
等)、金属膜(例えば、Be、Ti%A1等)で構成さ
れているか、または無機膜、有機膜、金属膜から成る薄
膜基板上に膜厚の異なる分布をもつ少なくとも1層の無
機膜、有機膜、金属膜で構成されていることを特徴とす
る。
Furthermore, in the X-ray intensity distribution correction filter of the present invention, the film may include at least one inorganic film (for example, SiN, SiC, BN, etc.) or an organic film (for example, , polyimide, polypropylene, polyester, etc.), a metal film (e.g., Be, Ti%A1, etc.), or a thin film substrate consisting of an inorganic film, an organic film, or a metal film, with at least one film having a different thickness distribution. It is characterized by being composed of a single layer of inorganic film, organic film, and metal film.

〔作用〕[Effect]

本発明では、X線発生部と被照射部との間に、上記被照
射部のX線強度分布が均一となるように、X線透過率ま
たは膜厚の異なる分布をもつ膜から構成されるX線強度
分布補正用フィルタを配置することにより、被照射部で
あるウェハ上のxsaa光強度分布を均一にすることが
でき、露光領域内のバタン幅の精度を向上することがで
きる。
In the present invention, between the X-ray generating part and the irradiated part, films having different distributions of X-ray transmittance or film thickness are formed so that the X-ray intensity distribution of the irradiated part is uniform. By arranging the X-ray intensity distribution correction filter, it is possible to make the xsaa light intensity distribution on the wafer, which is the irradiated part, uniform, and it is possible to improve the accuracy of the batten width in the exposure area.

r実施例〕 第1図は、本発明の第1の実施例を示すX線強度分布補
正用フィルタを挿入したビームライン構成の一例を示す
図であり、1は蓄積リング、2は集光ミラー 3はX線
強度分布補正用フィルタ、4は放射光、6はマスク・ウ
ェハ、7はX線取り出し窓、8は位置決めレバーである
。集光ミラー2から出たXIJAの強度分布は第1図の
(イ)で示すように強度むらが多い。特に集光角φを大
きくするとその傾向は増大する。それをX線強度分布補
正用フィルタ3を通すことにより、強度分布を(ロ)の
ように均一とする。
Embodiment] FIG. 1 is a diagram showing an example of a beam line configuration in which an X-ray intensity distribution correction filter is inserted, showing a first embodiment of the present invention, where 1 is a storage ring and 2 is a condensing mirror. 3 is an X-ray intensity distribution correction filter, 4 is synchrotron radiation, 6 is a mask/wafer, 7 is an X-ray extraction window, and 8 is a positioning lever. The intensity distribution of the XIJA emitted from the condenser mirror 2 has a lot of intensity unevenness, as shown in FIG. 1(a). In particular, this tendency increases as the condensing angle φ increases. By passing it through the X-ray intensity distribution correction filter 3, the intensity distribution is made uniform as shown in (b).

第2図は、第1図の要部の詳細を示す図で、3はX線強
度分布補正用フィルタ、4は放射光、(イ)は放射光の
下流から上流を見たときの放射光4の強度分布を、(ロ
)はX線強度分布補正用フィルタ3を透過した後の強度
分布を示す。X線強度分布補正用フィルタ3は放射光の
幅方向(矢印d方向)に膜厚分布をもっており、放射光
の幅方向と垂直方向(矢印e方向)には同一な膜厚とな
るような構成となっている。そのため、X線強度分布補
正用フィルタの位置決めは位置決めレバー8(注:第1
図と第2図の位置決めレバー8の位置は逆になっている
。)により、水平方向(矢印d方向)に移動させること
により容易にできる。
Figure 2 is a diagram showing the details of the main parts of Figure 1, where 3 is the X-ray intensity distribution correction filter, 4 is the synchrotron radiation, and (A) is the synchrotron radiation when looking from downstream to upstream of the synchrotron radiation. 4 shows the intensity distribution, and (b) shows the intensity distribution after passing through the X-ray intensity distribution correction filter 3. The X-ray intensity distribution correction filter 3 has a thickness distribution in the width direction of the synchrotron radiation (direction of arrow d), and is configured to have the same thickness in the width direction of the synchrotron radiation and the direction perpendicular to the direction of the radiation (arrow e). It becomes. Therefore, the positioning of the filter for X-ray intensity distribution correction is done using the positioning lever 8 (Note:
The position of the positioning lever 8 in this figure and in FIG. 2 are reversed. ), it can be easily moved in the horizontal direction (direction of arrow d).

X線強度分布補正用フィルタ3を通る前のX線強度分布
は(イ)で示すように放射光の位置、a、b、cでX線
強度が異なる。このX線強度に合わせて膜厚の異なるX
線強度分布補正用フィルタ3を押入することにより、第
2図(ロ)に示すように(位置a′  b′  C′の
強度が均一)X線強度が均一となる。X線強度分布補正
用フィルタの挿入位置は強度分布の悪い部分に挿入する
ことが基本であり、ビームラインのどの位置にあっても
よい。また、X線取り出し窓に直接膜厚分布をもたせる
ことも可能である。
The X-ray intensity distribution before passing through the X-ray intensity distribution correction filter 3 has different X-ray intensities at the synchrotron radiation positions a, b, and c, as shown in (a). X with different film thickness depending on the X-ray intensity
By inserting the line intensity distribution correction filter 3, the X-ray intensity becomes uniform as shown in FIG. 2 (b) (the intensity at positions a'b'C' is uniform). The insertion position of the X-ray intensity distribution correction filter is basically to be inserted in a part where the intensity distribution is poor, and it may be placed at any position on the beam line. It is also possible to provide a film thickness distribution directly to the X-ray extraction window.

X線強度分布補正用フィルタ3はX線強度分布に対応し
た膜厚にする、すなわちX線強度が強い箇所の膜厚を厚
くし、弱い箇所は薄くすることが必要である。そのため
、なんらかの方法でX線の強度分布を測定し、その強度
分布に対応したX線透過率分布をもつフィルタを製作す
る必要がある。
The X-ray intensity distribution correction filter 3 needs to have a film thickness that corresponds to the X-ray intensity distribution, that is, it is necessary to make the film thicker in areas where the X-ray intensity is strong and thinner in areas where it is weaker. Therefore, it is necessary to measure the intensity distribution of X-rays by some method and manufacture a filter having an X-ray transmittance distribution corresponding to the intensity distribution.

第3図は、X線強度分布補正用フィルタの製作フローを
示す図で、第1図のX線強度分布補正用フィルタ3を挿
入すべき位置で強度分布を測定する。方法■はフィルタ
挿入位置にレジストを塗布したウェハを置き、露光する
。現像後レジストの残存膜厚を測定して、レジストのγ
特性からX線の強度分布を求める。つぎに、フィルタに
有機膜、無機膜、または金属膜かを選択し、X線の波長
分布と材料のX線透過率から、強度分布を材料の膜厚分
布に変換する。
FIG. 3 is a diagram showing the manufacturing flow of the X-ray intensity distribution correction filter, in which the intensity distribution is measured at the position where the X-ray intensity distribution correction filter 3 of FIG. 1 is to be inserted. In method (2), a wafer coated with resist is placed at the filter insertion position and exposed. After development, the remaining film thickness of the resist is measured and the γ of the resist is determined.
Determine the X-ray intensity distribution from the characteristics. Next, an organic film, an inorganic film, or a metal film is selected for the filter, and the intensity distribution is converted into a film thickness distribution of the material from the X-ray wavelength distribution and the material's X-ray transmittance.

第4図は、蒸着法により補正用フィルタを製作する方法
を示す図で、10は蒸着源、11はスリット、12はス
リットを矢印f方向に移動させる駆動部である。このス
リット駆動部12で、規定の膜厚分布となるようにスリ
ット11を移動させてフィルタ材料をフィルタ3に蒸着
する。もちろん、蒸着でなく、スパッタ方式でも同様な
方法で製作できる。また、第3図の方法■ではネガタイ
プレジストを使用して■と同様に露光・現像して直接下
地材料をエツチングすることにより、自己整合的にX線
強度分布補正用フィルタを製作できる。さらに、方法■
ではX線強度分布を半導体X線検出器で測定し、■の方
法でX線強度分布補正用フィルタとすることも可能であ
る。
FIG. 4 is a diagram showing a method of manufacturing a correction filter by a vapor deposition method, in which 10 is a vapor deposition source, 11 is a slit, and 12 is a drive unit that moves the slit in the direction of arrow f. The slit driving unit 12 moves the slit 11 to deposit the filter material onto the filter 3 so as to obtain a prescribed film thickness distribution. Of course, it can be manufactured in the same manner by sputtering instead of vapor deposition. Further, in method (2) of FIG. 3, a negative type resist is used, and the base material is directly etched by exposure and development in the same manner as in (2), thereby making it possible to manufacture an X-ray intensity distribution correction filter in a self-aligning manner. Furthermore, method ■
In this case, it is also possible to measure the X-ray intensity distribution with a semiconductor X-ray detector and use the method (2) as a filter for correcting the X-ray intensity distribution.

これらの方法で製作したX線強度分布補正用フィルタ3
を第5図(a)、(b)に示す。第5図において、13
は5iN1SiC,Be等のフィルタ基板、9は膜厚の
異なるフィルタ材料である。
X-ray intensity distribution correction filter 3 manufactured using these methods
are shown in FIGS. 5(a) and (b). In Figure 5, 13
9 is a filter substrate made of 5iN1SiC, Be, etc., and 9 is a filter material having a different film thickness.

また、(a)はポリイミドやA1等の比較的X線透過率
の高い材料の膜厚をX線強度分布を補正するようにした
X線強度分布補正用フィルタで、(b)はX線透過率の
高いsjN、SiC,Be等の薄膜を基板として、その
上にX線強度分布に合わせ、X線の強度むらを補正する
ような膜厚構成としたX線強度分布補正用フィルタであ
る。これまで、同じ材質で膜厚を変えたX線強度分布補
正用フィルタについて述べてきたが、もちろん、Au、
Ta等の重金属とA1%Be等の軽金属を複数組み合わ
せたX線強度分布補正用フィルタでも同様な結果が得ら
れる。
In addition, (a) is an X-ray intensity distribution correction filter in which the film thickness of a material with relatively high X-ray transmittance, such as polyimide or A1, is used to correct the X-ray intensity distribution, and (b) is an X-ray intensity distribution correction filter using This is an X-ray intensity distribution correction filter that uses a thin film such as sjN, SiC, Be, etc. having a high ratio as a substrate, and has a film thickness configured to match the X-ray intensity distribution and correct X-ray intensity unevenness thereon. So far, we have talked about X-ray intensity distribution correction filters made of the same material but with different film thicknesses, but of course, Au,
Similar results can be obtained with an X-ray intensity distribution correction filter that combines a plurality of heavy metals such as Ta and light metals such as A1%Be.

第6図はX線強度分布を測定し強度むらを補正したX線
強度分布を示す図で、(a)はレジストの残存膜厚から
求めた強度むら、(b)は(a)の強度むらに合わせた
Taの膜厚分布(SiN基板上に形成)、(c)は(b
)の膜厚分布をもつX線強度分布補正用フィルタを挿入
することによって補正されたX線強度分布を示す。
Figure 6 shows the X-ray intensity distribution obtained by measuring the X-ray intensity distribution and correcting the intensity unevenness. Ta film thickness distribution (formed on a SiN substrate) tailored to (c) is (b)
) shows an X-ray intensity distribution corrected by inserting an X-ray intensity distribution correction filter having a film thickness distribution.

これまで、マスク・ウェハ6を揺動する方式のビームラ
インについて述べてきたが、第7図に示すような露光領
域の拡大にミラーを矢印g方向に揺動する方式でも同様
な方法でX線強度分布補正用フィルタ3を挿入すること
により、X線強度を補正できる。このとき、X線強度む
らは2次元に広がるため、フィルタの位置決めはX%Y
双方を位置決めする必要がある。
So far, we have described a beamline that uses a method of swinging the mask/wafer 6, but we have also described a method of swinging a mirror in the direction of arrow g to expand the exposure area as shown in Figure 7. By inserting the intensity distribution correction filter 3, the X-ray intensity can be corrected. At this time, since the X-ray intensity unevenness spreads in two dimensions, the positioning of the filter is
It is necessary to position both.

以上本発明を上記実施例に基づいて具体的に説明したが
、本発明は上記実施例に限定されるものではなく、その
要旨を逸脱しない範囲において種々変更可能であること
は勿論である。例えば上記実施例では、膜厚の分布の調
節により被照射部のX線強度分布が均一となるようにし
たが、材料、あるいは材料と膜厚の双方を調節すること
により、X線透過率の分布を制御して被照射部のX線強
度分布が均一となるようにしてもよい。
Although the present invention has been specifically described above based on the above-mentioned embodiments, the present invention is not limited to the above-mentioned embodiments, and it goes without saying that various changes can be made without departing from the gist thereof. For example, in the above embodiment, the X-ray intensity distribution of the irradiated area was made uniform by adjusting the film thickness distribution, but by adjusting the material or both the material and the film thickness, the X-ray transmittance could be The distribution may be controlled to make the X-ray intensity distribution of the irradiated area uniform.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明では、X線発生部と被照射
部との間に被照射部のX線強度分布が均一となるように
、X線透過率または膜厚の異なる膜から構成されるX線
強度分布補正用フィルタを挿入することにより、露光む
らを少なくすることができ、X線露光における転写パタ
ンのパタン幅制御が容易になる。
As explained above, in the present invention, films having different X-ray transmittances or film thicknesses are formed between the X-ray generating part and the irradiated part so that the X-ray intensity distribution of the irradiated part is uniform. By inserting an X-ray intensity distribution correction filter, exposure unevenness can be reduced, and pattern width control of a transferred pattern during X-ray exposure becomes easier.

【図面の簡単な説明】 第1図は本発明の実施例を示す図、第2図は本発明のX
線強度分布補正用フィルタ部の拡大図、第3図は本発明
のX線強度分布補正用フィルタ製作フローを示す図、第
4図は本発明のX線強度分布補正用フィルタ製作方法を
示す図、第5図(a)(b)は本発明のX線強度分布補
正用フィルタの構成を示す図、第6図(a)、(b)、
(c)は本発明のフィルタ挿入前後のX線強度むらを示
す図、第7図はミラー揺動方式によるビームライン構成
を示す図、第8図は従来技術を示す図である。 1・・・蓄積リング 2・・・集光ミラー 3・・・X線強度分布補正用フィルタ 4・・・放射光 6・・・マスク・ウェハ 7・・・X線取り出し窓 8・・・位置決めレバー 9・・・フィルタ材料 0・・・蒸着源 l・・・スリット 2・・・スリット駆動部 3・・・フィルタ基板 特許出願人 日本電信電話株式会社
[BRIEF DESCRIPTION OF THE DRAWINGS] FIG. 1 is a diagram showing an embodiment of the present invention, and FIG. 2 is a diagram showing an embodiment of the present invention.
An enlarged view of the line intensity distribution correction filter section, FIG. 3 is a diagram showing the manufacturing flow of the X-ray intensity distribution correction filter of the present invention, and FIG. 4 is a diagram showing the manufacturing method of the X-ray intensity distribution correction filter of the present invention. , FIGS. 5(a) and 5(b) are diagrams showing the configuration of the X-ray intensity distribution correction filter of the present invention, FIGS. 6(a) and (b),
(c) is a diagram showing the X-ray intensity unevenness before and after inserting the filter of the present invention, FIG. 7 is a diagram showing a beam line configuration using a mirror rocking method, and FIG. 8 is a diagram showing a conventional technique. 1... Storage ring 2... Focusing mirror 3... Filter for X-ray intensity distribution correction 4... Synchrotron radiation 6... Mask/wafer 7... X-ray extraction window 8... Positioning Lever 9...Filter material 0...Vapor deposition source L...Slit 2...Slit drive unit 3...Filter board Patent applicant Nippon Telegraph and Telephone Corporation

Claims (1)

【特許請求の範囲】 1、X線発生部と被照射部を有するX線照射装置におい
て、上記X線発生部と上記被照射部との間に、上記被照
射部のX線強度分布が均一となるように、X線透過率ま
たは膜厚の異なる分布をもつ膜から構成されるX線強度
分布補正用フィルタを配置したことを特徴とするX線照
射装置。 2、X線照射装置のX線発生部と被照射部との間に配置
されて使用されるX線強度分布補正用フィルタにおいて
、上記被照射部のX線強度分布が均一となるように、X
線透過率または膜厚の異なる分布をもつ膜から構成され
ていることを特徴とするX線強度分布補正用フィルタ。 3、上記膜が、膜厚の異なる分布をもつ少なくとも1層
の無機膜、有機膜、金属膜で構成されているか、または
無機膜、有機膜、金属膜から成る薄膜基板上に膜厚の異
なる分布をもつ少なくとも1層の無機膜、有機膜、金属
膜で構成されていることを特徴とするX線強度分布補正
用フィルタ。
[Claims] 1. In an X-ray irradiation device having an X-ray generating section and an irradiated section, an X-ray intensity distribution of the irradiated section is uniform between the X-ray generating section and the irradiated section. An X-ray irradiation device characterized in that an X-ray intensity distribution correction filter is arranged which is composed of films having different distributions of X-ray transmittance or film thickness. 2. In the X-ray intensity distribution correction filter used by being placed between the X-ray generating part and the irradiated part of the X-ray irradiation device, so that the X-ray intensity distribution of the irradiated part becomes uniform, X
An X-ray intensity distribution correction filter comprising films having different distributions of radiation transmittance or film thickness. 3. The above film is composed of at least one inorganic film, organic film, or metal film with a different distribution of film thickness, or is formed on a thin film substrate consisting of an inorganic film, an organic film, or a metal film with different film thicknesses. An X-ray intensity distribution correction filter comprising at least one layer of an inorganic film, an organic film, and a metal film having a distribution.
JP2230656A 1990-09-03 1990-09-03 X-ray irradiation device and x-ray intensity distribution correcting filter Pending JPH04113299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2230656A JPH04113299A (en) 1990-09-03 1990-09-03 X-ray irradiation device and x-ray intensity distribution correcting filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2230656A JPH04113299A (en) 1990-09-03 1990-09-03 X-ray irradiation device and x-ray intensity distribution correcting filter

Publications (1)

Publication Number Publication Date
JPH04113299A true JPH04113299A (en) 1992-04-14

Family

ID=16911226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2230656A Pending JPH04113299A (en) 1990-09-03 1990-09-03 X-ray irradiation device and x-ray intensity distribution correcting filter

Country Status (1)

Country Link
JP (1) JPH04113299A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289076B1 (en) 1997-05-06 2001-09-11 Sumitomo Heavy Industries, Ltd. Transmission system for synchrotron radiation light
KR100377126B1 (en) * 1999-06-15 2003-03-19 김선기 The method for compensating the density using nonlinear filter in photographing a spine
CN110050231A (en) * 2016-12-05 2019-07-23 卡尔蔡司Smt有限责任公司 The intensity adaptation optical filter of EUV micro-lithography generates its method and the lighting system with corresponding optical filter

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6289076B1 (en) 1997-05-06 2001-09-11 Sumitomo Heavy Industries, Ltd. Transmission system for synchrotron radiation light
US6289077B1 (en) 1997-05-06 2001-09-11 Sumitomo Heavy Industries, Ltd. Transmission system for synchrotron radiation light
US6295334B1 (en) 1997-05-06 2001-09-25 Sumitomo Heavy Industries, Ltd. Transmission system for synchrotron radiation light
KR100377126B1 (en) * 1999-06-15 2003-03-19 김선기 The method for compensating the density using nonlinear filter in photographing a spine
CN110050231A (en) * 2016-12-05 2019-07-23 卡尔蔡司Smt有限责任公司 The intensity adaptation optical filter of EUV micro-lithography generates its method and the lighting system with corresponding optical filter
CN110050231B (en) * 2016-12-05 2023-01-17 卡尔蔡司Smt有限责任公司 Intensity-adaptive filter for EUV microlithography, method for producing same, and illumination system having a corresponding filter

Similar Documents

Publication Publication Date Title
US6723475B2 (en) Reflection-type mask for use in pattern exposure, manufacturing method therefor, exposure apparatus, and method of manufacturing a device
JPH01158731A (en) Photoelectronic transfer exposure method and mask used therein
US5375157A (en) X-ray mask structure and a production method thereof, an exposure method using the X-ray mask structure, and a device fabricated by using the X-ray mask structure
JP3311302B2 (en) Exposure method
JPH04113299A (en) X-ray irradiation device and x-ray intensity distribution correcting filter
JP3387834B2 (en) X-ray exposure method and device manufacturing method
JPS62263973A (en) Thin metallic film and its production
JP3332872B2 (en) Exposure method
US7993802B2 (en) Method for correcting pattern critical dimension in photomask
KR100211012B1 (en) Lithographic mask structure and method of producing the same and manufacturing device
JPH0732119B2 (en) Method for improving the uniformity of x-ray lithographic beamlines
JP2002222750A (en) Electron beam transfer mask
KR20050121746A (en) Exposure method, mask, semiconductor device manufacturing method, and semiconductor device
JPH01161718A (en) Manufacture of x-ray mask
JPH02180013A (en) X-ray projection aligner
CN112612183A (en) Method for compensating heat effect of photomask
WATTS et al. X-ray lithography
JPH04276618A (en) X-ray mask with high resolution including absorber pattern having high aspect ratio
KR19990082868A (en) Membrane mask for projection lithographic
JP2644570B2 (en) X-ray exposure apparatus and element manufacturing method
JP2866010B2 (en) Pattern formation method
JPS58130522A (en) Electron beam exposure device
JPS61272925A (en) How to manufacture an X-ray mask
Fencil et al. X-ray lithography: technology for the 1980s
JPH05326381A (en) Manufacture of double-sided absorber x-ray mask