[go: up one dir, main page]

JPH04110763A - Electrolytic cell for measuring phosphoric acid concentration - Google Patents

Electrolytic cell for measuring phosphoric acid concentration

Info

Publication number
JPH04110763A
JPH04110763A JP23199390A JP23199390A JPH04110763A JP H04110763 A JPH04110763 A JP H04110763A JP 23199390 A JP23199390 A JP 23199390A JP 23199390 A JP23199390 A JP 23199390A JP H04110763 A JPH04110763 A JP H04110763A
Authority
JP
Japan
Prior art keywords
electrode
counter
reference electrode
working electrode
sample water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23199390A
Other languages
Japanese (ja)
Inventor
Yusuke Nakamura
裕介 中村
Taizo Shinohara
篠原 泰三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP23199390A priority Critical patent/JPH04110763A/en
Publication of JPH04110763A publication Critical patent/JPH04110763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PURPOSE:To provide strong structure and easy maintenance and permit continuous measurement by inserting a counter-electrode and a reference electrode directly in a specimen flow-path. CONSTITUTION:A specimen water is pressurized and sent from an influx path 7d to an electrolytic cell 1. A working electrode 3 shall have a constant potential relative to a reference electrode 5, and the electrode reduction current flowing between the working electrode 3 and a counter-electrode 4 is measured. Therein the counter-electrode 4 and reference electrode 5 are inserted directly into a flow path for specimen water, which should eliminate provision of any diaphragm cylinder, which is easy to break and requires utmost care in handling, and any KCL solution which fills the outer space of disphragm cylinder in order to generate liquid communication between the working electrode 3, counter-electrode 4, and reference electrode 5. This will facilitate manufacture and maintenance.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフロークーロメトリ法を用いて、強酸性液中に
含まれるリン酸の濃度を測定するための定電位電解セル
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a potentiostatic electrolysis cell for measuring the concentration of phosphoric acid contained in a strongly acidic liquid using flow coulometry.

〔従来の技術〕[Conventional technology]

リン酸濃度を測定する方法としてはフロークーロメトリ
法が自動測定に適した方法として知られているが、特に
下水の二次処理水等を対象とした全リンの測定に遺し、
強酸性の試料水中のリン酸濃度をフロークーロメトリ法
により測定する方法が本願と同一の出願人により出願さ
れている (特開平2−118445号公報参照)、そ
の手順は、試料水中のリン化合物をオゾン酸化し、さら
にp[11,5以下の酸性溶液とし、これを加熱してリ
ン酸に分解して得た酸性試料水をリンモリブデン錯体と
したのち定電位電解セルに導いて、リンモリブデン錯体
を定電位電解したときに生じる還元電流を測定するもの
である。この際に用いられる定電位電解セルとしては、
第2図に示すようなものが用いられている。このセルは
隔膜円筒22の内部に作用電極23として炭素繊維が詰
められており、隔膜内lI22の外部には螺旋状の白金
線が対極24として配置されている。隔膜円筒22とガ
ラス外筒26の間のにα 空間部は怜÷→溶液27で満たされ、この空間部に銀−
塩化銀参照電極25が挿入されている。リンモリブデン
錯体を含む試料水が、試料流入口29から一定速度でセ
ル内に流入される0作用電極23を銀−塩化銀参照電極
25に対して常に+300−■の定電位に設定しておき
、作用電極23と対極24との藺に流れる電解還元電流
を測定して、この測定された電流値をリン#1灘度に換
算する。
The flow coulometry method is known as a method suitable for automatic measurement as a method for measuring phosphoric acid concentration, but it is particularly difficult to measure total phosphorus in secondary treated sewage water.
A method for measuring the phosphoric acid concentration in strongly acidic sample water by flow coulometry has been filed by the same applicant as the present application (see Japanese Patent Application Laid-Open No. 2-118445). was oxidized with ozone and further made into an acidic solution with p[11.5 or less, which was then heated and decomposed into phosphoric acid to form a phosphomolybdenum complex, which was then introduced into a constant potential electrolysis cell to form a phosphomolybdenum complex. This method measures the reduction current generated when a complex is subjected to constant potential electrolysis. The constant potential electrolysis cell used in this case is
The one shown in FIG. 2 is used. In this cell, a diaphragm cylinder 22 is filled with carbon fibers as a working electrode 23, and a spiral platinum wire is arranged as a counter electrode 24 outside the diaphragm II22. The α space between the diaphragm cylinder 22 and the glass outer cylinder 26 is filled with a solution 27, and silver is added to this space.
A silver chloride reference electrode 25 is inserted. The working electrode 23, through which sample water containing the phosphomolybdenum complex flows into the cell at a constant rate from the sample inlet 29, is always set at a constant potential of +300-■ with respect to the silver-silver chloride reference electrode 25. The electrolytic reduction current flowing between the working electrode 23 and the counter electrode 24 is measured, and the measured current value is converted into phosphorus #1 degree.

〔発明が解決しようとするlII[) 上記の従来技術による定電位電解セルの隔膜部IM22
は、多孔質石英製であって、試料水がセル内る等の手段
が講じられる。試料水をセルに圧入し続けていると、セ
ルの試料水流路の抵抗が高いためにおうおうにして試料
水が隔膜円筒22に設けらにα 溶液と混じり合い一4++4溶液の濃度が低下する。
[I II to be solved by the invention] Diaphragm portion IM22 of the constant potential electrolytic cell according to the above-mentioned prior art
is made of porous quartz, and measures are taken to allow sample water to enter the cell. As the sample water continues to be pressurized into the cell, the sample water gradually mixes with the α solution in the diaphragm cylinder 22 due to the high resistance of the sample water flow path of the cell, and the concentration of the 14++4 solution decreases.

かかる現象が起こった場合には、セルを分解してCi −+=@−+溶液を交換・補充しなければならないが、
溶液との液−液界面を介する液体の移動は極めて少ない
が電気化学的に接続されている。ところが、この多孔質
石英製の隔膜円筒22は、その設置意義に照らしてあま
り肉厚に出来ないため、破損し易く、その取扱に細心の
注意を要するという不具合がある。
If such a phenomenon occurs, the cell must be disassembled and the Ci −+=@−+ solution replaced and replenished.
There is very little movement of liquid through the liquid-liquid interface with the solution, but the connection is electrochemical. However, the diaphragm cylinder 22 made of porous quartz cannot be made very thick in view of the purpose of its installation, and therefore has the problem of being easily damaged and requiring extreme care in its handling.

また、フロークーロメトリ法の要件として、試料水は一
定速度で、かつ試料水中の被測定成分の電解が充分に行
われるように比較的低速度でセル内を貫流されなければ
ならないが、セル内の試料水流路には作用電極が設けら
れて高抵抗になっている。そのため、試料水をセル内に
加圧流入させセルを連続測定ラインに挿入して使用する
場合には好ましいことではない。
In addition, as a requirement of the flow coulometry method, the sample water must flow through the cell at a constant velocity and at a relatively low velocity to ensure sufficient electrolysis of the components to be measured in the sample water. A working electrode is provided in the sample water flow path to provide high resistance. Therefore, this is not preferable when the sample water is forced to flow into the cell and the cell is inserted into a continuous measurement line.

本発明は上記の点に鑑みてなされたものであって、堅牢
であって保守が容易であり連続測定ラインに使用するの
に好適なリン酸濃度測定用taセルを提供することを目
的とする。
The present invention has been made in view of the above points, and an object of the present invention is to provide a TA cell for measuring phosphoric acid concentration that is robust, easy to maintain, and suitable for use in a continuous measurement line. .

(III!を解決するための手段〕 上記の目的を達成するために本発明においては、試料水
流路に設けられた作用電極と、この作用電極と対をなす
対極と、作用電極の電位を一定電位に設定するべく設け
られた参照電極と、を儂えたリン#濃度測定用電解セル
の対極と参照電極とを前記試料水流路に直接挿入するよ
うにした。
(Means for solving III!) In order to achieve the above object, in the present invention, a working electrode provided in the sample water flow path, a counter electrode paired with this working electrode, and a constant potential of the working electrode are provided. A reference electrode provided to set a potential, a counter electrode of an electrolytic cell for measuring phosphorus # concentration, and a reference electrode were directly inserted into the sample water channel.

〔作用〕[Effect]

第2図示の参照電極25の構造を子細に眺めてみると、
第3図示の如く、銀−塩化銀参照電極は、一端に多孔質
セラミックスからなる隔膜部31を有するガラス製の外
管32と、この外管32内に設けられたA、電極部33
と、このAg電極部33に接続された^gc1電極部3
4と、からなる、^gc1電極部34の一端Ce にリード線が接続される。外管32内にはトH溶液36
が満たされている。この参照電極25が挿入さC1 れている電解セルの空間部には、既述のようにMCI −G−4溶液が満たされているので、隔膜部31は一C
2 +溶液と÷÷→溶液の間の液絡箇所を提供するに留まっ
ている。従って、第2図の隔膜円筒22の細U 孔において試料水−4+−+4溶液界面を形成せしめC
J る代わりに、試料水−+8+−溶液界面を直接銀−塩化
参照電極の隔膜部31の細孔において形成させたとして
も、電気化学的になんら変わることばない、また、第2
図においては、対極24は隔膜円筒cJ2 22の外側に回巻される形で4HF+溶液中に設けられ
ており、作用電極23とは隔膜円筒22によって寄合→
溶液と試料水との間には、化学ポテンシャルの異なる2
種の電解質溶液が接触することによって生しる液間電位
差が存在することになる。但し、った高濃度の電解質溶
液であり、また先述の如く試料水はpH1,5の硫酸酸
性に調整されて高濃度の電解質溶液となっているので、
作用電極23と対極24とは隔膜円筒によって電気化学
的に接続され、Kα 骨→→溶液−試料水界面での液間電位差は殆ど無視し得
る状態になっており、対極を試料水中に置いても電気化
学的に何ら変わることはない。
Looking closely at the structure of the reference electrode 25 shown in the second diagram, we find that
As shown in the third figure, the silver-silver chloride reference electrode includes an outer tube 32 made of glass having a diaphragm section 31 made of porous ceramics at one end, an electrode section 33 provided inside the outer tube 32, and an electrode section 33.
^gc1 electrode section 3 connected to this Ag electrode section 33
A lead wire is connected to one end Ce of the ^gc1 electrode section 34 consisting of 4 and . Inside the outer tube 32 there is a H solution 36.
is fulfilled. Since the space of the electrolytic cell into which this reference electrode 25 is inserted is filled with the MCI-G-4 solution as described above, the diaphragm portion 31 is
It merely provides a liquid junction between the 2 + solution and the ÷÷ → solution. Therefore, a sample water -4+-+4 solution interface is formed in the small hole U of the diaphragm cylinder 22 in FIG.
Even if the sample water −+8+− solution interface is directly formed in the pores of the diaphragm portion 31 of the silver-chloride reference electrode instead of the above, there will be no electrochemical change.
In the figure, the counter electrode 24 is wound around the outside of the diaphragm cylinder cJ2 22 and is provided in the 4HF+ solution, and the working electrode 23 is connected to the diaphragm cylinder 22 by the diaphragm cylinder 22.
There are two different chemical potentials between the solution and the sample water.
There will be a liquid junction potential difference created by the contact of the seed electrolyte solutions. However, this is a highly concentrated electrolyte solution, and as mentioned above, the sample water has been adjusted to have a sulfuric acid acidity of pH 1.5, making it a highly concentrated electrolyte solution.
The working electrode 23 and the counter electrode 24 are electrochemically connected by a diaphragm cylinder, and the liquid potential difference at the Kα bone→→solution−sample water interface is almost negligible. There is no change in electrochemistry.

〔実施例〕〔Example〕

第1図は本発明によるリン酸濃度測定用電解セルの一実
施例の縦断面図である。セル本体1内部に穿設された下
部空間1aにはグランジーカーボン粒3aからなる作用
電極3が設けられ、このグラッシーカーボン粒は網8.
8を介して底板7の中央部に設けられた突出部7aによ
ってセル本体1の内部空間の絞り部1bに押し付けられ
固定されている。
FIG. 1 is a longitudinal sectional view of an embodiment of an electrolytic cell for measuring phosphoric acid concentration according to the present invention. A working electrode 3 made of grungy carbon particles 3a is provided in a lower space 1a bored inside the cell body 1, and the glassy carbon particles are covered with a mesh 8.
The cell body 1 is pressed and fixed to the constricted portion 1b of the internal space of the cell body 1 by a protruding portion 7a provided at the center of the bottom plate 7 via a tube 8.

作用電極3からセル本体1の側面に白金リード線3bが
引き出される。なお、本実施例では作用電極としてグラ
ッシーカーボン粒を用いているが、従来技術におけると
同様に炭素繊維を作用電極として用いてもよい、要は、
リンモリブデン錯体が電気分解される電極−試料水界面
の面積が可及的に大きくとれればよいのである。
A platinum lead wire 3b is drawn out from the working electrode 3 to the side surface of the cell body 1. Although glassy carbon particles are used as the working electrode in this example, carbon fibers may also be used as the working electrode as in the prior art.
It is sufficient that the area of the electrode-sample water interface where the phosphomolybdenum complex is electrolyzed can be made as large as possible.

セル本体1の絞り部1aの上部番こは、下部空間IBと
ほぼ同径の上部空間1cが設けられており、この上部空
間1cには対極2がセル本体1の側面から挿入され、対
極2からセル本体1の側面に白金リード線2bが引き出
される。
The upper part of the throttle part 1a of the cell body 1 is provided with an upper space 1c having approximately the same diameter as the lower space IB, and the counter electrode 2 is inserted into this upper space 1c from the side of the cell body 1. A platinum lead wire 2b is drawn out from the side surface of the cell body 1.

底板7の突出部7aはセル本体下部空間1aに緊密に挿
入され、底板7はネジ8.0リング9等適宜の手段によ
ってセル本体lに液密に嵌合される。
The protruding portion 7a of the bottom plate 7 is tightly inserted into the cell body lower space 1a, and the bottom plate 7 is liquid-tightly fitted into the cell body 1 by suitable means such as screws 8 and 0 rings 9.

また、白金リードka3b、2bのそれぞれの引き出し
部も液密に封止される。
Further, the respective lead-out portions of the platinum leads ka3b and 2b are also sealed liquid-tightly.

また、上部空間1cに銀−塩化銀参照電極5が挿入され
るが、この銀−塩化[参照電極5には第3図示の銀−塩
化銀参照電極25と同しものが使用できる。この銀−塩
化銀参照電極5は適宜の嵌合部材によってセル本体1に
液密に固定される。
Further, a silver-silver chloride reference electrode 5 is inserted into the upper space 1c, and the same silver-silver chloride reference electrode 25 shown in FIG. 3 can be used as the silver-silver chloride reference electrode 5. This silver-silver chloride reference electrode 5 is liquid-tightly fixed to the cell body 1 by a suitable fitting member.

底板7の中心部およびその突出17aの中心部を道って
試料水の流入路7dが穿設されており、またセル本体1
の上部側面から上部空間ICに遣じる試料水の流出R1
dが穿設されている。従って、流入路7d、下部空間1
a、上部空間IC及び流出路1dによってセル1におけ
る試料水の流路が形成される。
A sample water inflow path 7d is bored through the center of the bottom plate 7 and the center of its protrusion 17a, and the cell body 1
Outflow R1 of sample water from the upper side to the upper space IC
d is drilled. Therefore, the inflow path 7d, the lower space 1
A, a flow path for sample water in the cell 1 is formed by the upper space IC and the outflow path 1d.

次にこの電解セル1を用いて試料水中のリン酸濃度を測
定する手順を説明する。まず、検水中のリン化合物をオ
ゾン酸化し、更にpH1,5以下の酸性試料水とし、こ
れを加熱してリン酸に分解して得た酸性試料水をリンモ
リブデン錯体としたのち電解セルlに導き、ポンプ等の
加圧手段で適宜の水圧に加圧して流入路7dから電解セ
ル1に送入する。作用電極3はその電位が参照電極5に
対して常にD C250mV〜350蒙Vの定電位とな
るように設定され、このとき作用電極3と対極4の間に
流れる電解還元電流を測定する。定電位電解の操作が図
外のボテンシオスタントによって行われることは、従来
の電解セルにおけると同様である0作用電極3における
リンモリブデン錯体の還元反応は以下の(1)式で示さ
れる。
Next, a procedure for measuring the phosphoric acid concentration in sample water using this electrolytic cell 1 will be explained. First, the phosphorus compounds in the sample water are oxidized with ozone to make acidic sample water with a pH of 1.5 or less, which is then heated and decomposed into phosphoric acid.The resulting acidic sample water is converted into a phosphomolybdenum complex, and then transferred to the electrolytic cell l. The water is introduced into the electrolytic cell 1 through the inflow path 7d after being pressurized to an appropriate water pressure using a pressurizing means such as a pump. The working electrode 3 is set so that its potential is always at a constant potential of 250 mV to 350 mV DC with respect to the reference electrode 5, and at this time, the electrolytic reduction current flowing between the working electrode 3 and the counter electrode 4 is measured. The constant potential electrolysis operation is performed by a potentiostat (not shown), which is the same as in conventional electrolytic cells.The reduction reaction of the phosphomolybdenum complex at the working electrode 3 is expressed by the following equation (1).

(PMo(Vr)+tOae) ’−+ 26−4(P
 Mo(V)gMo(Vl) r e O41) ”−
−−−’−−−−−(1)+11式の反応による還元電
流はリン濃度に比例するから、この還元電流の値により
リン酸濃度を定量することができる点は従来技術と同様
である。事CJ 実、4+=6=+溶液が飽和溶液および3.3M溶液の
参照電極を用いて、第1図示の電解セルによって下水二
次処理水中の全リン濃度を測定した結果は、同じ下水二
次処理水について第2図示の従来の電解セルによる測定
結果とよい一致を示し、対極と参照電極を試料水流路に
直接挿入した本職発明による電解セルの機能が確認され
ている。
(PMo(Vr)+tOae) '-+ 26-4(P
Mo(V)gMo(Vl) r e O41) ”-
---'------Since the reduction current due to the reaction of formula (1) + 11 is proportional to the phosphorus concentration, the phosphoric acid concentration can be determined based on the value of this reduction current, which is the same as in the conventional technology. . Fact CJ In fact, the results of measuring the total phosphorus concentration in the secondary sewage treatment water using the electrolysis cell shown in Figure 1 using reference electrodes with 4+=6=+ saturated solution and 3.3M solution are Regarding the subsequent treated water, the results showed good agreement with the measurement results using the conventional electrolytic cell shown in Figure 2, confirming the functionality of the electrolytic cell according to the present invention in which the counter electrode and reference electrode were inserted directly into the sample water flow path.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本願発明においては、試料水流路
に設けられた作用電極と、この作用電極と対をなす対極
と、作用電極の電位を一定電位に設定するべく設けられ
た参照電極と、を備えたリン酸濃度測定用電解セルの対
極と参照電極とを前記試料水流路に直接挿入するように
したので、従来の電解セルにおける破損し易くその取扱
に細心の注意を必要とする隔膜円筒と、作用t8jと対
極および参照電極を液絡すべく隔膜円筒の外側の空k(
J 間に充填されていた+−+−+−溶液とが不要となり、
その結果、製造、保守が容易な電解セルが提供されると
いう絶大な効果が得られる。
As explained above, in the present invention, a working electrode provided in the sample water flow path, a counter electrode paired with this working electrode, a reference electrode provided to set the potential of the working electrode to a constant potential, Since the counter electrode and reference electrode of the electrolytic cell for measuring phosphoric acid concentration are inserted directly into the sample water flow path, the diaphragm cylinder, which is easily damaged in conventional electrolytic cells and requires careful handling, is removed. and the air k(
The +-+-+- solution that was filled between J is no longer needed,
As a result, a tremendous effect can be obtained in that an electrolytic cell that is easy to manufacture and maintain is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本願発明の一実施例の断面図、第2図は従来の
リン#濃度測定用電解セルの断面図、第3図は銀−塩化
銀参照電極を説明するための断面図である。 1:セル本体、1a:下部空間、1c:上部空間、2:
対極、3:作用電極、5:参照電極、7:底板。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a sectional view of a conventional electrolytic cell for measuring phosphorus # concentration, and FIG. 3 is a sectional view for explaining a silver-silver chloride reference electrode. . 1: Cell body, 1a: Lower space, 1c: Upper space, 2:
Counter electrode, 3: working electrode, 5: reference electrode, 7: bottom plate.

Claims (1)

【特許請求の範囲】[Claims] 1)試料水流路に設けられた作用電極と、この作用電極
と対をなす対極と、前記作用電極の電位を一定電位に設
定するべく設けられた参照電極と、を備えたリン酸濃度
測定用電解セルにおいて、前記対極と前記参照電極とを
前記試料水流路に直接挿入したことを特徴とするリン酸
濃度測定用電解セル。
1) For measuring phosphoric acid concentration, comprising a working electrode provided in a sample water flow path, a counter electrode paired with the working electrode, and a reference electrode provided to set the potential of the working electrode to a constant potential. An electrolytic cell for measuring phosphoric acid concentration, characterized in that the counter electrode and the reference electrode are directly inserted into the sample water flow path.
JP23199390A 1990-08-31 1990-08-31 Electrolytic cell for measuring phosphoric acid concentration Pending JPH04110763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23199390A JPH04110763A (en) 1990-08-31 1990-08-31 Electrolytic cell for measuring phosphoric acid concentration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23199390A JPH04110763A (en) 1990-08-31 1990-08-31 Electrolytic cell for measuring phosphoric acid concentration

Publications (1)

Publication Number Publication Date
JPH04110763A true JPH04110763A (en) 1992-04-13

Family

ID=16932265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23199390A Pending JPH04110763A (en) 1990-08-31 1990-08-31 Electrolytic cell for measuring phosphoric acid concentration

Country Status (1)

Country Link
JP (1) JPH04110763A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106149A (en) * 1980-01-14 1981-08-24 Environmental Sciences Ass Method and device for electrochemical test and*or analysis of sample solution
JPS57211053A (en) * 1981-03-09 1982-12-24 Environmental Sciences Ass Improvement of liquid chromatography
JPH02118445A (en) * 1988-10-28 1990-05-02 Fuji Electric Co Ltd Phosphoric acid concentration measuring device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56106149A (en) * 1980-01-14 1981-08-24 Environmental Sciences Ass Method and device for electrochemical test and*or analysis of sample solution
JPS57211053A (en) * 1981-03-09 1982-12-24 Environmental Sciences Ass Improvement of liquid chromatography
JPH02118445A (en) * 1988-10-28 1990-05-02 Fuji Electric Co Ltd Phosphoric acid concentration measuring device

Similar Documents

Publication Publication Date Title
JP2872633B2 (en) Electrochemical measurement cell
DE102011113941B4 (en) Electrochemical electrode
US3258411A (en) Method and apparatus for measuring the carbon monoxide content of a gas stream
US4661210A (en) Method and apparatus for electrochemical analysis of solutions
US3315270A (en) Dissolved oxidant analysis
US11215579B2 (en) Method for cleaning, conditioning, calibration and/or adjustment of an amperometric sensor
JPH04110763A (en) Electrolytic cell for measuring phosphoric acid concentration
JP3390154B2 (en) Residual chlorine meter and water purification device using it
JP3903524B2 (en) Electrolyzed water generator
JPH0245147B2 (en)
JP6518937B2 (en) Solid-type residual chlorine sensor and water meter equipped with the same
JP3662692B2 (en) Electrolyzed water generator
JPS6257941B2 (en)
JP3633077B2 (en) pH sensor and ion water generator
US3377256A (en) Alkali analysis
JPH02296143A (en) Method for measuring dissolved chlorine dioxide
JP3650919B2 (en) Electrochemical sensor
JPH0151774B2 (en)
JPH0330851Y2 (en)
JPH08325773A (en) Electrolysis method and apparatus using vertical circulating capillary mercury bundle electrode
JPH079083Y2 (en) Redox current measuring device
JPH05340914A (en) Reference electrode
JPS5810646A (en) Relative concentration measuring device for solution
DE1648936B2 (en) DEVICE FOR AUTOMATIC ELECTROCHEMICAL ANALYSIS
JPH0527820B2 (en)