[go: up one dir, main page]

JPH04110386A - heat transfer fluid - Google Patents

heat transfer fluid

Info

Publication number
JPH04110386A
JPH04110386A JP2231616A JP23161690A JPH04110386A JP H04110386 A JPH04110386 A JP H04110386A JP 2231616 A JP2231616 A JP 2231616A JP 23161690 A JP23161690 A JP 23161690A JP H04110386 A JPH04110386 A JP H04110386A
Authority
JP
Japan
Prior art keywords
heat
heat transfer
heat medium
capacity
transfer fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2231616A
Other languages
Japanese (ja)
Inventor
Sadayasu Inagaki
定保 稲垣
Hideki Hara
日出樹 原
Shigehiro Kamimura
上村 茂弘
Masahiro Noguchi
真裕 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2231616A priority Critical patent/JPH04110386A/en
Publication of JPH04110386A publication Critical patent/JPH04110386A/en
Pending legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the title fluid which is useful, for the use in a refrigerator, heat pump or the like and has no tendency to destruct the ozone layer by using a specific organic compound. CONSTITUTION:The title fluid comprises an organic compound represented by formula Rf-O-Rf or formula Rf-O-R, wherein Rf represents CF3, CF2H, CFH2, C2F5, C2F4H, C2F3H2, C2F2H3 or C2FH4; and R represents CH3 or C2H5.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、冷凍機、ヒートポンプなどで使用される熱伝
達用流体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to heat transfer fluids used in refrigerators, heat pumps, etc.

本明細書においては、“%”とあるのは、“重量%”を
意味する。
In this specification, "%" means "% by weight".

従来技術とその問題点 従来、ヒートポンプの熱媒体(冷媒)としては、クロロ
フルオロ炭化水素、フルオロ炭化水素、これらの共沸組
成物ならびにその近辺の組成物が知られている。これら
は、一般にフロンと称されており、現在R−11()リ
クロロモノフルオロメタン)、R−22(モノクロロジ
フルオロメタン)、R−502(R−22+クロロペン
タフルオロエタン)などが主に使用されている。
BACKGROUND ART Conventionally, as heat carriers (refrigerants) for heat pumps, chlorofluorohydrocarbons, fluorohydrocarbons, azeotropic compositions thereof, and compositions in the vicinity thereof have been known. These are generally called fluorocarbons, and currently R-11 (lichloromonofluoromethane), R-22 (monochlorodifluoromethane), R-502 (R-22+chloropentafluoroethane), etc. are mainly used. has been done.

しかしながら、近年、大気中に放出された場合に、ある
種のフロンが成層圏のオゾン層を破壊し、その結果、人
類を含む地球状の生態系に重大な悪影響を及ぼすことが
指摘されている。従って、オゾン層破壊の危険性の高い
フロンについては、国際的な取決めにより、使用および
生産が規制されるに至っている。規制の対象になってい
るフロンには、R−11とR−12とが含まれており、
またR−22については、オゾン層破壊への影響か小さ
いため、現在規制の対象とはなっていないが、将来的に
は、より影響の少ない冷媒の出現が望まれている。冷凍
・空調設備の普及に伴って、需要が毎年増大しつつある
フロンの使用および生産の規制は、居住環境をはじめと
して、現在の社会機構全般に与える影響が極めて大きい
。従って、オゾン層破壊問題を生じる危険性のない或い
はその危険性の極めて小さい新たなヒートポンプ用の熱
媒体(冷媒)の開発が緊急の課題となっている。
However, in recent years, it has been pointed out that certain types of fluorocarbons, when released into the atmosphere, destroy the ozone layer in the stratosphere and, as a result, have a serious negative impact on the global ecosystem, including humans. Therefore, the use and production of fluorocarbons, which pose a high risk of ozone layer depletion, has been regulated by international agreements. CFCs that are subject to regulations include R-11 and R-12.
Furthermore, R-22 is not currently subject to regulation because it has a small effect on ozone layer depletion, but in the future it is hoped that a refrigerant with less effect will emerge. Regulations on the use and production of fluorocarbons, whose demand is increasing every year with the spread of refrigeration and air-conditioning equipment, are having an extremely large impact on the current social system as a whole, including the living environment. Therefore, there is an urgent need to develop a new heat medium (refrigerant) for heat pumps that has no or very low risk of causing ozone layer depletion.

問題点を解決するだめの手段 本発明者は、ヒートポンプ或いは熱機関に適した熱伝達
用流体であって、且つ当然のことながら、大気[:I=
+jこ放出された場合にもオゾン層に及ぼす影響が小さ
いか或いは影響のない新たな熱伝達用流体を得るべく種
々研究を重ねてきた。その結果、特定の構造を有する有
機化合物がその目的に適合する要件を具備していること
を見出した。
Means for Solving the Problem The present inventor has proposed a heat transfer fluid suitable for a heat pump or a heat engine, and of course containing air [:I=
Various studies have been carried out to obtain a new heat transfer fluid that has little or no effect on the ozone layer even if it is released. As a result, they found that organic compounds with a specific structure meet the requirements for the purpose.

すなわち、本発明は、下記のヒートポンプを提供するも
のである 1分子式:Rf−0−Rf (1)またはRf−0−R
(2) (Rfは、CF3.CF2 H,CFH2゜C2F5 
、C2F4 H,C2Fa R2。
That is, the present invention provides a heat pump having the following molecular formula: Rf-0-Rf (1) or Rf-0-R
(2) (Rf is CF3.CF2 H, CFH2゜C2F5
, C2F4 H, C2Fa R2.

C2F 2 R3またはC2FH,を表わす;但し、分
子式(1)で示される化合物においては、2つのRfは
同一でも良く、或いは異なっていても良い;Rは、CH
3またはC2H5を表わす)で示される有機化合物から
なる熱伝達用流体。」本発明で使用する各化合物の主な
物性は、以下の通りである。
represents C2F2R3 or C2FH; however, in the compound represented by molecular formula (1), two Rf may be the same or different; R is CH
3 or C2H5). The main physical properties of each compound used in the present invention are as follows.

1、F3C−0−CH3 沸点      −24,0°C 臨界温度    1]2°C 臨界圧力     43kg/C艷 分子量     100.04 II、CF2HOCF2 H(テトラフルオロジメチル
エーテル) 沸点 臨界温度 臨界圧力 分子量 m、CFH2 −チル) 沸点       −7,0°C 臨界温度    1:34.9°C 臨界圧力     45. 2kg/cnff分子量 
     82.05 本発明で熱伝達用流体として使用する式(1)および式
(2)で示される化合物は、オゾン層に影響を与える塩
素原子および臭素原子を含まないので、オゾン層の破壊
問題を生じる危険性はない。
1, F3C-0-CH3 Boiling point -24,0°C Critical temperature 1]2°C Critical pressure 43kg/C Molecular weight 100.04 II, CF2HOCF2 H (tetrafluorodimethyl ether) Boiling point Critical temperature Critical pressure Molecular weight m, CFH2 - Chill) Boiling point -7.0°C Critical temperature 1:34.9°C Critical pressure 45. 2kg/cnff molecular weight
82.05 The compounds represented by formulas (1) and (2) used as heat transfer fluids in the present invention do not contain chlorine atoms and bromine atoms that affect the ozone layer, so they do not cause the problem of ozone layer destruction. There is no risk of this occurring.

また、エーテル結合を有する化合物は、大気中で比較的
分解しやすいので、本発明で使用する化合物は、地球温
暖化への影響が小さいという利点16、0°C 113°C 40、3kg/cJ 118.03 0CFH2(ジフルオロジメチルエ も有している。
In addition, since compounds with ether bonds are relatively easy to decompose in the atmosphere, the compounds used in the present invention have the advantage of having a small impact on global warming. 118.03 0CFH2 (also contains difluorodimethylethyl).

一方では、本発明で使用する化合物は、ヒートポンプ用
熱媒体としての特性にも優れており、成績係数、冷凍能
力、凝縮圧力、吐出温度などの性能において、バランス
が取れている。さらに、この化合物の沸点は、現在広く
使用されているR12、R,−22、R−1:1.4お
よびR−502のそれに近いため、これら公知の熱媒体
の使用条件下、即ち蒸発温度−20から]0°Cおよび
凝縮温度30から60℃での使用に適している。
On the other hand, the compound used in the present invention has excellent properties as a heat medium for heat pumps, and is well balanced in performance such as coefficient of performance, refrigeration capacity, condensation pressure, and discharge temperature. Furthermore, the boiling point of this compound is close to that of R12, R, -22, R-1:1.4 and R-502, which are currently widely used, so that it can be used under the conditions of use of these known heat carriers, that is, the evaporation temperature. -20°C] and condensing temperatures from 30 to 60°C.

また、本発明においては、式(1)または(2)で示さ
れる化合物を少なくとも含み、R−22(CFCF2 
)、R32(CH2F2 )。
Furthermore, the present invention includes at least a compound represented by formula (1) or (2), and R-22(CFCF2
), R32(CH2F2).

R−124(CF2Cl(IF) 、R−125(CF
3CF2 H)、R−134,a(CF、、CFH)、
R−1,42b (CH3CCQF2)、R143a (CF3CH3)およびR−152 (CHF 2 CH3)からなる群から選ばれた少なく
とも一種を含む混合物を熱伝達用流体として使用しても
良い。この混合物を使用する場合には、低沸点の冷媒を
混合することにより、更に冷凍能力を向」二させたり、
蒸発潜熱の大きい冷媒を混合することにより、成績係数
を向上させたり、或いは冷凍機油との相溶性を改善した
りすることができる。
R-124(CF2Cl(IF), R-125(CF
3CF2H), R-134,a(CF,, CFH),
A mixture containing at least one selected from the group consisting of R-1,42b (CH3CCQF2), R143a (CF3CH3) and R-152 (CHF2CH3) may be used as the heat transfer fluid. When using this mixture, the refrigeration capacity can be further improved by mixing a low boiling point refrigerant,
By mixing a refrigerant with a large latent heat of vaporization, the coefficient of performance can be improved or the compatibility with refrigerating machine oil can be improved.

本発明で使用する式(1)または(2)の化合物或いは
これら化合物とR−22,R−32,R124、R−1
25,R−134a、R−142b、R−143aおよ
びR−152aの少なくとも一種との混合物は、ヒート
ポンプ用の熱媒体に対して要求される一般的な特性(例
えば、潤滑油との相溶性、材料に対する非浸蝕性など)
に関しても、問題はないことが確認されている。
The compound of formula (1) or (2) used in the present invention or these compounds and R-22, R-32, R124, R-1
25, a mixture with at least one of R-134a, R-142b, R-143a and R-152a has the general characteristics required for a heat medium for a heat pump (for example, compatibility with lubricating oil, (non-corrosive to materials, etc.)
It has been confirmed that there are no problems with this.

記の様な顕著な効果が達成される。The following remarkable effects are achieved.

(1)従来からR−12,R−22或いはR502aを
熱媒体として使用してきたヒートポンプと同等以上のサ
イクル性能が得られる。
(1) Cycle performance equivalent to or higher than that of heat pumps that have conventionally used R-12, R-22, or R502a as a heat medium can be obtained.

(2)使用する式(1)および(2)で示される化合物
の熱媒体としての優れた性能のゆえに、機器設計上も有
利である。
(2) Because of the excellent performance of the compounds represented by formulas (1) and (2) used as heat carriers, they are advantageous in terms of device design.

(3)仮に熱媒体が大気中に放出された場合にも、オゾ
ン層破壊の危険性はなく、地球温暖化への影響も小さい
(3) Even if the heat transfer medium were to be released into the atmosphere, there would be no risk of ozone layer depletion and the impact on global warming would be small.

実施例 以下に実施例および比較例を示し、本発明の特徴とする
ところをより一層明確にする。
EXAMPLES Examples and comparative examples are shown below to further clarify the features of the present invention.

実施例1および比較例1〜3 熱媒体としてF3 C−0−CH3(トリフルオロメチ
ル メチルエーテル)を使用する1馬力のヒートポンプ
において、蒸発器における熱媒体の蒸発温度を一10°
C1−5°C,5°Cおよび10℃とし、凝縮器におけ
る凝縮温度を50℃とし、過熱度および過冷却度をそれ
ぞれ5°Cおよび3°Cとして、運転を行なった。
Example 1 and Comparative Examples 1 to 3 In a 1-horsepower heat pump that uses F3 C-0-CH3 (trifluoromethyl methyl ether) as a heat medium, the evaporation temperature of the heat medium in the evaporator was set to -10°.
C1-5°C, 5°C and 10°C, the condensation temperature in the condenser was 50°C, and the degree of superheating and supercooling were 5°C and 3°C, respectively.

また、比較例として、R,−12(比較例1)、R−2
2(比較例2)およびR−502(比較例3)を熱媒体
として使用して、上記と同一条件下にヒートポンプの運
転を行なった。
In addition, as comparative examples, R, -12 (comparative example 1), R-2
The heat pump was operated under the same conditions as above using R-502 (Comparative Example 2) and R-502 (Comparative Example 3) as heat transfer media.

これらの結果から、成績係数(COP)および冷凍効果
を次式により、求めた(第1図に示すモリエル線図参照
)。
From these results, the coefficient of performance (COP) and refrigeration effect were determined using the following equations (see the Mollier diagram shown in FIG. 1).

C0P−(hl h4)/ (h2 hl)冷凍効果−
り、−h、l hl・・・蒸発器田口の熱媒体のエンタルピーh2・・
・凝縮器入口の熱媒体のエンタルピーh4・・・蒸発器
入口の熱媒体のエンタルピー本実施例ならびに比較例で
使用した冷凍サイクルの回路図を第2図に示す。
C0P-(hl h4)/(h2 hl) freezing effect-
ri, -h, l hl... Enthalpy of heat medium at Taguchi of evaporator h2...
・Enthalpy h4 of the heat medium at the inlet of the condenser Enthalpy of the heat medium at the inlet of the evaporator The circuit diagram of the refrigeration cycle used in this example and the comparative example is shown in FIG.

COPおよび冷凍能力の算出結果を比較例1〜3の結果
と対比して第3図および第4図にそれぞれ示す。
The calculation results of COP and refrigerating capacity are shown in FIG. 3 and FIG. 4, respectively, in comparison with the results of Comparative Examples 1 to 3.

なお、第3図に示す成績係数は、R−22を熱媒体とし
た場合の蒸発温度5°Cにおける測定値(COPB)で
、それぞれの熱媒体の測定値(COPA)を除したもの
である。特に、本発明による熱媒体の結果は、“○”で
示しである。
The coefficient of performance shown in Figure 3 is the measured value (COPB) at an evaporation temperature of 5°C when R-22 is used as the heat medium, divided by the measured value (COPA) of each heat medium. . In particular, the results of the heat transfer medium according to the present invention are indicated by "○".

また、第4図に示す冷凍能力は、R−22を作動流体と
した場合の蒸発温度5°Cにおける測定値(能力B)で
、それぞれの熱媒体の測定値(能力A)を除したもので
ある。本発明による熱媒体の結果は、やはり“○”で示
しである。
In addition, the refrigerating capacity shown in Fig. 4 is obtained by dividing the measured value (capacity A) of each heat medium by the measured value (capacity B) at an evaporation temperature of 5°C when R-22 is used as the working fluid. It is. The results of the heat transfer medium according to the present invention are also indicated by "○".

第3図から明らかな様に、本実施例による熱媒体は、c
opに関して、R−12およびR22と同程度の良好な
値を示している。さらに、第4図から明らかな様に、冷
凍効果に関して、R22よりもやや高めの値を示してい
る。
As is clear from FIG. 3, the heat medium according to this example is c
Regarding op, it shows a value as good as R-12 and R22. Furthermore, as is clear from FIG. 4, the refrigeration effect shows a slightly higher value than R22.

また、蒸発温度5°Cにおける凝縮圧力および圧縮機吐
出温度の比較結果を第1表に示す。
Further, Table 1 shows the comparison results of the condensing pressure and compressor discharge temperature at an evaporation temperature of 5°C.

第1表 凝縮圧力    吐出温度 (kg/cぽ・A)     (’O 実施例1    11       51比較例1  
  12       59比較例2    20  
     7B比較例3   22 本実施例による熱媒体の凝縮圧力および吐出温度は、R
−12よりも低い値を示しており、機器設計上有利であ
る。
Table 1 Condensing pressure Discharge temperature (kg/cpo・A) ('O Example 1 11 51 Comparative example 1
12 59 Comparative Example 2 20
7B Comparative Example 3 22 The condensation pressure and discharge temperature of the heat medium according to this example are R
-12, which is advantageous in terms of device design.

以上の結果から、F3C−0−CH3を熱媒体として使
用する本実施例においては、従来から広く使用されてい
るR−12、R−22およびR502を使用するヒート
ポンプと同等のサイクル性能が得られており、本発明は
、機器設計上からも有利であることが、明らかである。
From the above results, in this example using F3C-0-CH3 as the heat medium, cycle performance equivalent to that of heat pumps using R-12, R-22, and R502, which have been widely used in the past, can be obtained. Therefore, it is clear that the present invention is advantageous in terms of equipment design.

実施例2 熱媒体としてCF2 HOCF2 H(テトラフルオロ
ジメチルエーテル)を使用するとともに、蒸発器におけ
る熱媒体の蒸発温度を5℃とする以外は実施例1と同様
にしてヒートポンプの運転を行なった。
Example 2 A heat pump was operated in the same manner as in Example 1 except that CF2 HOCF2 H (tetrafluorodimethyl ether) was used as the heat medium and the evaporation temperature of the heat medium in the evaporator was set to 5°C.

成績係数および冷凍能力を下記第2表に示す。The coefficient of performance and freezing capacity are shown in Table 2 below.

いずれの数値も、R−22を熱媒体とした場合の蒸発湿
度の5°Cにおける測定値(COPBおよび冷凍能力B
)により本実施例熱媒体の測定値(CoPAおよび能力
A)を除した数値で示しである。
Both values are measured values of evaporative humidity at 5°C (COPB and refrigeration capacity B) when R-22 is used as a heat medium.
) is the value obtained by dividing the measured values (CoPA and capacity A) of the heat transfer medium of this example.

第 実施例2 COPA /C0PB  1 、 00能力A /能力
8     0.46 実施例3 熱媒体としてCFH20CFH2 2表 −12R 1,02 0,61 0、92 1、03 (ジフルオロ ジメチルエーテル)を使用するとともに、蒸発器におけ
る熱媒体の蒸発温度を5°Cとする以外は実施例1と同
様にしてヒートポンプの運転を行なった。
Example 2 COPA /C0PB 1, 00 Capacity A / Capacity 8 0.46 Example 3 Using CFH20CFH2 2 Table-12R 1,02 0,61 0,92 1,03 (difluorodimethyl ether) as a heat medium, The heat pump was operated in the same manner as in Example 1 except that the evaporation temperature of the heat medium in the evaporator was 5°C.

成績係数および冷凍能力を下記第3表に示す。The coefficient of performance and freezing capacity are shown in Table 3 below.

いずれの数値も、R−22を熱媒体とした場合の蒸発温
度の5°Cにおける測定値(COPBおよび冷凍能力B
)により本実施例熱媒体の測定値(COPAおよび能力
A)を除した数値で示しである。
Both values are measured values at the evaporation temperature of 5°C (COPB and refrigeration capacity B) when R-22 is used as the heat medium.
) is the value obtained by dividing the measured values (COPA and capacity A) of the heat transfer medium of this example.

第3表 実施例3  R,−12R,−502 COPA/C0PB 1.051.02 0.92能力
A /能力、       0.36   0.61 
    1.03
Table 3 Example 3 R, -12R, -502 COPA/C0PB 1.051.02 0.92 Capacity A/Capacity, 0.36 0.61
1.03

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、実施例において成績係数(COP)および冷
凍効果水めるために使用したモリエル線図である。 第2図は、本実施例ならびに比較例で使用した冷凍サイ
クルの回路図である。 第3図は、実施例]−および比較例1〜3によるCOP
を示すグラフである。 第4図は、実施例1および比較例1〜3による冷凍能力
を示すグラフである。 (以 上)
FIG. 1 is a Mollier diagram used to determine the coefficient of performance (COP) and freezing effect in the examples. FIG. 2 is a circuit diagram of a refrigeration cycle used in this example and a comparative example. FIG. 3 shows COPs according to Examples]- and Comparative Examples 1 to 3.
This is a graph showing. FIG. 4 is a graph showing the refrigerating capacity of Example 1 and Comparative Examples 1 to 3. (that's all)

Claims (1)

【特許請求の範囲】 1、分子式:Rf−O−Rf(1)または Rf−O−R(2) (Rfは、CF_3、CF_2H、CFH_2、C_2
F_5、C_2F_4H、C_2F_3H_2、C_2
F_2H_3またはC_2FH_4を表わす;但し、分
子式(1)で示される化合物においては、2つのRfは
同一でも良く、或いは異なっていても良い;Rは、CH
_3またはC_2H_5を表わす)で示される有機化合
物からなる熱伝達用流体。
[Claims] 1. Molecular formula: Rf-O-Rf (1) or Rf-O-R (2) (Rf is CF_3, CF_2H, CFH_2, C_2
F_5, C_2F_4H, C_2F_3H_2, C_2
Represents F_2H_3 or C_2FH_4; However, in the compound represented by molecular formula (1), two Rf may be the same or different; R is CH
_3 or C_2H_5).
JP2231616A 1990-08-31 1990-08-31 heat transfer fluid Pending JPH04110386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2231616A JPH04110386A (en) 1990-08-31 1990-08-31 heat transfer fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2231616A JPH04110386A (en) 1990-08-31 1990-08-31 heat transfer fluid

Publications (1)

Publication Number Publication Date
JPH04110386A true JPH04110386A (en) 1992-04-10

Family

ID=16926303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2231616A Pending JPH04110386A (en) 1990-08-31 1990-08-31 heat transfer fluid

Country Status (1)

Country Link
JP (1) JPH04110386A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994026837A1 (en) * 1993-05-19 1994-11-24 E.I. Du Pont De Nemours And Company Refrigerant compositions including an acyclic fluoroether
WO1994029402A1 (en) * 1993-06-16 1994-12-22 E.I. Du Pont De Nemours And Company Compositions including a three carbon cyclic fluoroether
US5433880A (en) * 1993-01-15 1995-07-18 E. I. Du Pont De Nemours And Company Refrigerant compositions which include a sulfur compound
US5552074A (en) * 1992-10-14 1996-09-03 E. I. Du Pont De Nemours And Company Refrigerant compositions including bis(difluoromethyl) ether
US5562854A (en) * 1994-09-29 1996-10-08 E. I. Du Pont De Nemours And Company Octafluorobutane compositions
US5578137A (en) * 1993-08-31 1996-11-26 E. I. Du Pont De Nemours And Company Azeotropic or azeotrope-like compositions including 1,1,1,2,3,4,4,5,5,5-decafluoropentane
US5605882A (en) * 1992-05-28 1997-02-25 E. I. Du Pont De Nemours And Company Azeotrope(like) compositions of pentafluorodimethyl ether and difluoromethane
WO1997014762A1 (en) * 1995-10-20 1997-04-24 Minnesota Mining And Manufacturing Company Hydrofluoroethers as low temperature refrigerants
US5650089A (en) * 1991-12-03 1997-07-22 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Refrigerant compositions with fluorinated dimethyl ether and either difluoroethane or cyclopropane, and use thereof
US5819549A (en) * 1996-10-16 1998-10-13 Minnesota Mining And Manufacturing Company Secondary loop refrigeration system
US6156224A (en) * 1992-06-19 2000-12-05 Matsushita Electric Industrial Co., Ltd. Working fluid containing perfluorodimethylether
USRE37054E1 (en) 1996-10-16 2001-02-20 Minnesota Mining And Manufacturing Company Secondary loop refrigeration system
EP1690911A1 (en) 2001-06-26 2006-08-16 Solvay Solexis S.p.A. Perfluoropolyethers (PFPEs) having at least an alkylether end group

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6063305A (en) * 1991-12-03 2000-05-16 The United States Of America As Represented By The Administrator Of The Environmental Protection Agency Refrigerant compositions containing a hydrofluoropropane and a hydrofluorocarbon
US5650089A (en) * 1991-12-03 1997-07-22 The United States Of America, As Represented By The Administrator Of The U.S. Environmental Protection Agency Refrigerant compositions with fluorinated dimethyl ether and either difluoroethane or cyclopropane, and use thereof
US5605882A (en) * 1992-05-28 1997-02-25 E. I. Du Pont De Nemours And Company Azeotrope(like) compositions of pentafluorodimethyl ether and difluoromethane
US6905630B2 (en) 1992-05-28 2005-06-14 E. I. Du Pont De Nemours And Company Compositions of a hydrofluoroether and a hydrofluorocarbon
US6835321B2 (en) 1992-05-28 2004-12-28 E. I. Du Pont De Nemours And Company Compositions of a hydrofluoroether and a hydrofluorocarbon
US6830703B2 (en) 1992-05-28 2004-12-14 E. I. Du Pont De Nemours And Company Compositions of a hydrofluoroether and a hydrofluorocarbon
US5779931A (en) * 1992-05-28 1998-07-14 E. I. Du Pont De Nemours And Company Azeotrope (like) compositions with difluoromethoxytetrafluoro-propane and pentafluoropropane, and methods of use
US5648016A (en) * 1992-05-28 1997-07-15 E. I. Du Pont De Nemours And Company Azeotrope (like) composition with fluoromethyl trifluoromethyl ether and 1,1-difluoroethane
US6156224A (en) * 1992-06-19 2000-12-05 Matsushita Electric Industrial Co., Ltd. Working fluid containing perfluorodimethylether
US5552074A (en) * 1992-10-14 1996-09-03 E. I. Du Pont De Nemours And Company Refrigerant compositions including bis(difluoromethyl) ether
US5433880A (en) * 1993-01-15 1995-07-18 E. I. Du Pont De Nemours And Company Refrigerant compositions which include a sulfur compound
US5607616A (en) * 1993-05-19 1997-03-04 E. I. Du Pont De Nemours And Company Azeotrope(like) compositions with fluoromethyl trifluoromethyl ether and dimethyl ether
WO1994026837A1 (en) * 1993-05-19 1994-11-24 E.I. Du Pont De Nemours And Company Refrigerant compositions including an acyclic fluoroether
US5484546A (en) * 1993-05-19 1996-01-16 E. I. Du Pont De Nemours And Company Refrigerant compositions including an acylic fluoroether
US5480572A (en) * 1993-06-16 1996-01-02 E. I. Du Pont De Nemours And Company Compositions including a three carbon cyclic fluoroether
WO1994029402A1 (en) * 1993-06-16 1994-12-22 E.I. Du Pont De Nemours And Company Compositions including a three carbon cyclic fluoroether
US5578137A (en) * 1993-08-31 1996-11-26 E. I. Du Pont De Nemours And Company Azeotropic or azeotrope-like compositions including 1,1,1,2,3,4,4,5,5,5-decafluoropentane
US5653908A (en) * 1994-09-29 1997-08-05 E. I. Du Pont De Nemours And Company Octafluorobutane compositions
US5562854A (en) * 1994-09-29 1996-10-08 E. I. Du Pont De Nemours And Company Octafluorobutane compositions
US5713211A (en) * 1995-10-20 1998-02-03 Minnesota Mining And Manufacturing Company Hydrofluoroethers as low temperature refrigerants
USRE37119E1 (en) 1995-10-20 2001-04-03 3M Innovative Properties Company Hydrofluoroethers as low temperature refrigerants
WO1997014762A1 (en) * 1995-10-20 1997-04-24 Minnesota Mining And Manufacturing Company Hydrofluoroethers as low temperature refrigerants
US5819549A (en) * 1996-10-16 1998-10-13 Minnesota Mining And Manufacturing Company Secondary loop refrigeration system
USRE37054E1 (en) 1996-10-16 2001-02-20 Minnesota Mining And Manufacturing Company Secondary loop refrigeration system
EP1690911A1 (en) 2001-06-26 2006-08-16 Solvay Solexis S.p.A. Perfluoropolyethers (PFPEs) having at least an alkylether end group

Similar Documents

Publication Publication Date Title
JPH04110388A (en) heat transfer fluid
EP0509673B2 (en) Refrigerant compositions
EP0772659B1 (en) Refrigerant compositions
US4957652A (en) Refrigerants
CA2264303A1 (en) Refrigerant compositions
US9850414B2 (en) Low GWP fluids for high temperature heat pump applications
JP6418284B1 (en) Composition containing refrigerant, use thereof, refrigeration method using the same, and refrigerator including the same
JPH04323294A (en) Fluid for heat transfer
JPH04110386A (en) heat transfer fluid
US5294359A (en) Refrigerant compositions
EP0770113B1 (en) Refrigerant compositions
JP2016539209A (en) Refrigerant
JPH04110385A (en) heat transfer fluid
WO1993015163A1 (en) Novel refrigerant compositions
JPH0585970A (en) Refrigerant
WO2008065331A2 (en) Refrigerant extenders for hcfc22
JP2545879B2 (en) Coolant
AU693226B2 (en) Refrigerant compositions
JPH07502775A (en) Compositions useful as refrigerants
JPH04110384A (en) Fluid for heat transfer
WO2008113984A1 (en) Refrigerant composition
JPH04110383A (en) Fluid for heat transfer
EP0620837A1 (en) Compositions useful as refrigerants
JP2015507038A (en) Use of E-1,1,1,4,4,5,5,5-octafluoro-2-pentene and optionally 1,1,1,2,3-pentafluoropropane in a cooling device
JP6677288B2 (en) Composition containing refrigerant containing R32, R125, R143a and R134a, refrigeration method using the composition, operation method of refrigerator and refrigerator