[go: up one dir, main page]

JPH04109881A - Ultrasonic motor - Google Patents

Ultrasonic motor

Info

Publication number
JPH04109881A
JPH04109881A JP2228588A JP22858890A JPH04109881A JP H04109881 A JPH04109881 A JP H04109881A JP 2228588 A JP2228588 A JP 2228588A JP 22858890 A JP22858890 A JP 22858890A JP H04109881 A JPH04109881 A JP H04109881A
Authority
JP
Japan
Prior art keywords
vibration
psi
angle
driving part
tapered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2228588A
Other languages
Japanese (ja)
Inventor
Takashi Maeno
隆司 前野
Takayuki Tsukimoto
貴之 月本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2228588A priority Critical patent/JPH04109881A/en
Publication of JPH04109881A publication Critical patent/JPH04109881A/en
Pending legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To suppress a friction loss and improve an efficiency and suppress an internal loss which is created in a moving unit such as a rotor when the moving unit is brought into contact with a driving part by a method wherein a difference between a taper angle and a vibration angle is made to be as small as possible. CONSTITUTION:The possible of the part of a vibrator made of electric material such as metal or plastic where a tapered contact driving part A is provided and the taper angle psi of the contact driving part A are so predetermined as to have a difference between the taper angle psi and a vibration angle alpha sufficiently small. As the friction angle of the tapered contact driving part A is 22 deg. when its friction coefficient is 0.4, depending on the shape of a rotor, a slip along a direction within the tapered surface can be almost suppressed if ¦psi-2¦ is not larger than 22 deg.. Therefore, although ¦psi-2¦ is not larger than 1-2 deg. in the present embodiment, it may be about 20-30 deg. practically. Naturally, if a slip caused by an external disturbance and the influences of errors in processes and assemblies are taken into consideration, the smaller ¦psi-2¦, the better.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、棒状弾性体に設けられた電気−機械エネルギ
ー変換素子に電気エネルギーを供給することにより、棒
状振動子としての弾性体を振動させ振動子の質点に円又
は楕円運動を生じさせ、振動子に押圧した移動体を摩擦
駆動させる超音波モータ、特にカメラ等の光学機器、プ
リンタ等の事務機器に好適な超音波モータに関するもの
である。
Detailed Description of the Invention [Industrial Application Fields] The present invention vibrates an elastic body as a rod-shaped vibrator by supplying electrical energy to an electric-mechanical energy conversion element provided on the rod-shaped elastic body. The present invention relates to an ultrasonic motor that generates circular or elliptical motion in the mass point of a vibrator and frictionally drives a moving body pressed against the vibrator, and is particularly suitable for optical equipment such as cameras and office equipment such as printers. .

[従来の技術] 従来超音波モータとしては、円環状の弾性体に曲げ振動
を起こし、摩擦力によりレンズ駆動用移動体を駆動させ
るタイプのものが、カメラ用AF機構などで、実用化さ
れている。しかし、この従来のタイプのものは、リング
形状であるため、加圧機構を含めたユニットとしては、
比較的コスト高であり、中空を要求されないモータ用途
としてはコスト上不利である。そこで、中実型で、加圧
系などの構成が容易な、第2図乃至第3図に示すような
タイプのモータが、近年提案された。
[Prior art] Conventional ultrasonic motors have been of the type that causes bending vibrations in an annular elastic body and uses frictional force to drive a moving body for driving a lens, but these motors have not been put to practical use in AF mechanisms for cameras, etc. There is. However, since this conventional type is ring-shaped, it cannot be used as a unit including a pressurizing mechanism.
It is relatively expensive and is disadvantageous in terms of cost for motor applications that do not require a hollow space. Therefore, a type of motor as shown in FIGS. 2 and 3 has been proposed in recent years, which is a solid type and has an easy configuration such as a pressurizing system.

ここで該提案にかかるモータについて第2図乃至第4図
を用いて簡単に説明する。
Here, the proposed motor will be briefly explained using FIGS. 2 to 4.

第2図は棒状の超音波モータの外観図、第3図は第2図
示のモータの中心部分の断面図、第4図は第2図示のモ
ータの振動体の振動状態を模式化した図を示す。また第
4図におけるγ方向とは第2図に示すZ方向(振動体a
、bの軸に沿った方向)に垂直な方向を指し、γ−Z平
面とは、γ方向とZ方向でできる平面を指す。第2図示
の如き棒状の超音波モータは金属性の中空型の上側振動
体aと、同じく金属性の中空型の下側振動体すの間に、
中空型の2枚の円板状圧電素子(PZT)を介挿すると
共に、上側振動体aと下側振動体すの夫々の内周側にネ
ジ部aa。
Fig. 2 is an external view of a rod-shaped ultrasonic motor, Fig. 3 is a sectional view of the central part of the motor shown in Fig. 2, and Fig. 4 is a diagram schematically showing the vibration state of the vibrating body of the motor shown in Fig. 2. show. Furthermore, the γ direction in FIG. 4 refers to the Z direction (vibrating body a) shown in FIG.
, b axis), and the γ-Z plane refers to a plane formed by the γ direction and the Z direction. The rod-shaped ultrasonic motor as shown in the second figure has a hollow metal upper vibrating body a and a hollow metal lower vibrating body.
Two hollow disk-shaped piezoelectric elements (PZT) are inserted, and threaded portions aa are provided on the inner periphery of each of the upper vibrating body a and the lower vibrating body.

bbを設けて、該夫々のネジ部(aa、bb)にボルト
eを螺合させて圧電素子Cを挟持している。
bb are provided, and the piezoelectric element C is held between the bolts e by screwing them into the respective threaded portions (aa, bb).

[発明が解決しようとしている課題] しかし、かかるモータでは、振動体に設けられたテーバ
状接触駆動部Aにおける点のγ−Z平面内振動角度(モ
ータが作動した時に生じる振動の方向に起因する角度)
の(第5図参照)と、テーパ状接触駆動部Aのテーパ角
ψ(第5図参照)とがかなり離れていた。つまり、テー
パ状接触駆動部Aの振動方向がテーパ状接触駆動部Aが
形成する面(テーパ面)と直交していない。このため、
テーパ面の振動変位fbには、テーパ面と垂直な成分子
cの他に、テーパ面に平行な成分子dが含まれることに
なる。
[Problems to be Solved by the Invention] However, in such a motor, the vibration angle in the γ-Z plane of a point in the tapered contact drive section A provided on the vibrating body (due to the direction of vibration that occurs when the motor operates) angle)
(see FIG. 5) and the taper angle ψ of the tapered contact drive portion A (see FIG. 5) were quite apart. That is, the vibration direction of the tapered contact drive section A is not perpendicular to the surface (tapered surface) formed by the tapered contact drive section A. For this reason,
The vibration displacement fb of the tapered surface includes a component d parallel to the tapered surface in addition to a component c perpendicular to the tapered surface.

この成分子dによりロータfに、滑り摩擦が生じ、摺動
損の増大、効率の低下が生じる場合があった。
This component d causes sliding friction on the rotor f, which may increase sliding loss and reduce efficiency.

また、この摩擦力によって接触駆動部A付近のロータf
はテーパ面内方向に変形し、無駄な内部損失が生じてい
た。
Also, due to this frictional force, the rotor f near the contact drive part A
was deformed in the in-plane direction of the taper, resulting in unnecessary internal loss.

尚fは振動体aに接する突起ffを有する中空型のロー
タ、hはバネiにより軸受gを介してロータfを振動体
aに摩擦係合させる加圧部材である。
Note that f is a hollow rotor having a protrusion ff that contacts the vibrating body a, and h is a pressure member that frictionally engages the rotor f with the vibrating body a via a bearing g by a spring i.

[課題を解決するための手段(及び作用)]本発明はか
かる課題を解決せんとするもので、その解決のために、
テーパ角ψと振動角度αとの差を小さ(した点に存する
[Means for solving the problem (and operation)] The present invention aims to solve the problem, and in order to solve the problem,
It consists in reducing the difference between the taper angle ψ and the vibration angle α.

テーパ角φと振動角度αとの差が小さいとき、振動体a
、bの成分子d (第5図参照)が小さ(なる。
When the difference between the taper angle φ and the vibration angle α is small, the vibrating body a
, the component d of b (see Figure 5) is small (becomes).

従って、ロータと振動体(ステータ)間に、テーパ面内
の成分子d方向の滑りが発生しにくくなり、摺動損が減
少し、効率が向上する。
Therefore, slippage in the component element d direction within the tapered surface is less likely to occur between the rotor and the vibrating body (stator), reducing sliding loss and improving efficiency.

第1図は本発明を適用した棒状超音波モータの振動体a
、bの正面図で、矢印は作動時の振動体の各点における
振動変位を示している。尚第1図示モータの他の構成要
素は第2図乃至第3図示モータと同じであるのでここで
はその説明を省略する。
Figure 1 shows a vibrating body a of a rod-shaped ultrasonic motor to which the present invention is applied.
, b, the arrows indicate the vibration displacement at each point of the vibrating body during operation. The other constituent elements of the motor shown in the first figure are the same as those of the motor shown in FIGS. 2 and 3, so their explanation will be omitted here.

該第1実施例では金属、プラスチック等の弾性体からな
る振動体の一部に設けられたテーパ状接触駆動部Aにお
けるテーパ角ψ(第1図参照)と振動角度αとの差が充
分小さ(なるように接触駆動部Aが設けられる位置並び
にテーパ角を設定されている。テーパ状接触駆動部Aの
摩擦係数が0.4のとき摩擦角は22°であるので、ロ
ータ形状にもよるが1ψ−21は22°以下であれば、
はぼ、テーパ面内方向の滑りを抑制できる。
In the first embodiment, the difference between the taper angle ψ (see FIG. 1) and the vibration angle α in the tapered contact drive portion A provided in a part of the vibrating body made of an elastic body such as metal or plastic is sufficiently small. (The position and taper angle of the contact drive part A are set so that If 1ψ−21 is less than 22°, then
Sliding in the inward direction of the tapered surface can be suppressed.

従ってこの実施例では、1ψ−21を1〜2°以下とし
ているが、実際上は20〜30°程度まで許されると考
えられる。もちろん、外乱による滑りや、加工・組立誤
差の影響を考慮すれば、1ψ−21は小さいほど良いと
考えられる。
Therefore, in this embodiment, 1ψ-21 is set to 1 to 2 degrees or less, but in practice, it is considered that a range of about 20 to 30 degrees is allowed. Of course, it is considered that the smaller 1ψ-21 is, the better, considering the effects of slippage due to external disturbances and processing/assembly errors.

[他の実施例コ 第6〜第9図は本発明の他の実施例にかかる超音波モー
タの振動体a、bの要部正面図で、矢印fbは第1図示
同様、モータ作動時の振動体の各点における振動変位を
示し、またFCは各振動体a、bに生じた振動の節の位
置、すなわち振動方向が変化する振動体上の位置を示し
、Cは第1実施例同様、電気機械エネルギー変換素子と
しての圧電素子である。
[Other Embodiments] Figures 6 to 9 are front views of main parts of the vibrating bodies a and b of an ultrasonic motor according to other embodiments of the present invention, and the arrow fb indicates the point when the motor is in operation, as in the first figure. FC indicates the vibration displacement at each point of the vibrating body, and FC indicates the position of the node of vibration generated in each vibrating body a, b, that is, the position on the vibrating body where the vibration direction changes, and C indicates the same as in the first embodiment. , a piezoelectric element as an electromechanical energy conversion element.

この2枚の圧電素子は前述した第2図示モータの圧電素
子と同様な構成であって、夫々が円環状圧電素子の中心
線を挟んで(+)、(−)に分極され、また夫々が位置
的に90°の位相差をもって積層されている。そしてこ
れら2枚の圧電素子の夫々に位相差(通常90°の位相
差)のある電気信号が不図示の駆動回路から印加される
ことによって振動体a。
These two piezoelectric elements have the same configuration as the piezoelectric element of the second illustrated motor described above, and are each polarized to (+) and (-) across the center line of the annular piezoelectric element. They are laminated with a positional phase difference of 90°. Then, electric signals having a phase difference (usually a phase difference of 90°) are applied to each of these two piezoelectric elements from a drive circuit (not shown), thereby causing the vibrating body a.

bには異なる複数の平面内にであって、かつ時間的に所
定の位相差をもった振動が励起され、結果的に振動体a
、bの表面は円又は楕円運動を行なう。
Vibration is excited in a plurality of different planes in b and has a predetermined phase difference in time, and as a result, vibrations in the vibrating body a
, b perform circular or elliptical motion.

そして第6図は振動角度αが比較的小さい振動の腹位置
付近をテーパ状接触駆動部Aとした例である。
FIG. 6 shows an example in which the tapered contact drive portion A is located near the antinode position of the vibration where the vibration angle α is relatively small.

また第7図は振動角度αが90″近傍の振動における節
位置付近を前記接触駆動部Aとした例、第8図は振動角
度αが90°よりやや大きい振動における節位置近傍を
前記接触駆動部Aとした例、第9図は振動角度αが90
°〜180°の間の振動の腹位置近傍を前記接触駆動部
Aとした例を夫々示している。勿論これら実施例の場合
も、各振動の振動角度αとテーパ角ψは充分近い値に設
計されている。
Further, FIG. 7 shows an example in which the contact drive section A is set near the node position in vibration where the vibration angle α is around 90'', and FIG. In the example of part A, Fig. 9, the vibration angle α is 90.
Examples are shown in which the contact drive portion A is located near the antinode position of the vibration between 180° and 180°. Of course, in these embodiments as well, the vibration angle α and taper angle ψ of each vibration are designed to be sufficiently close values.

またモータの他構成要素は第1実施例と同様であるので
その説明を省略する。
Further, since the other components of the motor are the same as those in the first embodiment, their explanation will be omitted.

[発明の効果] 以上説明した様に、本発明は振動角度とテーパ状接触駆
動部のテーパ角とを略一致、換言すれば前記駆動部分に
おける振動の方向と、駆動部のテーパ面の方向とを略一
致させたので、本発明によれば摺動損が小さく、効率が
良く、また前記駆動部にロータ等の移動体を接触させた
時に、移動体に生じる内部損失が少なくなるという種々
の効果を奏するものである。
[Effects of the Invention] As explained above, the present invention allows the vibration angle and the taper angle of the tapered contact drive section to substantially match, in other words, the direction of vibration in the drive section and the direction of the tapered surface of the drive section. Since they are substantially the same, the present invention has various advantages in that sliding loss is small, efficiency is high, and when a moving body such as a rotor is brought into contact with the drive section, internal loss occurring in the moving body is reduced. It is effective.

尚以上の実施例は振動体を固定し、ロータ側を移動させ
る例であったが、これを逆にしても良い。
In the above embodiment, the vibrating body is fixed and the rotor side is moved, but this may be reversed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した超音波モータの一実施例の振
動体の要部正面図、 第2図は従来の超音波モータの外観図、第3図は第2図
示モータの断面図、 第4図は第2図示モータの振動体表面上の質点を各方向
から模式化した図、 第5図は第2図示モータの振動状態を模式化した図、 第6図乃至第9図は本発明の他の実施例の要部正面図で
ある。 図においてA・・・テーパ状接触駆動部、a、bl。
FIG. 1 is a front view of a main part of a vibrating body of an embodiment of an ultrasonic motor to which the present invention is applied, FIG. 2 is an external view of a conventional ultrasonic motor, and FIG. 3 is a sectional view of the motor shown in the second figure. Figure 4 is a diagram schematically showing the mass points on the vibrating body surface of the motor shown in the second diagram from each direction, Figure 5 is a diagram schematically showing the vibration state of the motor shown in the second diagram, and Figures 6 to 9 are the main FIG. 7 is a front view of main parts of another embodiment of the invention. In the figure, A...Tapered contact drive section, a, bl.

Claims (1)

【特許請求の範囲】[Claims] (1)棒状弾性体上に設けられた電気−機械エネルギー
変換素子に電気信号を印加することによって前記弾性体
の異なる複数の平面内に振動を励起させ、かつ夫々の振
動に時間的に所定の位相差をたせることにより、前記弾
性体の表面に回転運動を生じさせ、前記弾性体のテーパ
状接触駆動部に圧接係合した移動体を摩擦駆動する超音
波モータにおいて、前記駆動部分における振動の振動方
向と、前記駆動部のテーパ面の方向とを略垂直としたこ
とを特徴とする超音波モータ。
(1) Excite vibrations in a plurality of different planes of the elastic body by applying an electric signal to an electro-mechanical energy converting element provided on a rod-shaped elastic body, and add a predetermined time to each vibration. In an ultrasonic motor that generates rotational motion on the surface of the elastic body by providing a phase difference and frictionally drives a moving body that is pressure-engaged with a tapered contact drive portion of the elastic body, vibrations in the drive portion are reduced. An ultrasonic motor characterized in that the direction of vibration and the direction of the tapered surface of the drive section are substantially perpendicular.
JP2228588A 1990-08-29 1990-08-29 Ultrasonic motor Pending JPH04109881A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2228588A JPH04109881A (en) 1990-08-29 1990-08-29 Ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2228588A JPH04109881A (en) 1990-08-29 1990-08-29 Ultrasonic motor

Publications (1)

Publication Number Publication Date
JPH04109881A true JPH04109881A (en) 1992-04-10

Family

ID=16878718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2228588A Pending JPH04109881A (en) 1990-08-29 1990-08-29 Ultrasonic motor

Country Status (1)

Country Link
JP (1) JPH04109881A (en)

Similar Documents

Publication Publication Date Title
US20130033152A1 (en) Ultrasonic motor and lens apparatus including the same
US9143058B2 (en) Ultrasonic motor and lens apparatus including the same
JP3107933B2 (en) Vibration wave driving device and device provided with vibration wave driving device
JPH0795777A (en) Oscillatory wave driving device
JPH0491671A (en) Supersonic motor
JPS61224878A (en) Vibration wave motor
US6781283B2 (en) Vibration element and vibration wave driving apparatus
JPH04109881A (en) Ultrasonic motor
JP4095282B2 (en) Vibration wave drive
JPS62213585A (en) Vibration wave motor
JPH0491670A (en) Vibration wave drive device
JPH02311184A (en) Ultrasonic motor
JPH04117185A (en) Rodlike ultrasonic motor
JPS6051477A (en) Piezoelectric motor
JPH04133678A (en) Ultrasonic motor
JPH06106029B2 (en) Ultrasonic motor
JPS63136983A (en) Vibration wave motor
JPH0491680A (en) ultrasonic motor
JPH0681523B2 (en) Vibration wave motor
JP2001016875A (en) Oscillatory wave drive device
JPH04331483A (en) Ultrasonic motor
JPH0491666A (en) Vibration wave drive device and device using vibration wave drive device
JPH0336972A (en) Ultrasonic motor
JPS6062879A (en) Vibration wave motor
JPH06106026B2 (en) Vibration wave motor