JPH04109147A - Method and device for measuring complex refractive index - Google Patents
Method and device for measuring complex refractive indexInfo
- Publication number
- JPH04109147A JPH04109147A JP22746790A JP22746790A JPH04109147A JP H04109147 A JPH04109147 A JP H04109147A JP 22746790 A JP22746790 A JP 22746790A JP 22746790 A JP22746790 A JP 22746790A JP H04109147 A JPH04109147 A JP H04109147A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- measuring
- transmittance
- reflectance
- extinction coefficient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 33
- 238000002834 transmittance Methods 0.000 claims description 55
- 230000008033 biological extinction Effects 0.000 claims description 51
- 239000000463 material Substances 0.000 claims description 47
- 239000010409 thin film Substances 0.000 claims description 44
- 238000005259 measurement Methods 0.000 claims description 33
- 230000003287 optical effect Effects 0.000 claims description 29
- 238000004364 calculation method Methods 0.000 claims description 28
- 239000010408 film Substances 0.000 claims description 24
- 239000000758 substrate Substances 0.000 claims description 17
- 229920002120 photoresistant polymer Polymers 0.000 description 15
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000000572 ellipsometry Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 235000021152 breakfast Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Landscapes
- Investigating Or Analysing Materials By Optical Means (AREA)
- Testing Of Optical Devices Or Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、薄膜材料などの複素屈折率の測定に係り、特
に赤外線領域及び紫外線領域における屈折率及び消衰係
数で表わされる複素屈折率の測定方法及びその測定装置
に関する。Detailed Description of the Invention [Field of Industrial Application] The present invention relates to the measurement of the complex refractive index of thin film materials, etc., and in particular to the measurement of the complex refractive index expressed by the refractive index and extinction coefficient in the infrared and ultraviolet regions. This invention relates to a measuring method and a measuring device.
従来の複素屈折率の測定方法における屈折率及び消衰係
数の測定は、反射光の偏光特性が材料の複素屈折率に依
存することを利用した偏光解析法がある。光ディスク又
はフォトレジストの構造設計は、光学理論に基づいた解
析が最も基本的な技術であり、それには赤外線領域(半
導体レーザの発光波長)における複素屈折率のデータが
必須である。なお複素屈折率7は屈折率nと消衰係数に
とにより、n=n−1kで表わされる。Conventional methods for measuring the complex refractive index include ellipsometry, which utilizes the fact that the polarization characteristics of reflected light depend on the complex refractive index of the material, to measure the refractive index and extinction coefficient. The most basic technology for structural design of optical disks or photoresists is analysis based on optical theory, which requires data on complex refractive index in the infrared region (emission wavelength of semiconductor laser). Note that the complex refractive index 7 is expressed by n=n-1k, where n is the refractive index and the extinction coefficient is n.
偏光解析法による測定では、一般に可視光領域の光であ
るHe−Neレーザ(波長632.8nm)が用いられ
る。基板に測定材料の薄膜を形成し、直線偏光のHe
−N eレーザ光を斜めに入射させて、その反射光の偏
光の状態(入射面に平行な振動成分とこれに垂直な振動
成分の反射率比及び両成分の位相差)を測定する。これ
らのデータを使って光学理論から導か九る複素屈折率の
算出式を使って、測定材料の複素屈折率を求める。これ
らの方法については、光学技術ハンドブック、朝食書店
(昭和43年発行)第304ページから305ページに
おいて詳しく論じられている。In measurements by ellipsometry, a He-Ne laser (wavelength: 632.8 nm), which is light in the visible light range, is generally used. A thin film of the measurement material is formed on the substrate, and linearly polarized He
-Ne laser light is incident obliquely, and the state of polarization of the reflected light (the reflectance ratio of the vibration component parallel to the incident plane and the vibration component perpendicular thereto, and the phase difference between the two components) is measured. Using these data, the complex refractive index of the material to be measured is determined using a complex refractive index calculation formula derived from optical theory. These methods are discussed in detail in the Optical Technology Handbook, Breakfast Shoten (published in 1961), pages 304 to 305.
従来の複素屈折率の測定方法にあっては、He−Neレ
ーザ光源が用いられており、光源が可視光であるので光
軸合わせが精度よくでき、複素屈折率の測定精度も高い
、しかし、可視光領域外の赤外線や紫外線領域の光源の
場合には、光軸合わせが困難で測定精度が低くなる問題
があった。又、測定光の強度が比較的高く、光反応性を
有するフォトレジストの場合には測定中に複素屈折率が
変動してしまい、正確な測定ができないという問題があ
った。In the conventional method for measuring the complex refractive index, a He-Ne laser light source is used, and since the light source is visible light, the optical axis can be aligned with high accuracy, and the measurement accuracy of the complex refractive index is also high. In the case of a light source in the infrared or ultraviolet region outside the visible light region, there is a problem in that it is difficult to align the optical axes, resulting in low measurement accuracy. Furthermore, in the case of a photoresist having relatively high intensity of measurement light and photoreactivity, there is a problem that the complex refractive index fluctuates during measurement, making accurate measurement impossible.
本発明の目的は、測定材料の複素屈折率を赤外線及び紫
外線領域の光源を用いて測定できる複素屈折率の測定方
法及びその測定装置を提供することにある。また本発明
の他の目的は、赤外線領域及び紫外線領域における複素
屈折率を分光光度計で測定する装置を提供することにあ
る。さらに本発明の他の目的は、感光性を有するフォト
レジスト及び光記録材料の複素屈折率の測定方法を提供
することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide a complex refractive index measuring method and apparatus for measuring the complex refractive index of a material to be measured using a light source in the infrared and ultraviolet regions. Another object of the present invention is to provide an apparatus for measuring complex refractive index in the infrared and ultraviolet regions using a spectrophotometer. Still another object of the present invention is to provide a method for measuring the complex refractive index of photosensitive photoresists and optical recording materials.
前記の目的を達成するため、本発明に係る複素屈折率の
測定方法は、屈折率と消衰係数とで表わされる複素屈折
率の測定方法において、測定波長を設定して測定波長に
より測定材料の透過率及び反射率を測定し、測定材料の
膜厚を測定して膜厚と屈折率及び消衰係数の初期仮定値
とを用いて測定材料の反射率及び透過率を光学理論に基
づいて計算し1反射率及び透過率の計算値とその測定値
との間の誤差の許容値を設定し、誤差に応じて初期仮定
値を補正して許容値以下になるまで計算を繰返し、最終
仮定値を測定材料の屈折率及び消衰係数として求める構
成である。In order to achieve the above object, the method for measuring a complex refractive index according to the present invention is a method for measuring a complex refractive index expressed by a refractive index and an extinction coefficient. Measure the transmittance and reflectance, measure the film thickness of the material to be measured, and calculate the reflectance and transmittance of the material to be measured based on optical theory using the film thickness and initial assumed values of refractive index and extinction coefficient. 1. Set the tolerance for error between the calculated values of reflectance and transmittance and their measured values, correct the initial assumed values according to the error, repeat the calculation until the values are below the tolerance, and then calculate the final assumed values. is determined as the refractive index and extinction coefficient of the measurement material.
そして、誤差の許容値は、+1〜−1%である構成とす
る。The configuration is such that the allowable error value is +1 to -1%.
また、測定材料は、フォトレジストである構成でもよい
。Further, the measurement material may be a photoresist.
さらに測定材料は、光記録材料である構成でもよい。Furthermore, the measuring material may be an optical recording material.
モして複素屈折率の測定装置においては、基板に測定材
料の薄膜を形成する手段と、薄膜の膜厚を測定する手段
と、薄膜の透過率及び反射率を測定する手段と、薄膜の
屈折率及び消衰係数の仮定値を設定して膜厚と計算デー
タとにより透過率及び反射率の計算を繰返しその測定値
と許容範囲内で一致する屈折率及び消衰係数を用いて複
素屈折率を求める計算手段と、計算結果を出力する手段
とよりなる構成である。In addition, the complex refractive index measuring device includes a means for forming a thin film of a measurement material on a substrate, a means for measuring the thickness of the thin film, a means for measuring transmittance and reflectance of the thin film, and a means for measuring the refraction of the thin film. The complex refractive index is calculated by setting the assumed values of the index and extinction coefficient, repeating the calculation of transmittance and reflectance using the film thickness and calculated data, and using the refractive index and extinction coefficient that match the measured values within the tolerance range. The configuration consists of a calculation means for determining the calculation result, and a means for outputting the calculation result.
また薄膜の透過率及び反射率を測定する手段は、分光光
度計である構成でもよい。Further, the means for measuring the transmittance and reflectance of the thin film may be a spectrophotometer.
さらに複素屈折率の測定装置においては、基板に形成し
た測定材料の薄膜の膜厚と透過率及び反射率とを測定す
る手段と、それぞれの測定値と計算データとを記憶しそ
れぞれの測定値をほぼ満足させる屈折率及び消衰係数を
用いて複素屈折率を求める手段とを備えた構成でもよい
。Furthermore, the complex refractive index measuring device includes a means for measuring the thickness, transmittance, and reflectance of a thin film of the measurement material formed on the substrate, and a means for storing each measured value and calculation data and storing each measured value. The structure may include means for determining a complex refractive index using a substantially satisfied refractive index and extinction coefficient.
本発明の複素屈折率の測定方法によれば、まず、何らか
の手段(例えば蒸着装置、スパッタリング装置等)で複
素屈折率を測定しようとする材料の薄膜を石英ガラス等
の透明な基板上に形成する。According to the method for measuring a complex refractive index of the present invention, first, a thin film of the material whose complex refractive index is to be measured is formed on a transparent substrate such as quartz glass by some means (for example, a vapor deposition device, a sputtering device, etc.). .
次に形成された薄膜の膜厚を微小膜厚計で測定するとと
もに、測定波長を決め、薄膜の透過率と反射率とを分光
光度計等で測定する0次に測定された透過率と反射率を
満足するような屈折率及び消衰係数を下記に示すような
過程で算出する。Next, the thickness of the formed thin film is measured with a micro film thickness meter, the measurement wavelength is determined, and the transmittance and reflectance of the thin film are measured with a spectrophotometer, etc. The zero-order measured transmittance and reflection The refractive index and extinction coefficient that satisfy the index are calculated by the process shown below.
i)屈折率及び消衰係数の初期値を仮定する。i) Assume initial values of refractive index and extinction coefficient.
it)前記膜厚の測定値と屈折率及び消衰係数の初期仮
定値を用いて、測定材料の反射率と透過率を光学理論に
基ずいて下記のように計算する。it) Using the measured value of the film thickness and the initial assumed values of the refractive index and extinction coefficient, the reflectance and transmittance of the measurement material are calculated as follows based on optical theory.
この計算方法については、アイ・イー・イー・イートラ
ンザクション オン エレクトロン デバイスイーデー
22 (1975年)第456頁から第464頁(I
E E 、 Trana、 E 1ectronDev
ices、ED−22(1975)PP、456〜46
4)の一部に述べられている。This calculation method is described in IE Transactions on Electron Devices E-Day 22 (1975), pages 456 to 464 (I
E E , Trana, E 1ectronDev
ices, ED-22 (1975) PP, 456-46
4) is stated in part.
第7図に示した空気、薄膜及び基板からなる多層膜のj
−i番目の振幅反射率rJ−1及び振幅透過率t1−1
は次式で表される。ここで、薄膜ここで、
φ、=2g;讐′−Δ d 1
・・・・・・・・・・・・(4)λ
nJ=nJ ikJであり、Δd1は複数個に分割した
薄膜のj番目の層の厚さである。j=m(すなわち基板
側)から計算を始め、順次m−1、m −2と計算を進
め、最後に薄膜表面に到達する。基板と薄膜界面におけ
る複素反射率r1、複素透過率tlIは次式で表される
。j of the multilayer film consisting of air, thin film, and substrate shown in Figure 7
-i-th amplitude reflectance rJ-1 and amplitude transmittance t1-1
is expressed by the following formula. Here, the thin film, where φ, = 2g;
(4) λ nJ=nJ ikJ, and Δd1 is the thickness of the j-th layer of the thin film divided into a plurality of pieces. The calculation starts from j=m (that is, the substrate side), proceeds sequentially to m-1, m-2, and finally reaches the thin film surface. The complex reflectance r1 and complex transmittance tlI at the interface between the substrate and the thin film are expressed by the following equations.
ここで、noは空気の屈折率である。層全体の透過率T
と反射率Rは(1)及び(2)式を用いた繰返し計算に
より最終的に得られるto、roを使って次式のように
計算される。Here, no is the refractive index of air. Transmittance T of the entire layer
and reflectance R are calculated as shown in the following equation using to and ro finally obtained through repeated calculations using equations (1) and (2).
Tltol” ・・・・・・・・・・
・・・・・・・・(7)Rlrol”
・・・・・・・・・・・・・・・・・・(8)このよ
うに、屈折率n、消衰係数k及び膜厚dにより透過率T
と反射率Rは計算できるが、逆に透過率T、反射率R及
び膜厚dにより屈折率nと消衰係数kを計算することは
困難である。そこで、次のような計算手法を取る。"Tltol" ・・・・・・・・・
・・・・・・・・・(7)Rlrol”
・・・・・・・・・・・・・・・・・・(8) In this way, the transmittance T is determined by the refractive index n, extinction coefficient k, and film thickness d.
However, it is difficult to calculate the refractive index n and extinction coefficient k from the transmittance T, reflectance R, and film thickness d. Therefore, we use the following calculation method.
in)初期仮定値による透過率T及び反射率Rの計算値
と測定値との誤差に応じて、屈折率及び消衰係数の仮定
値を少しずつ補正し、測定値と計算値との誤差が許容値
以下になるまで繰返し計算する。その方法を第8図に示
す、第9図は屈折率及び減衰係数算出用のデータ表であ
る。屈折率n□に対して消衰係数kを変化させて透過率
T及び反射率Rを計算するとそれぞれ曲線28、曲線3
4のようになる1次に屈折率n2に対して同様に透過率
T及び反射率Rを計算するとそれぞれ曲線31、曲線3
3の様になる。透過率の測定値がTo、反射率の測定値
がRoであるとすると、To、ROが得られる屈折率n
xはn2とn3との間にあり、消衰係数kxはに工とに
8との間にある。以下にnxとに8の推定方法を示す。in) Correct the assumed values of the refractive index and extinction coefficient little by little according to the error between the calculated value of transmittance T and reflectance R based on the initial assumed value and the measured value, and correct the error between the measured value and the calculated value. Repeat calculation until the value is below the allowable value. The method is shown in FIG. 8, and FIG. 9 is a data table for calculating the refractive index and attenuation coefficient. When calculating the transmittance T and reflectance R by changing the extinction coefficient k with respect to the refractive index n□, curve 28 and curve 3 are obtained, respectively.
When the transmittance T and reflectance R are similarly calculated for the linear refractive index n2, which is 4, the curve 31 and the curve 3 are obtained, respectively.
It will look like 3. If the measured value of transmittance is To and the measured value of reflectance is Ro, then the refractive index n from which To and RO are obtained is
x is between n2 and n3, and the extinction coefficient kx is between 2 and 8. The estimation method for nx and 8 is shown below.
先ず、屈折率の初期値n1とn2、消衰係数の初期値に
1とに8を比較的広く仮定する0次に、屈折率ni、消
衰係数に工に対する透過率T1と反射率R1、及び屈折
率n1、消衰係数に1に対する透過率T2と反射率R1
,さらに屈折率n1、消衰係数に2に対する透過率T、
と反射率R1をそれぞれ計算する。屈折率nx及び消衰
係数に、を次式により計算する。First, the initial values of the refractive index n1 and n2 and the initial value of the extinction coefficient are relatively broadly assumed to be 1 and 8. Next, the transmittance T1 and the reflectance R1 for the refractive index ni and the extinction coefficient and transmittance T2 and reflectance R1 for refractive index n1 and extinction coefficient 1.
, furthermore, the refractive index n1, the extinction coefficient is the transmittance T for 2,
and reflectance R1 are calculated respectively. The refractive index nx and the extinction coefficient are calculated using the following equations.
nx=(lLe(Ro−Rt)−B2(To−TJ)/
(mtL−11zl13)÷n、 ・・・・・
・・・・(9)kx=(I’3 (RO−R1)−11
1(To−Tj)べmzm3−1hj4)+に1+++
+・+++ (10)ここで、To、Roは透過率及び
反射率の測定値であり1m工、m2、m、、m、はそれ
ぞれ次式で表される。nx=(lLe(Ro-Rt)-B2(To-TJ)/
(mtL-11zl13)÷n, ・・・・・・
...(9) kx=(I'3 (RO-R1)-11
1(To-Tj)bemzm3-1hj4)+1+++
+・+++ (10) Here, To and Ro are measured values of transmittance and reflectance, and 1m, m2, m, m are respectively expressed by the following formulas.
ml” (R,R2) / (n1n=)
−(igmt” (R1−R,) / (lc、−
に、) ”’(12)m、=(T1−T
よ)/(nl−B2)・・・(13)m、=(T□−T
、)/(kl−に2)・・・(14)第一回目の計算で
得られた屈折率nx及び消衰係数kxを使って透過率及
び反射率を計算し、測定値T0、Rゆと比較する。その
差が所定の誤差部1(通常±1%)以下にならないとき
には、屈折率nX及び消衰係数kxを中心にして、±5
%程度の範囲に、屈折率nいB2、消衰係数によ、R2
を再度設定し、T工、T2、R1、R2を計算する。更
に、(9)〜(14)式を用いて再び屈折率及び消衰係
数の推定値nXとに8とを計算する。この様にして透過
率測定値T0、反射率測定値R0と計算値との誤差が所
定の誤差範囲以下になるまで繰返し計算する。ml” (R, R2) / (n1n=)
−(igmt” (R1-R,) / (lc, −
) ”'(12) m, = (T1-T
yo)/(nl-B2)...(13)m, =(T□-T
, )/(kl-2)...(14) Calculate the transmittance and reflectance using the refractive index nx and extinction coefficient kx obtained in the first calculation, and calculate the measured values T0 and R distortion. Compare with. If the difference is not less than a predetermined error part 1 (usually ±1%), ±5
%, the refractive index n is B2, and the extinction coefficient is R2.
Set again and calculate T, T2, R1, and R2. Furthermore, the estimated values nX and 8 of the refractive index and extinction coefficient are calculated again using equations (9) to (14). Calculations are repeated in this manner until the error between the measured transmittance value T0, the measured reflectance value R0, and the calculated value falls below a predetermined error range.
K)このようにして、最終的に得られた屈折率、消衰係
数の最終仮定値を該材料の屈折率と消衰係数とし複素屈
折率の測定を終了する。K) In this way, the final assumed values of the refractive index and extinction coefficient finally obtained are used as the refractive index and extinction coefficient of the material, and the measurement of the complex refractive index is completed.
さらに、複素屈折率の測定装置は次のように作用する。Furthermore, the complex refractive index measuring device operates as follows.
すなわち、薄膜を形成する手段により基板に測定材料の
薄膜を形成した後、膜厚を測定する手段により薄膜の厚
さを測定する。次に透過率及び反射率を測定する手段に
より薄膜の透過率及び反射率を測定する0次に、記憶す
る手段に膜厚、透過率及び反射率の測定値、及び計算プ
ログラムを入力し記憶する。これらの記憶されたデータ
及びプログラムを用いて、計算手段により測定材料の屈
折率及び消衰係数を計算し、計算結果を出力する手段に
出力する。That is, after a thin film of the material to be measured is formed on the substrate using a thin film forming means, the thickness of the thin film is measured using a film thickness measuring means. Next, measure the transmittance and reflectance of the thin film using the transmittance and reflectance measuring means.Next, input the measured values of the film thickness, transmittance and reflectance, and the calculation program into the storage means and store them. . Using these stored data and programs, the calculation means calculates the refractive index and extinction coefficient of the measurement material, and outputs the calculation results to the output means.
そして、前記の分光光度計は次の様に作用する。The spectrophotometer described above operates as follows.
他の装置で形成された薄膜材料の透過率及び反射率を透
過率及び反射率を測定する手段により測定し、他の測定
器で測定された材料の膜厚とともに計算用データ及び計
算プログラムを記憶する手段に入力し、屈折率及び消衰
係数を計算する手段により、計算プログラムを使って屈
折率及び消衰係数を計算する。これらの計算値は出力す
る手段に出力する。Measure the transmittance and reflectance of a thin film material formed by another device using a means for measuring transmittance and reflectance, and store the calculation data and calculation program together with the film thickness of the material measured by the other measuring device. The refractive index and extinction coefficient are calculated using a calculation program by the means for calculating the refractive index and extinction coefficient. These calculated values are output to an output means.
また、フォトレジストの屈折率及び消衰係数を算出する
過程では、先ず、スピナーにより基板にフォトレジスト
を塗布した後、そのフォトレジストの膜厚を測定する。In addition, in the process of calculating the refractive index and extinction coefficient of a photoresist, first, a photoresist is applied to a substrate using a spinner, and then the film thickness of the photoresist is measured.
さらに、フォトレジストの透過率及び反射率を分光光度
計により測定し、これらの膜厚、透過率及び反射率の測
定値を用いて、前述の方法でフォトレジストの屈折率及
び消衰係数を計算する。Furthermore, the transmittance and reflectance of the photoresist are measured using a spectrophotometer, and the refractive index and extinction coefficient of the photoresist are calculated using the method described above using these measured values of film thickness, transmittance, and reflectance. do.
さらに、光記録材料の屈折率及び消衰係数を算出する過
程では、先ず基板に光記録材料の薄膜を形成した後、そ
の膜厚、透過率及び反射率を分光光度計により測定する
1次にこれらの膜厚、透過率及び反射率の測定値を用い
て、前述の方法で光記録材料の屈折率及び消衰係数を計
算する。Furthermore, in the process of calculating the refractive index and extinction coefficient of an optical recording material, first a thin film of the optical recording material is formed on a substrate, and then the film thickness, transmittance, and reflectance are measured using a spectrophotometer. Using these measured values of film thickness, transmittance, and reflectance, the refractive index and extinction coefficient of the optical recording material are calculated by the method described above.
本発明の一実施例を第1図を参照しながら説明する。 An embodiment of the present invention will be described with reference to FIG.
第1図は本発明の複素屈折率の測定方法のブロック図を
示すものである。まず、複素屈折率を測定しようとする
材料の薄膜形成8aを透明な基板上に行ない、次に薄膜
の膜厚測定8bを行なった後、透過率及び反射率の測定
9を行なう、さらに、前述の方法により屈折率及び消衰
係数の計算を行なう。本実施例では複素屈折率の測定方
法を提供できる効果がある。FIG. 1 shows a block diagram of a method for measuring a complex refractive index according to the present invention. First, a thin film 8a of the material whose complex refractive index is to be measured is formed on a transparent substrate, and then the thickness of the thin film is measured 8b, and then the transmittance and reflectance are measured 9. Calculate the refractive index and extinction coefficient using the following method. This embodiment has the advantage of providing a method for measuring complex refractive index.
次に、本発明の他の実施例を第2図を参照しながら説明
する。Next, another embodiment of the present invention will be described with reference to FIG.
第2図は薄膜形成部(形成する手段)1、透過率及び反
射率測定部(測定する手段)2、膜厚測定部(測定する
手段)7、データ入力部3、光学定数計算部(計算手段
)4、データメモリ一部5、データ出力部6からなる光
学定数測定装置の構成を示すものである。薄膜形成部1
は分離して設けられてもよく、種々の材料を薄膜に形成
するための装置、すなわち、フォトレジスト塗布用のス
ピナー、高融点材料の薄膜形成に適したスパッタリング
装置、低融点材料の薄膜形成に適した蒸着装置及び化学
反応を利用して薄膜を形成する化学蒸着(CVD)装置
のうち少なくとも1つの装置からなり、透明基板に光学
定数を測定する材料の薄膜を形成させる。Figure 2 shows a thin film forming section (forming means) 1, transmittance and reflectance measuring section (measuring means) 2, film thickness measuring section (measuring means) 7, data input section 3, optical constant calculating section (calculating 4 shows the configuration of an optical constant measuring device consisting of a data memory section 5, and a data output section 6. Thin film forming section 1
may be provided separately, and may include devices for forming thin films of various materials, such as spinners for applying photoresist, sputtering devices suitable for forming thin films of high melting point materials, and devices for forming thin films of low melting point materials. The device comprises at least one of a suitable vapor deposition device and a chemical vapor deposition (CVD) device that utilizes chemical reactions to form thin films to form a thin film of the material whose optical constants are to be measured on a transparent substrate.
透過率及び反射率測定部2は複素屈折率が未知の材料の
透過率及び反射率を測定するもので、第3図にその機構
の一例を示す、光源12から出た光は反射鏡11によっ
て集光され、コリメータレンズ13によって平行光に補
正され、分光用の回折格子14に入射する6回折格子1
4からの反射光は波長により異なった方向に反射するか
ら薄膜材料17への入射光の波長は角度θを調節して選
択する0回折格子14からの反射光はハーフミラ−16
に入射し、該材料の薄膜17が形成された透明基板18
を通過した後、光センサ19に入射する。薄膜17から
の反射光はハーフミラ−16によって反射して光センサ
15に入射する。透過率及び反射率はそれぞれ光センサ
19及び15による光強度の測定値を光源強度と比較す
ることにより求めることができる。透過光を受光する光
センサ19、反射光を受光する光センサ15にはSiの
pn接合を利用した半導体光センサや光電子増倍管を用
いることができる。第3図に示した装置の他に、透過率
及び反射率測定機構を持った分光光度計も利用できる。The transmittance and reflectance measurement section 2 measures the transmittance and reflectance of a material whose complex refractive index is unknown. An example of its mechanism is shown in FIG. 6 diffraction gratings 1 that are focused, corrected into parallel light by a collimator lens 13, and incident on a diffraction grating 14 for spectroscopy
Since the light reflected from the diffraction grating 14 is reflected in different directions depending on the wavelength, the wavelength of the light incident on the thin film material 17 is selected by adjusting the angle θ.
transparent substrate 18 on which a thin film 17 of the material is formed.
After passing through, the light enters the optical sensor 19. The reflected light from the thin film 17 is reflected by the half mirror 16 and enters the optical sensor 15. The transmittance and reflectance can be determined by comparing the measured values of the light intensity by the optical sensors 19 and 15, respectively, with the light source intensity. As the optical sensor 19 that receives transmitted light and the optical sensor 15 that receives reflected light, a semiconductor optical sensor using a Si pn junction or a photomultiplier tube can be used. In addition to the apparatus shown in FIG. 3, spectrophotometers with transmittance and reflectance measurement mechanisms are also available.
複素屈折率計算部(計算手段)4では、薄膜の屈折率及
び消衰係数の仮定値を設定して膜厚と計算データとによ
り透過率及び反射率の計算を繰返し、その測定値と比較
して許容範囲にある透過率及び反射率を用いて複素屈折
率を求めることができる0本実施例では複素屈折率の測
定装置を提供できる効果がある。The complex refractive index calculation unit (calculation means) 4 sets assumed values of the refractive index and extinction coefficient of the thin film, repeats calculations of transmittance and reflectance using the film thickness and calculated data, and compares the calculated values with the measured values. The present embodiment has the effect of providing a complex refractive index measuring device, in which the complex refractive index can be determined using the transmittance and reflectance within the allowable range.
次に、本発明の他の実施例である分光光度計による屈折
率及び消衰係数の測定法のブロック図を第4図に示す、
第1図と異なっているのは分光光度計による透過率及び
反射率の測定36の部分である。本実施例では分光光度
計を使うため、従来の装置が使える効果がある。Next, a block diagram of a method for measuring refractive index and extinction coefficient using a spectrophotometer according to another embodiment of the present invention is shown in FIG.
What differs from FIG. 1 is the measurement 36 of transmittance and reflectance using a spectrophotometer. Since this embodiment uses a spectrophotometer, it has the advantage that conventional equipment can be used.
次に、本発明の他の実施例であるフォトレジストの屈折
率、消衰係数の測定方法を第5図に示す。Next, a method for measuring the refractive index and extinction coefficient of a photoresist according to another embodiment of the present invention is shown in FIG.
まず、スピナーによりフォトレジスト塗布2oを透明な
基板上に行なう0次にそのフォトレジスト膜厚測定21
を行なう0次に、透過率及び反射率 lの測定22を行
ない、さらに、前述の方法で屈折率及び消衰係数の計算
23を行なう0本実施例ではフォトレジストの複素屈折
率の測定方法を提供できる効果がある。First, photoresist coating 2o is performed on a transparent substrate using a spinner. Next, the photoresist film thickness is measured 21.
Next, the transmittance and reflectance l are measured 22, and the refractive index and extinction coefficient are calculated 23 using the method described above.In this example, the method for measuring the complex refractive index of the photoresist is There is an effect that can be provided.
次に、本発明の他の実施例である光ディスクに用いられ
る光記録材料の屈折率及び消衰係数の測定法を第6図に
示す、先ず、蒸着装置あるいはスパッタリング装置によ
り、光記録材料の薄膜形成24を透明な基板上に行なう
0次に光記録材料の膜厚測定25及び、透過率及び反射
率の測定26を行なった後、屈折率及び消衰係数の計算
27を行なう0本実施例では光記録材料の複素屈折率の
測定方法を提供できる効果がある。Next, a method for measuring the refractive index and extinction coefficient of an optical recording material used in an optical disk, which is another embodiment of the present invention, is shown in FIG. This embodiment performs the film thickness measurement 25 of the zero-order optical recording material in which the formation 24 is performed on a transparent substrate, and the measurement 26 of the transmittance and reflectance, and then the calculation 27 of the refractive index and extinction coefficient. This has the effect of providing a method for measuring the complex refractive index of optical recording materials.
本発明によれば、透過率及び反射率の測定値を使って測
定材料の屈折率及び消衰係数で表わされる複素屈折率の
測定方法及び測定装置を提供できる。さらに、フォトレ
ジスト及び光記録材料の複素屈折率の測定方法を提供で
きる効果がある。According to the present invention, it is possible to provide a method and apparatus for measuring a complex refractive index expressed by a refractive index and an extinction coefficient of a measurement material using measured values of transmittance and reflectance. Furthermore, it is possible to provide a method for measuring the complex refractive index of photoresists and optical recording materials.
第1図は本発明の一実施例を示す構成図、第2図は本発
明の他の実施例を示す構成図、第3図は第2図の要部を
拡大した図、第4図〜第6図は本発明の他の実施例を示
す構成図、第7図は透過率及び反射率の計算方法を説明
する図、第8図は屈折率及び消衰係数の計算方法を説明
する図、第9図は屈折率及び消衰係数算出用のデータを
示す図である。
1・・・薄膜形成部(形成する手段)
2・・・透過率及び反射率測定部(測定する手段)4・
・・複素屈折率計算部(計算する手段)7・・・膜厚測
定部(測定する手段)
8a・・・測定材料の薄膜形成
8b・・・薄膜の膜厚測定
9・・・透過率及び反射率の測定
10・・・屈折率及び消衰係数の計算
代理人 鵜 沼 辰 之
第 1 図
第2図
第3図
第5図Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 is a block diagram showing another embodiment of the present invention, Fig. 3 is an enlarged view of the main part of Fig. 2, and Figs. FIG. 6 is a block diagram showing another embodiment of the present invention, FIG. 7 is a diagram explaining a method of calculating transmittance and reflectance, and FIG. 8 is a diagram explaining a method of calculating refractive index and extinction coefficient. , FIG. 9 is a diagram showing data for calculating the refractive index and extinction coefficient. 1... Thin film forming section (forming means) 2... Transmittance and reflectance measuring section (measuring means) 4.
... Complex refractive index calculation section (means for calculating) 7 ... Film thickness measurement section (means for measuring) 8a ... Thin film formation of measurement material 8b ... Thin film thickness measurement 9 ... Transmittance and Measurement of reflectance 10... Calculation agent for refractive index and extinction coefficient Tatsuno Unouma 1 Figure 2 Figure 3 Figure 5
Claims (1)
方法において、測定波長を設定して該測定波長により測
定材料の透過率及び反射率を測定し、前記測定材料の膜
厚を測定して該膜厚と前記屈折率及び消衰係数の初期仮
定値とを用いて前記測定材料の反射率及び透過率を光学
理論に基づいて計算し、該反射率及び透過率の計算値と
その測定値との間の誤差の許容値を設定し、該誤差に応
じて前記初期仮定値を補正して前記許容値以下になるま
で計算を繰返し、最終仮定値を前記測定材料の前記屈折
率及び消衰係数として求めることを特徴とする複数屈折
率の測定方法。 2、誤差の許容値は、+1〜−1%であることを特徴と
する請求項1記載の複素屈折率の測定方法。 3、測定材料は、フォトレジスタであることを特徴とす
る請求項1又は2記載の複素屈折率の測定方法。 4、測定材料は、光記録材料であることを特徴とする請
求項1又は2記載の複素屈折率の測定方法。 5、基板に測定材料の薄膜を形成する手段と、該薄膜の
膜厚を測定する手段と、該薄膜の透過率及び反射率を測
定する手段と、前記薄膜の屈折率及び消衰係数の仮定値
を設定して前記膜厚と計算データとにより前記透過率及
び反射率の計算を繰返しその測定値と許容範囲内で一致
する前記屈折率及び消衰係数を用いて複素屈折率を求め
る計算手段と、計算結果を出力する手段とよりなること
を特徴とする複素屈折率の測定装置。 6、薄膜の透過率及び反射率を測定する手段は、分光光
度計であることを特徴とする複素屈折率の測定装置。 7、基板に形成した測定材料の薄膜の膜厚と透過率及び
反射率とを測定する手段と、それぞれの測定値と計算デ
ータとを記憶しそれぞれの測定値をほぼ満足させる屈折
率及び消衰係数を用いて複素屈折率を求める手段とを備
えたことを特徴とする複素屈折率の測定装置。[Claims] 1. In a method for measuring a complex refractive index represented by a refractive index and an extinction coefficient, a measurement wavelength is set, and the transmittance and reflectance of the measurement material are measured using the measurement wavelength, The film thickness of the material is measured, and the reflectance and transmittance of the measurement material are calculated based on optical theory using the film thickness and the initial assumed values of the refractive index and extinction coefficient. Set a tolerance value for the error between the calculated value of the ratio and its measured value, correct the initial assumed value according to the error, repeat the calculation until the value falls below the tolerance value, and set the final assumed value as the measured value. A method for measuring multiple refractive indices, characterized in that the refractive index and extinction coefficient of a material are determined. 2. The method for measuring a complex refractive index according to claim 1, wherein the tolerance for error is +1 to -1%. 3. The method for measuring a complex refractive index according to claim 1 or 2, wherein the measuring material is a photoresistor. 4. The method for measuring a complex refractive index according to claim 1 or 2, wherein the measuring material is an optical recording material. 5. Means for forming a thin film of a measurement material on a substrate, means for measuring the film thickness of the thin film, means for measuring transmittance and reflectance of the thin film, and assumptions for the refractive index and extinction coefficient of the thin film. calculation means that calculates a complex refractive index by setting values and repeating calculations of the transmittance and reflectance using the film thickness and calculation data, and using the refractive index and extinction coefficient that match the measured values within a tolerance range; A device for measuring a complex refractive index, comprising: and means for outputting a calculation result. 6. A complex refractive index measuring device, characterized in that the means for measuring the transmittance and reflectance of a thin film is a spectrophotometer. 7. A means for measuring the thickness, transmittance, and reflectance of a thin film of the measurement material formed on the substrate, and a refractive index and extinction that store the respective measured values and calculated data and substantially satisfy the respective measured values. A device for measuring a complex refractive index, comprising means for determining a complex refractive index using coefficients.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22746790A JPH04109147A (en) | 1990-08-29 | 1990-08-29 | Method and device for measuring complex refractive index |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22746790A JPH04109147A (en) | 1990-08-29 | 1990-08-29 | Method and device for measuring complex refractive index |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04109147A true JPH04109147A (en) | 1992-04-10 |
Family
ID=16861337
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22746790A Pending JPH04109147A (en) | 1990-08-29 | 1990-08-29 | Method and device for measuring complex refractive index |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04109147A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102967581A (en) * | 2012-10-18 | 2013-03-13 | 中国人民解放军电子工程学院 | Film clamp and film-clamp-containing device for detecting infrared complex refractive indexes of film materials |
CN105675544A (en) * | 2016-04-19 | 2016-06-15 | 大连爱瑞德纳米科技有限公司 | Solar heat-insulating film reflectivity and transmissivity tester |
CN111337227A (en) * | 2020-04-30 | 2020-06-26 | 宜昌南玻显示器件有限公司 | VBA-based substrate optical constant calculation method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6285846A (en) * | 1985-10-11 | 1987-04-20 | Asahi Optical Co Ltd | Optical constant calculator for vapor-deposited film |
JPS62204104A (en) * | 1986-03-04 | 1987-09-08 | Matsushita Electric Ind Co Ltd | Measuring instrument for thickness and optical constant of thin film |
JPS63225136A (en) * | 1987-03-16 | 1988-09-20 | Asahi Optical Co Ltd | Computing apparatus of optical constant of evaporation film |
-
1990
- 1990-08-29 JP JP22746790A patent/JPH04109147A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6285846A (en) * | 1985-10-11 | 1987-04-20 | Asahi Optical Co Ltd | Optical constant calculator for vapor-deposited film |
JPS62204104A (en) * | 1986-03-04 | 1987-09-08 | Matsushita Electric Ind Co Ltd | Measuring instrument for thickness and optical constant of thin film |
JPS63225136A (en) * | 1987-03-16 | 1988-09-20 | Asahi Optical Co Ltd | Computing apparatus of optical constant of evaporation film |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102967581A (en) * | 2012-10-18 | 2013-03-13 | 中国人民解放军电子工程学院 | Film clamp and film-clamp-containing device for detecting infrared complex refractive indexes of film materials |
CN105675544A (en) * | 2016-04-19 | 2016-06-15 | 大连爱瑞德纳米科技有限公司 | Solar heat-insulating film reflectivity and transmissivity tester |
CN111337227A (en) * | 2020-04-30 | 2020-06-26 | 宜昌南玻显示器件有限公司 | VBA-based substrate optical constant calculation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ulrich et al. | Measurement of thin film parameters with a prism coupler | |
CN102395866B (en) | Planar lightwave fourier-transform spectrometer | |
KR970011746B1 (en) | Thin Film Thickness Measurement Apparatus and Method | |
Woollam et al. | Overview of variable-angle spectroscopic ellipsometry (VASE): I. Basic theory and typical applications | |
US5889592A (en) | Nondestructive optical techniques for simultaneously measuring optical constants and thicknesses of single and multilayer films | |
US5999267A (en) | Nondestructive optical techniques for simultaneously measuring optical constants and thicknesses of single and multilayer films | |
Vohánka et al. | Use of the Richardson extrapolation in optics of inhomogeneous layers: Application to optical characterization | |
JPH06229922A (en) | Very accurate air refractometer | |
Kim et al. | Measurement of the thickness and refractive index of a thin film by analyzing reflected interference fringes | |
JPH04109147A (en) | Method and device for measuring complex refractive index | |
JP4032511B2 (en) | Method for measuring optical constants of thin films | |
JPH08152307A (en) | Method and apparatus for measuring optical constants | |
CN114894442B (en) | A method for measuring optical parameters of transparent films and its application | |
Netterfield | Practical thin-film polarizing beam-splitters | |
Carreño et al. | Optical interference method to obtain thickness and refractive indices of a uniaxial medium | |
JPH055699A (en) | Refractive index and film thickness measuring method for anisotropic thin film | |
JPH07318321A (en) | Method and apparatus for evaluation of film thickness of thin film | |
El-Zaiat et al. | Applying multiple-beam Fizeau fringes for measuring the refractive indices of liquids | |
Kopenkin et al. | Method for measuring the periods of waveguide diffractive optical elements | |
US7345761B1 (en) | Film measurement | |
El-Zaiat | Interferometric determination of refraction and dispersion of a birefringent material: numerical procedure | |
JPS63276004A (en) | Grating coupler | |
JPH07218740A (en) | Optical fiber polarization device and measuring instrument using same | |
Van der Laan et al. | Thickness measurement using Young’s interferometric experiment | |
JP2022052246A (en) | Film thickness estimation method and film thickness determination device |