[go: up one dir, main page]

JPH04110694A - Fast breeder reactor - Google Patents

Fast breeder reactor

Info

Publication number
JPH04110694A
JPH04110694A JP2226630A JP22663090A JPH04110694A JP H04110694 A JPH04110694 A JP H04110694A JP 2226630 A JP2226630 A JP 2226630A JP 22663090 A JP22663090 A JP 22663090A JP H04110694 A JPH04110694 A JP H04110694A
Authority
JP
Japan
Prior art keywords
primary
coolant
container
heat exchanger
intermediate heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2226630A
Other languages
Japanese (ja)
Inventor
Kazuo Yoshida
和生 吉田
Kenji Ogura
小倉 健志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Central Research Institute of Electric Power Industry
Original Assignee
Toshiba Corp
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Central Research Institute of Electric Power Industry filed Critical Toshiba Corp
Priority to JP2226630A priority Critical patent/JPH04110694A/en
Publication of JPH04110694A publication Critical patent/JPH04110694A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To intend improvement of maintainability by providing an electro-magnetic pump integrally underneath an intermediate heat exchanger and by sending primary coolant inside a primary cold pool from a pressure plenum into a reactor core inside. CONSTITUTION:An electro-magnetic pump 4 is integrally provided underneath an intermediate heat exchanger 3 and primary coolant that is heat-exchanged by the intermediate heat exchanger 3, is made to be discharged from a discharging outlet 5 to a lower part of a primary container 1. With this sort of constitution, the primary coolant in a primary cold pool 7 can be transferred into a reactor core 2 from a pressure plenum 9 formed at a lower part of the reactor core 2, by the electro-magnetic pump 4 which is integrally provided underneath the intermediate heat exchanger 3, and therefore there is no need to arrange primary coolant circulation pumps around the reactor core 2 and also a ring shaped space part between the reactor core 2 and the primary container 1, can be cut down circumferentially. In this way, the primary container can be down-sized and therewith more compactly structured fast breeder reactor can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は高速増殖炉に係り、特に主容器が二重容器構造
の高速増殖炉に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a fast breeder reactor, and particularly to a fast breeder reactor in which the main vessel has a double vessel structure.

(従来の技術) 冷却材として液体金属ナトリウムを使用する高速増殖炉
は、炉の型式によりタンク型とループ型とに大別される
。このうちタンク型高速増殖炉は主容器である原子炉容
器内に中間熱交換器及び1次冷却材循環ポンプ等を設置
し、原子炉容器内に収容された1次冷却材を中間熱交換
器により2次冷却材と熱交換させて炉心の核反応熱を取
り比す構造となっている。
(Prior Art) Fast breeder reactors that use liquid metal sodium as a coolant are broadly classified into tank type and loop type depending on the type of reactor. Among these, tank-type fast breeder reactors have an intermediate heat exchanger, a primary coolant circulation pump, etc. installed in the reactor vessel, which is the main vessel, and the primary coolant contained in the reactor vessel is transferred to the intermediate heat exchanger. It is designed to exchange heat with the secondary coolant and absorb the nuclear reaction heat in the reactor core.

このように構成されるタンク型高速増殖炉は、ループ型
高速増殖炉のように1次冷却系配管を必要としないため
、配管破損によるナトリウム漏洩がないなどの利点があ
るが、蒸気発生器や2次冷却材循環ポンプ等は原子炉容
器外に設置されているため、蒸気発生器及び2次冷却材
循環ポンプを中間熱交換器に接続するための2次冷却系
配管を必要とするばかりでな(、これらの2次冷却系機
器を設置するためのスペースを必要とし、プラント全体
の構成が大規模になるという問題があった。
Tank-type fast breeder reactors configured in this way do not require primary cooling system piping unlike loop-type fast breeder reactors, so they have advantages such as no sodium leakage due to piping breakage. Since the secondary coolant circulation pump etc. are installed outside the reactor vessel, secondary cooling system piping is required to connect the steam generator and the secondary coolant circulation pump to the intermediate heat exchanger. However, there was a problem in that space was required to install these secondary cooling system devices, and the overall plant configuration became large-scale.

そこで、これを解決するために第3図(P roeof
I A E  I nternational  S 
ynposium  onL M F B RD ev
elopment  P、4−5−1〜4−5−17N
 ov、 1954. T okyo)に示すような二
重容器構造の高速増殖炉が考えられている。同図におい
て、31は1次冷却材を収容した1次容器であり、この
1次容器31内には炉心32が設置されていると共に中
間熱交換器3Bおよび]次冷却材循環ポンプ34か炉心
32の周囲に交互に配設されている。上記炉心32の上
方には制御棒駆動機構35か設けられ、この制御棒駆動
機構35により制御棒36を炉心32内に挿入するとと
もに制御棒36を炉心32から引き抜いて炉心32の核
反応度を制御している。
Therefore, in order to solve this problem, Figure 3 (Pro roeof
International S
ynposium onL M F B RD ev
elopment P, 4-5-1 to 4-5-17N
ov, 1954. A fast breeder reactor with a double vessel structure as shown in Tokyo) is being considered. In the figure, reference numeral 31 denotes a primary vessel containing a primary coolant, and a reactor core 32 is installed inside this primary vessel 31, and an intermediate heat exchanger 3B and a secondary coolant circulation pump 34 are connected to the reactor core. They are arranged alternately around 32. A control rod drive mechanism 35 is provided above the reactor core 32, and the control rod drive mechanism 35 inserts the control rods 36 into the reactor core 32 and withdraws the control rods 36 from the reactor core 32 to control the nuclear reactivity of the reactor core 32. It's in control.

また、前記1次容器31内は隔壁37によりコールドプ
ール38とホットプール39とに分割され、コールドプ
ール38内の1次冷却材(低温ナトリウム)は1次冷却
材循環ポンプ34により炉心32の下部に形成された圧
力プレナム40から炉心32内に流入するようになって
いる。そして、炉心32内に流入した1次冷却材は炉心
32の核反応熱により高温に加熱され、炉心32の上部
からホットプール39に流出するようになっている。
The inside of the primary vessel 31 is divided into a cold pool 38 and a hot pool 39 by a partition wall 37, and the primary coolant (low-temperature sodium) in the cold pool 38 is transferred to the lower part of the reactor core 32 by a primary coolant circulation pump 34. The air flows into the core 32 from a pressure plenum 40 formed in the reactor core 32 . The primary coolant that has flowed into the reactor core 32 is heated to a high temperature by the nuclear reaction heat of the reactor core 32, and flows out from the upper part of the reactor core 32 into a hot pool 39.

一方、ホットプール39内の1次冷却材(高温ナトリウ
ム)は中間熱交換器33内に流入して2次冷却材と熱交
換するようになっている。そして、2次冷却材と熱交換
した1次冷却材は低温ナトリウムとなってコールドプー
ル38に流出し、1次冷却材循環ポンプ34により圧力
プレナム40から再び炉心32内に送り込まれるように
なっている。
On the other hand, the primary coolant (high temperature sodium) in the hot pool 39 flows into the intermediate heat exchanger 33 to exchange heat with the secondary coolant. The primary coolant that has exchanged heat with the secondary coolant turns into low-temperature sodium and flows out into the cold pool 38, where it is sent into the reactor core 32 again from the pressure plenum 40 by the primary coolant circulation pump 34. There is.

また、前記1次容器31は2次容器41の内側に内包さ
れており、この2次容器41内には2次冷却材が収容さ
れていると共に蒸気発生器42および2次冷却材循環ポ
ンプ43が1次容器31の周囲に配設されている。そし
て、2次容器41の上部にはルーフスラブ44が設けら
れ、このルーフスラブ44により1次容器31および2
次容器41の上部開口を気密に閉塞している。
Further, the primary container 31 is contained inside a secondary container 41, and a secondary coolant is accommodated in the secondary container 41, as well as a steam generator 42 and a secondary coolant circulation pump 43. are arranged around the primary container 31. A roof slab 44 is provided above the secondary container 41, and this roof slab 44 allows the primary containers 31 and 2
The upper opening of the next container 41 is hermetically closed.

前記中間熱交換器33は2次ナトリウム配管45.46
を介して蒸気発生器42及び2次冷却材循環ポンプ43
と接続しており、中間熱交換器33で1次冷却材と熱交
換した2次冷却材は2次ナトリウム配管45を通って蒸
気発生器42に導入され、この蒸気発生器42で水と熱
交換してタービン駆動用の過熱蒸気を発生させている。
The intermediate heat exchanger 33 has secondary sodium piping 45.46
via a steam generator 42 and a secondary coolant circulation pump 43
The secondary coolant that has exchanged heat with the primary coolant in the intermediate heat exchanger 33 is introduced into the steam generator 42 through the secondary sodium pipe 45, and the steam generator 42 exchanges water and heat. They are replaced to generate superheated steam to drive the turbine.

そして、蒸気発生器42で熱交換した2次冷却材は2次
冷却材循環ポンプ43により2次ナトリウム配管46を
通って再び中間熱交換器33に流入するようになってい
る。
The secondary coolant that has undergone heat exchange in the steam generator 42 is caused to flow into the intermediate heat exchanger 33 again through a secondary sodium pipe 46 by a secondary coolant circulation pump 43.

(発明が解決しようとする課題) このように構成される高速増殖炉では、1次冷却材を収
容した1次容器31を2次容器41の内側に内包し、こ
の2次容器41内に2次冷却材を収容すると共に蒸気発
生器42及び2次冷却材循環ポンプ43を1次容器31
の周囲に配設した構造となっているため、原子炉容器外
に2次冷却系機器を設置するためのスペースが不要とな
り、プラント全体をコンパクト化することができる。し
かしながら、上述した従来の高速増殖炉は蒸気発生器4
2及び2次冷却材循環ポンプ43を2次ナトリウム配管
45.46により中間熱交換器33に接続していたため
、炉上部での配管構造が複雑となり、メンテナンス性が
悪いという問題があった。また、従来では炉心32の周
囲に中間熱交換器33と1次冷却材循環ポンプ34を配
設していたため、1次容器1の小型化に限界があった。
(Problems to be Solved by the Invention) In the fast breeder reactor configured as described above, the primary container 31 containing the primary coolant is enclosed inside the secondary container 41, and the secondary container 41 contains two The primary container 31 accommodates the secondary coolant and also contains the steam generator 42 and the secondary coolant circulation pump 43.
Since the structure is arranged around the reactor vessel, there is no need for space for installing secondary cooling system equipment outside the reactor vessel, and the entire plant can be made more compact. However, the conventional fast breeder reactor described above has a steam generator 4
Since the secondary coolant circulation pump 43 was connected to the intermediate heat exchanger 33 by the secondary sodium piping 45, 46, the piping structure in the upper part of the furnace was complicated, resulting in poor maintainability. Furthermore, in the past, the intermediate heat exchanger 33 and the primary coolant circulation pump 34 were disposed around the reactor core 32, so there was a limit to the miniaturization of the primary vessel 1.

本発明はこのような点に鑑みてなされたもので、原子炉
上部の配管構造を簡素化してメンテナンス性の向上を図
るとともに、1次容器内に設置される1次冷却系機器の
配置制限を緩和して1次容器の小型化を図ることのでき
る高速増殖炉を提供することを目的とする。
The present invention has been made in view of these points, and aims to improve maintainability by simplifying the piping structure in the upper part of the reactor, and also to eliminate restrictions on the arrangement of primary cooling system equipment installed in the primary vessel. It is an object of the present invention to provide a fast breeder reactor that can reduce the size of the primary vessel.

[発明の構成] (課題を解決するための手段) 上記目的を達成するために本発明は、1次冷却材を収容
した1次容器と、この1次容器を内包すると共に2次冷
却材を収容した2次容器と、この2次容器と前記1次容
器の上部開口を閉塞するルーフスラブと・、前記1次容
器内に設置された炉心と、この炉心内に制御棒を挿入す
ると共に前記制御棒を炉心から引き抜く制御棒駆動機構
と、前記1次容器内を1次ホットプールと1次コールド
プールとに分割する第1隔壁と、前記1次容器内に設置
され前記ホットプール内の1次冷却材を前記2次冷却材
と熱交換させる中間熱交換器と、前記炉心の下部に形成
された圧力プレナムと、前記中間熱交換器の下部に一体
に設けられ前記コールドプール内の1次冷却材を前記圧
力プレナムから炉心内に流入させる電磁ポンプと、前記
2次容器内を2次ホットプールと2次コールドプールと
に分割する第2隔壁と、前記2次容器内に設置され前記
中間熱交換器で1次冷却材と熱交換した2次冷却材を水
と熱交換させて蒸気を生成する蒸気発生器と、前記2次
容器内に設置され前記蒸気発生器から2次コールドプー
ルに流出した2次冷却材を2次冷却材入口配管を介して
前記中間熱交換器に導入する2次冷却材循環ポンプと、
前記2次冷却材入口配管の外側に同軸に設けられ前記中
間熱交換器で1次冷却材と熱交換した2次冷却材を2次
ホットプールに流出させる2次冷却材出口配管とを具備
したものである。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention includes a primary container containing a primary coolant, and a secondary coolant contained in the primary container. A secondary vessel containing the secondary vessel, a roof slab that closes the upper opening of the secondary vessel and the primary vessel, a reactor core installed in the primary vessel, and a control rod inserted into the core and the a control rod drive mechanism that extracts control rods from the core; a first partition wall that divides the inside of the primary vessel into a primary hot pool and a primary cold pool; an intermediate heat exchanger for exchanging heat between the secondary coolant and the secondary coolant; a pressure plenum formed at the lower part of the core; an electromagnetic pump that causes coolant to flow into the reactor core from the pressure plenum; a second partition wall that divides the inside of the secondary vessel into a secondary hot pool and a secondary cold pool; a steam generator that generates steam by exchanging heat with water of a secondary coolant that has undergone heat exchange with the primary coolant in a heat exchanger; and a steam generator that is installed in the secondary container and flows from the steam generator to a secondary cold pool. a secondary coolant circulation pump that introduces the secondary coolant that has flowed out into the intermediate heat exchanger via a secondary coolant inlet pipe;
A secondary coolant outlet pipe is provided coaxially outside the secondary coolant inlet pipe and allows the secondary coolant that has exchanged heat with the primary coolant in the intermediate heat exchanger to flow out into the secondary hot pool. It is something.

(作 用) 本発明では中間熱交換器の下部に電磁ポンプを一体に設
け、この電磁ポンプにより1次コールドプール内の1次
冷却材を圧力プレナムから炉心内に送り込む構成とする
ことにより、炉心の周囲に1次冷却材循環ポンプを配置
する必要がないので、1次容器の小型化を図ることがで
きる。
(Function) In the present invention, an electromagnetic pump is integrally provided at the lower part of the intermediate heat exchanger, and this electromagnetic pump is configured to feed the primary coolant in the primary cold pool from the pressure plenum into the reactor core. Since there is no need to arrange a primary coolant circulation pump around the primary container, the primary container can be made smaller.

また、2次容器内を第2隔壁により2次ホットプールと
2次コールドプールとに分割するとともに、2次コール
ドプール内の2次冷却材を中間熱交換器に導入する2次
冷却材入口配管の外側に中間熱交換器で1次冷却材と熱
交換した2次冷却材を2次ホットプールに導く2次冷却
材出口配管を同軸に設けることにより、炉上部における
配管構造を簡素化でき、メンテナンス性を向上させるこ
とができる。
In addition, the inside of the secondary container is divided into a secondary hot pool and a secondary cold pool by a second partition, and secondary coolant inlet piping that introduces the secondary coolant in the secondary cold pool to the intermediate heat exchanger. The piping structure in the upper part of the furnace can be simplified by coaxially providing the secondary coolant outlet piping that leads the secondary coolant that has exchanged heat with the primary coolant in the intermediate heat exchanger to the secondary hot pool on the outside of the furnace. Maintainability can be improved.

(実施例) 以下、図面を参照して本発明の実施例について説明する
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図及び第2図は本発明の一実施例を示し、第1図は
本発明による高速増殖炉の概略構成を示す縦断面図で、
第2図は第1図の平面図である。
1 and 2 show one embodiment of the present invention, and FIG. 1 is a vertical cross-sectional view showing a schematic configuration of a fast breeder reactor according to the present invention,
FIG. 2 is a plan view of FIG. 1.

第1図及び第2図において、1は1次冷却材を収容した
1次容器であり、この1次容器1内には炉心2が設置さ
れていると共に中間熱交換器3か炉心2の周囲に配設さ
れている。この中間熱交換器3の下部には電磁ポンプ4
が一体に設けられ、中間熱交換器3で熱交換した1次冷
却材は電磁ポンプ4により吐805から1次容器1の下
部へ吐出されるようになっている。
1 and 2, reference numeral 1 denotes a primary vessel containing a primary coolant, and inside this primary vessel 1, a reactor core 2 is installed, and an intermediate heat exchanger 3 or the surrounding area of the reactor core 2 is installed. It is located in At the bottom of this intermediate heat exchanger 3 is an electromagnetic pump 4.
are integrally provided, and the primary coolant that has undergone heat exchange with the intermediate heat exchanger 3 is discharged from a discharge 805 to the lower part of the primary container 1 by the electromagnetic pump 4.

また、前記1次容器1内は第1隔壁6により1次コール
ドプール7と1次ホットプール8とに分割されており、
1次コールドプール7内の1次冷却材(低温ナトリウム
)は前述した電磁ポンプ4の吐出圧により炉心2の下部
に形成された圧力プレナム9から炉心2内に流入するよ
うになっている。そして、炉心2内に流入した1次冷却
材は炉心2の核反応熱により高温に加熱され、炉心2の
上部から1次ホットプール8に流出するようになってい
る。
Further, the inside of the primary container 1 is divided into a primary cold pool 7 and a primary hot pool 8 by a first partition 6,
The primary coolant (low-temperature sodium) in the primary cold pool 7 flows into the core 2 from a pressure plenum 9 formed at the bottom of the core 2 by the discharge pressure of the electromagnetic pump 4 described above. The primary coolant flowing into the reactor core 2 is heated to a high temperature by the nuclear reaction heat of the reactor core 2, and flows out from the upper part of the reactor core 2 into the primary hot pool 8.

一方、1次ホットプール8内の1次冷却材(高温ナトリ
ウム)は流入口10から中間熱交換器3内に流入して2
次冷却材と熱交換するようになっている。そして、2次
冷却材と熱交換した1次冷却材は低温ナトリウムとなっ
て1次コールドプール7に流出し、前述した如く電磁ポ
ンプ4の吐出圧により圧力プレナム9から再び炉心2内
に送り込まれるようになっている。なお、炉心2の上方
には制御棒駆動機構(図示せず)か設けられ、この制御
棒駆動機構により制御棒(図示せず)を炉心2内に挿入
するとともに制御棒を炉心2から弓き抜いて炉心2の核
反応度を制御している。
On the other hand, the primary coolant (high temperature sodium) in the primary hot pool 8 flows into the intermediate heat exchanger 3 from the inlet 10 and flows into the intermediate heat exchanger 3.
It is designed to exchange heat with the next coolant. The primary coolant that has exchanged heat with the secondary coolant turns into low-temperature sodium and flows out into the primary cold pool 7, and as described above, is sent into the reactor core 2 again from the pressure plenum 9 by the discharge pressure of the electromagnetic pump 4. It looks like this. A control rod drive mechanism (not shown) is provided above the reactor core 2, and this control rod drive mechanism inserts the control rods (not shown) into the reactor core 2 and pulls the control rods out of the reactor core 2. It controls the nuclear reactivity of the reactor core 2.

また、前記1次容器1は2次容器11の内側に内包され
ており、この2次容器11内には2次冷却材が収容され
ていると共に蒸気発生器12および2次冷却材循環ポン
プ13が1次容器1の周囲に配設されている。そして、
2次容器11の上部こはルーフスラブ14が設けられ、
このルーフスラブ14により1次容器1および2次容器
11の上部開口を気密に閉塞している。
Further, the primary container 1 is contained inside a secondary container 11, and a secondary coolant is accommodated in the secondary container 11, as well as a steam generator 12 and a secondary coolant circulation pump 13. are arranged around the primary container 1. and,
The upper part of the secondary container 11 is provided with a roof slab 14,
The roof slab 14 hermetically closes the upper openings of the primary container 1 and the secondary container 11.

また、2次容器11内は第2隔壁15により2次コール
ドプール16と2次ホットプール17とに分割されてお
り、2次コールドプール16内の2次冷却材(低温ナト
リウム)は吸引口18から2次冷却材循環ポンプ1B内
に吸い込まれ、2次冷却材入口配管19を通って中間熱
交換器3に導入されるようになっている。そして、中間
熱交換器3て熱交換した2次冷却材は2次冷却材入口配
管19の外側に同軸に設けられた2次冷却材比口配管2
0を通って2次ホットプール17に流出するようになっ
ている。
Further, the inside of the secondary container 11 is divided into a secondary cold pool 16 and a secondary hot pool 17 by a second partition 15, and the secondary coolant (low temperature sodium) in the secondary cold pool 16 is supplied to the suction port 18. The coolant is sucked into the secondary coolant circulation pump 1B, and is introduced into the intermediate heat exchanger 3 through the secondary coolant inlet pipe 19. The secondary coolant that has undergone heat exchange in the intermediate heat exchanger 3 is then transferred to a secondary coolant ratio pipe 2 coaxially provided outside the secondary coolant inlet pipe 19.
0 and flows out into the secondary hot pool 17.

一方、2次ホットプール17内の2次冷却材(高温ナト
リウム)は流入口21から蒸気発生器12内に流入し、
この蒸気発生器12で水と熱交換してタービン駆動用の
過熱蒸気を発生させる。
On the other hand, the secondary coolant (high temperature sodium) in the secondary hot pool 17 flows into the steam generator 12 from the inlet 21,
This steam generator 12 exchanges heat with water to generate superheated steam for driving a turbine.

そして、蒸気発生器12で熱交換した2次冷却材は2次
コールドプール16に流…し、再び吸引口18から2次
冷却材循環ポンプ13内に吸い込まれるようになってい
る。なお、図中22は燃料交換機、23は崩壊熱除去用
熱交換器である。
The secondary coolant that has undergone heat exchange in the steam generator 12 flows into the secondary cold pool 16 and is sucked into the secondary coolant circulation pump 13 again through the suction port 18. In the figure, 22 is a fuel exchanger, and 23 is a decay heat removal heat exchanger.

このような構成によると、中間熱交換器3の下部に一体
に設けられた電磁ポンプ4により1次コールドプール7
内の1次冷却材を炉心2の下部に形成された圧力プレナ
ム9から炉心2内に送り込むことができるため、炉心2
の周囲に1次冷却材循環ポンプを配置する必要がなく、
炉心2と1次容器1との間の環状空間部を周方向に小さ
くすることができる。これにより1次容器1を小型化で
き、全体としてコンパクトな構造の高速増殖炉を得るこ
とができる。
According to such a configuration, the primary cold pool 7 is pumped by the electromagnetic pump 4 provided integrally at the lower part of the intermediate heat exchanger 3.
The primary coolant inside the reactor core 2 can be sent into the reactor core 2 from the pressure plenum 9 formed at the bottom of the reactor core 2.
There is no need to place a primary coolant circulation pump around the
The annular space between the core 2 and the primary vessel 1 can be made smaller in the circumferential direction. Thereby, the primary vessel 1 can be downsized, and a fast breeder reactor having a compact structure as a whole can be obtained.

また、2次容器11を第2隔壁15により2次コールド
プール16と2次ホットプール17とに分割するととも
に、2次コールドプール16内の2次冷却材を中間熱交
換器3に導入する2次冷却材入口配管19の外側に中間
熱交換器3で1次冷却材と熱交換した2次冷却材を2次
ホットプール17に導(2次冷却材出口配管20を同軸
に設けることにより、炉上部における配管構造を簡素化
でき、メンテナンス性を向上させることができる。
Further, the secondary container 11 is divided into a secondary cold pool 16 and a secondary hot pool 17 by the second partition 15, and the secondary coolant in the secondary cold pool 16 is introduced into the intermediate heat exchanger 3. The secondary coolant that has undergone heat exchange with the primary coolant in the intermediate heat exchanger 3 is introduced to the outside of the secondary coolant inlet pipe 19 to the secondary hot pool 17 (by providing the secondary coolant outlet pipe 20 coaxially, The piping structure in the upper part of the furnace can be simplified and maintainability can be improved.

さらに、本実施例では1次冷却材循環ポンプとして電磁
ポンプ4を使用しているので、軸封装置が不要となる共
に1次Arガスの流量低減を図ることができる。
Furthermore, in this embodiment, since the electromagnetic pump 4 is used as the primary coolant circulation pump, a shaft sealing device is not required and the flow rate of the primary Ar gas can be reduced.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、1次冷却材を収容した1
次容器と、この1次容器を内包すると共こ2次冷却材を
収容した2次容器と、この2次容器と前記1次容器の上
部開口を閉塞するルーフスラブと、前記1次容器内に設
置された炉心と、この炉心内に制御棒を挿入すると共に
前記制御棒を炉心から引き抜く制御棒駆動機構と、前記
1次容器内を1次ホットプールと1次コールドブ〜ルと
に分割する第1隔壁と、前記1次容器内に設置され前記
ホットプール内の1次冷却材を前記2次冷却材と熱交換
させる中間熱交換器と、前記炉心の下部に形成された圧
力プレナムと、前記中間熱交換器の下部に一体に設けら
れ前記コールドプール内の1次冷却材を前記圧力プレナ
ムから炉心内に流入させる電磁ポンプと、前記2次容器
内を2次ホットプールと2次コールドプールとに分割す
る第2隔壁と、前記2次容器内に設置され前記中間熱交
換器で1次冷却材と熱交換した2次冷却材を水と熱交換
させて蒸気を生成する蒸気発生器と、前記2次容器内に
設置され前記蒸気発生器から2次コールドプールに流出
した2次冷却材を2次冷却材入口配管を介して前記中間
熱交換器に導入する2次冷却材循環ポンプと、前記2次
冷却材入口配管の外側に同軸に設けられ前記中間熱交換
器で1次冷却材と熱交換した2次冷却材を2次ホットプ
ールに流出させる2次冷却材出口配管とを具備したもの
である。したがって、中間熱交換器の下部に一体に設け
られた電磁ポンプによりコールドプール内の1次冷却材
を炉心の下部に形成された圧力プレナムから炉心内に送
り込むことができ、炉心の周囲に1次冷却材循環ポンプ
を配置する必要がないので、1次容器を小型化すること
ができる。また、2次容器内を第2隔壁により2次ホッ
トプールと2次コールドプールとに分割すると共に、2
次冷却材循環ポンプからの2次冷却材を中間熱交換器に
導入する2次冷却材入口配管の外側に中間熱交換器で熱
交換した2次冷却材をホットプールに流出させる2次冷
却材出口配管を同軸に設けたので、炉上部における配管
構造を簡素化でき、メンテナンス性の向上を図ることか
できる。
As explained above, the present invention provides a first cooling medium containing a primary coolant.
a secondary container enclosing the primary container and containing a secondary coolant; a roof slab closing the upper openings of the secondary container and the primary container; An installed reactor core, a control rod drive mechanism that inserts control rods into the reactor core and pulls out the control rods from the reactor core, and a control rod drive mechanism that divides the inside of the primary vessel into a primary hot pool and a primary cold boiler. an intermediate heat exchanger that is installed in the primary vessel and exchanges heat between the primary coolant in the hot pool and the secondary coolant; a pressure plenum formed at the lower part of the core; an electromagnetic pump that is integrally provided at the lower part of the intermediate heat exchanger and causes the primary coolant in the cold pool to flow into the reactor core from the pressure plenum; and a secondary hot pool and a secondary cold pool that operate in the secondary vessel. a second partition wall that divides the secondary coolant into water, and a steam generator that is installed in the secondary container and generates steam by exchanging heat with water of the secondary coolant that has exchanged heat with the primary coolant in the intermediate heat exchanger; a secondary coolant circulation pump installed in the secondary container and introducing the secondary coolant flowing out from the steam generator into the secondary cold pool into the intermediate heat exchanger via a secondary coolant inlet pipe; A secondary coolant outlet pipe is provided coaxially outside the secondary coolant inlet pipe and allows the secondary coolant that has exchanged heat with the primary coolant in the intermediate heat exchanger to flow out into the secondary hot pool. It is something. Therefore, the primary coolant in the cold pool can be sent into the core from the pressure plenum formed at the bottom of the core by the electromagnetic pump integrated at the bottom of the intermediate heat exchanger, and the primary coolant around the core can be pumped into the core. Since there is no need to provide a coolant circulation pump, the primary container can be made smaller. In addition, the inside of the secondary container is divided into a secondary hot pool and a secondary cold pool by a second partition, and
Secondary coolant that introduces the secondary coolant from the secondary coolant circulation pump into the intermediate heat exchanger.The secondary coolant that has undergone heat exchange in the intermediate heat exchanger flows out into the hot pool outside the secondary coolant inlet pipe. Since the outlet piping is provided coaxially, the piping structure in the upper part of the furnace can be simplified and maintenance efficiency can be improved.

よって、メンテナンスか容易でコンパクトな構造の高速
増殖炉を得ることができる。
Therefore, it is possible to obtain a fast breeder reactor that is easy to maintain and has a compact structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明の一実施例を示し、第1図は
高速増殖炉の概略構成を示す縦断面図、第2図は第1図
の平面図、第3図は従来の高速増殖炉を示す縦断面図で
ある。 1・・・1次容器、2・・・炉心、3・中間熱交換器、
4・・・電磁ポンプ、6・・・第1隔壁、7・・1次コ
ールドプール、8・・・1次ホットプール、9・・・圧
力プレナム、11・・・2次容器、12・・・蒸気発生
器、13・・・2次冷却材循環ポンプ、14・・・ルー
フスラブ、15・・・第2隔壁、16・・・2次コール
ドプール、17・・・2次ホットプール、19・・2次
冷却材入口配管、20・・・2次冷却材出口配管。 出願人代理人 弁理士 鈴江武彦
1 and 2 show one embodiment of the present invention, FIG. 1 is a vertical cross-sectional view showing the schematic structure of a fast breeder reactor, FIG. 2 is a plan view of FIG. 1, and FIG. 3 is a conventional fast breeder reactor. FIG. 2 is a longitudinal cross-sectional view showing a fast breeder reactor. 1. Primary vessel, 2. Core, 3. Intermediate heat exchanger,
4... Electromagnetic pump, 6... First bulkhead, 7... Primary cold pool, 8... Primary hot pool, 9... Pressure plenum, 11... Secondary container, 12...・Steam generator, 13...Secondary coolant circulation pump, 14...Roof slab, 15...Second partition wall, 16...Secondary cold pool, 17...Secondary hot pool, 19 ...Secondary coolant inlet piping, 20...Secondary coolant outlet piping. Applicant's agent Patent attorney Takehiko Suzue

Claims (1)

【特許請求の範囲】[Claims]  1次冷却材を収容した1次容器と、この1次容器を内
包すると共に2次冷却材を収容した2次容器と、この2
次容器と前記1次容器の上部開口を閉塞するルーフスラ
ブと、前記1次容器内に設置された炉心と、この炉心内
に制御棒を挿入すると共に前記制御棒を炉心から引き抜
く制御棒駆動機構と、前記1次容器内を1次ホットプー
ルと1次コールドプールとに分割する第1隔壁と、前記
1次容器内に設置され前記ホットプール内の1次冷却材
を前記2次冷却材と熱交換させる中間熱交換器と、前記
炉心の下部に形成された圧力プレナムと、前記中間熱交
換器の下部に一体に設けられ前記コールドプール内の1
次冷却材を前記圧力プレナムから炉心内に流入させる電
磁ポンプと、前記2次容器内を2次ホットプールと2次
コールドプールとに分割する第2隔壁と、前記2次容器
内に設置され前記中間熱交換器で1次冷却材と熱交換し
た2次冷却材を水と熱交換させて蒸気を生成する蒸気発
生器と、前記2次容器内に設置され前記蒸気発生器から
2次コールドプールに流出した2次冷却材を2次冷却材
入口配管を介して前記中間熱交換器に導入する2次冷却
材循環ポンプと、前記2次冷却材入口配管の外側に同軸
に設けられ前記中間熱交換器で1次冷却材と熱交換した
2次冷却材を2次ホットプールに流出させる2次冷却材
出口配管とを具備したことを特徴とする高速増殖炉。
A primary container that contains a primary coolant, a secondary container that contains this primary container and also contains a secondary coolant, and a secondary container that contains this primary container and also contains a secondary coolant.
A roof slab that closes a secondary vessel and an upper opening of the primary vessel, a core installed in the primary vessel, and a control rod drive mechanism that inserts control rods into the core and pulls out the control rods from the core. a first partition wall that divides the inside of the primary container into a primary hot pool and a primary cold pool; and a first partition wall installed in the primary container that converts the primary coolant in the hot pool into the secondary coolant. an intermediate heat exchanger for exchanging heat; a pressure plenum formed at the bottom of the core; and a pressure plenum in the cold pool that is integrally provided at the bottom of the intermediate heat exchanger
an electromagnetic pump that causes secondary coolant to flow into the reactor core from the pressure plenum; a second partition wall that divides the inside of the secondary vessel into a secondary hot pool and a secondary cold pool; a steam generator that generates steam by exchanging heat with water for a secondary coolant that has undergone heat exchange with the primary coolant in an intermediate heat exchanger; and a secondary cold pool that is installed in the secondary container and flows from the steam generator. a secondary coolant circulation pump that introduces the secondary coolant flowing out into the intermediate heat exchanger via the secondary coolant inlet piping; A fast breeder reactor characterized in that it comprises a secondary coolant outlet piping that allows the secondary coolant that has undergone heat exchange with the primary coolant in an exchanger to flow out into a secondary hot pool.
JP2226630A 1990-08-30 1990-08-30 Fast breeder reactor Pending JPH04110694A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2226630A JPH04110694A (en) 1990-08-30 1990-08-30 Fast breeder reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2226630A JPH04110694A (en) 1990-08-30 1990-08-30 Fast breeder reactor

Publications (1)

Publication Number Publication Date
JPH04110694A true JPH04110694A (en) 1992-04-13

Family

ID=16848201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2226630A Pending JPH04110694A (en) 1990-08-30 1990-08-30 Fast breeder reactor

Country Status (1)

Country Link
JP (1) JPH04110694A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007310A1 (en) * 2001-07-10 2003-01-23 Central Research Institute Of Electric Power Industry Nuclear reactor
FR2938691A1 (en) * 2008-11-19 2010-05-21 Commissariat Energie Atomique INTEGRATED TYPE SFR NUCLEAR REACTOR WITH IMPROVED COMPACITY AND CONVECTION
FR2965655A1 (en) * 2010-10-04 2012-04-06 Commissariat Energie Atomique IMPROVEMENT TO AN INTEGRATED TYPE SFR NUCLEAR REACTOR

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003007310A1 (en) * 2001-07-10 2003-01-23 Central Research Institute Of Electric Power Industry Nuclear reactor
US6944255B2 (en) 2001-07-10 2005-09-13 Central Research Institute Of Electric Power Industry Nuclear reactor
FR2938691A1 (en) * 2008-11-19 2010-05-21 Commissariat Energie Atomique INTEGRATED TYPE SFR NUCLEAR REACTOR WITH IMPROVED COMPACITY AND CONVECTION
WO2010057720A1 (en) * 2008-11-19 2010-05-27 Commissariat A L'energie Atomique Et Aux Energies Alternatives Sfr nuclear reactor of the integrated type with improved convection operation
CN102282625A (en) * 2008-11-19 2011-12-14 原子能与替代能源署 Sfr nuclear reactor of the integrated type with improved convection operation
FR2965655A1 (en) * 2010-10-04 2012-04-06 Commissariat Energie Atomique IMPROVEMENT TO AN INTEGRATED TYPE SFR NUCLEAR REACTOR
WO2012045691A1 (en) * 2010-10-04 2012-04-12 Commissariat à l'énergie atomique et aux énergies alternatives Integrated sodium-cooled fast nuclear reactor

Similar Documents

Publication Publication Date Title
US4039377A (en) Nuclear boiler
IL28957A (en) Liquid-cooled nuclear reactor
CN114334192A (en) Passive residual heat removal device of microminiature horizontal reactor
US4905757A (en) Compact intermediate heat transport system for sodium cooled reactor
US5114667A (en) High temperature reactor having an improved fluid coolant circulation system
JPH04110694A (en) Fast breeder reactor
JP2010066191A (en) Intermediate heat exchanger and fast breeder reactor plant
JPS60239694A (en) Pressurized water type reactor changed into unit
JPH0531750B2 (en)
JPH01105191A (en) Nuclear reactor having integral type pressure vessel construction
JP2948831B2 (en) Fast breeder reactor
JPS633292A (en) Fast breeder reactor
JP2508538Y2 (en) Fast breeder reactor cooling unit
US4465653A (en) Nuclear reactor
JPH02128192A (en) Decentralized nuclear reactor
JPH05180968A (en) Compact liquid-metal cooling fast reactor
JPH0648308B2 (en) Light water cooled reactor
JPH02222861A (en) Fast breeder reactor
JPH0558155B2 (en)
JPS62226089A (en) Liquid-metal cooling type fast breeder reactor
JPS62170891A (en) Steam generator
JPH04307397A (en) Tank-type high-speed reactor
JPS6244694A (en) Nuclear reactor
JPH046492A (en) Tank-type fast breeder reactor
JPS63284489A (en) Tank type fast breeder