JPH04107950A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPH04107950A JPH04107950A JP22736290A JP22736290A JPH04107950A JP H04107950 A JPH04107950 A JP H04107950A JP 22736290 A JP22736290 A JP 22736290A JP 22736290 A JP22736290 A JP 22736290A JP H04107950 A JPH04107950 A JP H04107950A
- Authority
- JP
- Japan
- Prior art keywords
- conductive layer
- region
- substrate
- oxide film
- insulating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 28
- 239000000758 substrate Substances 0.000 claims abstract description 31
- 238000002955 isolation Methods 0.000 claims description 33
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000000926 separation method Methods 0.000 abstract description 18
- 238000009413 insulation Methods 0.000 abstract description 2
- 239000010410 layer Substances 0.000 description 61
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 25
- 229910052814 silicon oxide Inorganic materials 0.000 description 25
- 239000011229 interlayer Substances 0.000 description 20
- 238000000034 method Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 241000293849 Cordylanthus Species 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 238000001020 plasma etching Methods 0.000 description 3
- 238000004380 ashing Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910021421 monocrystalline silicon Inorganic materials 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 241000282994 Cervidae Species 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
Landscapes
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Local Oxidation Of Silicon (AREA)
- Element Separation (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は半導体装置に関するものであシ、特に、形成
されるべき導電層のだめの段差低減に関するものである
。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor device, and in particular, to reducing the level difference in a conductive layer to be formed.
近年、半導体装置の高集積化、微細化が急速に進んでお
り、それにつれて形成されるパターンの段差もますます
大きくなる傾向を示している。この段差部において従来
問題とならなかったことも、高集積化、微細化等につれ
て、大きな問題として顕在化するようになった0
第9図はL OOOS (Local 0xidati
on of 5ilicon)分離法を用いた従来の半
導体装置のメモリセル部の断面図である0
図において、(1)は単結晶シリコンよりなる半導体基
板(以下、基板と称す)、(2)はこの基板(1)上に
形成され、素子分離すべきフィールド酸化膜、(3)は
このフィールド酸化膜(2)上に形成され、素子分離領
域上に配線されている第1の導電層、(4)はとのtI
Xlの導電層(3)を被覆し、後で形成されるべき第2
の導電層と第1の導電層(3)とを電気的に絶縁する層
間絶縁膜である。(5)は設計上の素子分離領域、(6
)はフィールド酸化膜(2)の端部に形成されるバーズ
ビーク、(7)は素子が形成されるべき領域(以下、素
子領域と称す)、(8)は第1の導電層(3)を形成す
る際に生ずる残渣である。またhは基板(1)表面から
層間絶縁膜(4)1部までの段差、θは基板(1)表面
と層間絶縁膜(4)とが作る角である。2. Description of the Related Art In recent years, semiconductor devices have rapidly become more highly integrated and miniaturized, and as a result, the steps of formed patterns tend to become larger and larger. Although this step part did not pose a problem in the past, it has become a major problem as the integration becomes higher and smaller.
In the figure, (1) is a semiconductor substrate (hereinafter referred to as the substrate) made of single crystal silicon, and (2) is a semiconductor substrate made of single crystal silicon (hereinafter referred to as the substrate). A field oxide film (3) formed on the substrate (1) to be used for device isolation; (3) a first conductive layer formed on the field oxide film (2) and wired on the device isolation region; ) Hato no tI
Covering the conductive layer (3) of Xl, the second layer to be formed later
This is an interlayer insulating film that electrically insulates the conductive layer (3) and the first conductive layer (3). (5) is the designed element isolation region, (6
) is a bird's beak formed at the end of the field oxide film (2), (7) is a region where an element is to be formed (hereinafter referred to as the element region), and (8) is a region where the first conductive layer (3) is formed. This is the residue produced during formation. Further, h is the step difference from the surface of the substrate (1) to one part of the interlayer insulating film (4), and θ is the angle formed between the surface of the substrate (1) and the interlayer insulating film (4).
ところで、LSIデバイスの高集積化に伴って、デバイ
スを構成する各素子の微細化が進められているのである
が、MOSトランジスタの場合、チャネル幅が狭くなっ
てくると、しきい値電圧の増大や、ゲートを圧による実
効チオネル幅の広がりといった、いわゆる、狭チャネル
効果をひき起こし、素子の特性劣化を生じる。この狭チ
ャネル効果は基板不純物濃度、基板バイアスなど種々の
要因に依存しているのであるが、フィールド酸化膜厚や
バーズビーク長にも大きく依存するととから、第9図に
示すようにバーズビーク(6)の発生を抑制したLOC
O8分離法が考えられている。By the way, as LSI devices become more highly integrated, the elements that make up the devices are becoming smaller.In the case of MOS transistors, as the channel width becomes narrower, the threshold voltage increases. This causes so-called narrow channel effects such as widening of the effective thionel width due to gate pressure, resulting in deterioration of device characteristics. This narrow channel effect depends on various factors such as substrate impurity concentration and substrate bias, but it also depends greatly on the field oxide film thickness and bird's beak length, and as shown in Figure 9, the bird's beak (6) LOC that suppressed the occurrence of
An O8 separation method is being considered.
また、一方では狭チャネル効果対策として、Locos
分離法に代わる素子分離方法として、フィールドシール
ド素子分離法が考えられている。On the other hand, as a measure against the narrow channel effect, Locos
A field shield element isolation method is being considered as an element isolation method to replace the isolation method.
第10図はフィールドシールド素子分離法を用いた従来
の半導体装置のメモリセル部を示す断面図である。FIG. 10 is a cross-sectional view showing a memory cell portion of a conventional semiconductor device using the field shield element isolation method.
図において、(1) 、 (3)〜(5) 、 (7)
、 (g) 、 h 、θけ第9図と同等のものであ
る。(9)は分離導電層であり、00はこの分離導電層
(9)のサイド部における層間絶縁膜領域である。In the figure, (1), (3) to (5), (7)
, (g), h, and θ are equivalent to those in FIG. (9) is an isolated conductive layer, and 00 is an interlayer insulating film region in the side portion of this isolated conductive layer (9).
このものは、分離導電膜(9ンに所定電圧が印加される
ことで分離が行われるものである。In this device, separation is performed by applying a predetermined voltage to a separation conductive film (9).
従来の半導体装置は以上のように構成されており、狭チ
ャネル効果対策のひとつとして、第9図に示すようにバ
ーズビーク(6)を抑制すると、素子分離領域(5)と
素子領域(7〕との境界に形成されている第1の導電層
(3)部においては、角θは90度に近くなシ、段差り
も高くなってしまう。一般に、角θが9部度に近くなる
程、また、段差りが高い程、以後の工程において行われ
るべき異方性エツチングによる加工が困難となp1基板
(1)表面の層間絶縁膜(4)の端部にエツチングして
除去されるべき第2の導電層の一部が残渣(8)として
残り、形成された素子間、例えば、同一面における導電
層間、あるいは下層とと層との導電層間で短絡不良を発
生させることになる。Conventional semiconductor devices are configured as described above, and as one measure against the narrow channel effect, suppressing the bird's beak (6) as shown in FIG. In the first conductive layer (3) formed at the boundary, the angle θ is close to 90 degrees, and the step becomes high.Generally, the closer the angle θ is to 9 degrees, the higher the step. In addition, the higher the step height, the more difficult it becomes to process the anisotropic etching to be performed in the subsequent process. A part of the conductive layer 2 remains as a residue (8), causing a short circuit between formed elements, for example, between conductive layers on the same surface, or between conductive layers between lower layers.
また、狭チャネル灼果対策のもうひとつとして第10図
のようにフィールドシールド素子分離法では、バーズビ
ーク(6)が発生することはiく、角θも90度よりは
いくらか緩和されるものとなるが層間絶縁膜(4)の横
方向の張り出しα1部だけでは段差りを解消できず、な
お高段差となって基板(1)の表面における層間絶縁膜
領域α0のサイド部に残渣(8)が生じてしまい、上記
におけると同様の短絡不良を起こすという問題点があっ
た。In addition, as another measure against narrow channel burns, in the field shield element separation method as shown in Figure 10, bird's beak (6) is unlikely to occur, and the angle θ is somewhat relaxed from 90 degrees. However, the level difference cannot be eliminated only by the lateral protrusion α1 of the interlayer insulating film (4), and the level difference becomes high enough to cause residue (8) on the side part of the interlayer insulating film region α0 on the surface of the substrate (1). This causes the problem of short-circuit failure similar to that described above.
この発明は上記のような問題点を解消するためになされ
たもので、段差を低減させて良好な導電層が形成され、
信頼性の高い半導体装置を得ることを目的とする。This invention was made to solve the above-mentioned problems, and a good conductive layer is formed by reducing the step difference.
The purpose is to obtain a highly reliable semiconductor device.
この発明に係る半導体装置は、半導体基板上に素子形成
領域と、これを分離する素子分離領域とが設けられ、こ
の素子分離領域上に第1の絶縁層を介して導電層が形成
され、この導電層が上記第1の絶縁層との素子形成領域
側に形成されるべき段差部を避けた部分に形成されてお
り、上記導電層を被覆する第2の絶縁層は、と記第1の
絶縁層の段差部の上記基板との境界部より1記素子分離
領域側に上記素子形成領域側におけるその端部を有して
被覆するようになされた構造となっている。In the semiconductor device according to the present invention, an element formation region and an element isolation region separating the element formation region and the element isolation region are provided on a semiconductor substrate, a conductive layer is formed on the element isolation region via a first insulating layer, and a conductive layer is formed on the element isolation region via a first insulating layer. The conductive layer is formed in a portion that avoids a step between the first insulating layer and the element formation region, and the second insulating layer covering the conductive layer is formed of the first insulating layer. The insulating layer has a structure in which the stepped portion of the insulating layer is coated with its end portion on the element forming region side closer to the first element isolation region than the boundary with the substrate.
この発明において、段差パターン上に形成する導電層を
素子領域と素子分離領域とが接している部分において、
素子領域と素子分離領域の境界よシ充分に素子分離領域
上に形成したので、基板表面から層間絶縁膜上部までの
段差は低減し、基板表面と層関絶411農の側壁とがな
す角を大きくでき。In this invention, the conductive layer formed on the step pattern is formed in the portion where the element region and the element isolation region are in contact with each other.
Since the boundary between the element region and the element isolation region is formed sufficiently on the element isolation region, the step from the substrate surface to the upper part of the interlayer insulating film is reduced, and the angle between the substrate surface and the side wall of the layer isolation film is reduced. You can make it big.
後工程におけるエツチング加工時に残渣を生ずることも
なく、電気的に良好な半導体装置を得ることを目的とす
る。It is an object of the present invention to obtain a semiconductor device that is electrically good without producing any residue during etching processing in a post-process.
以下、この発明の一実施例を図について説明する。m1
図はこの発明の一実施例のフィールドシ−ルド分離を用
いた半導体装置のメモリセル部の構造を示す断面図であ
る。An embodiment of the present invention will be described below with reference to the drawings. m1
The figure is a sectional view showing the structure of a memory cell portion of a semiconductor device using field shield isolation according to an embodiment of the present invention.
図において、(1) 、 (3) 、 (4) 、 (
9)および00は従来のものと同等のものである。0つ
は分離導電層(9)の端面から第1の導電層(3)の端
面までの領域で、その長さであり%hlは第1の導電層
(3) )の層間絶縁膜(4)の上表面部から分離導電
層(9)上の層間絶縁膜(4)の上表面部までの段差、
h2は眉間絶縁膜(4) ):表面部から基板(1)表
面までの段差である。また、θlは第1の導電層(3)
の眉間絶縁膜(4)が基板(1)平面に対してなす角、
θ2は分離導電層(9)の層間絶縁膜(4)が基板(1
)平面に対してなす角である。In the figure, (1), (3), (4), (
9) and 00 are equivalent to the conventional ones. 0 is the area from the end surface of the separation conductive layer (9) to the end surface of the first conductive layer (3), and is its length, and %hl is the area between the interlayer insulating film (4) of the first conductive layer (3). ) from the upper surface of the interlayer insulating film (4) on the separation conductive layer (9);
h2 is the level difference from the surface of the glabella insulating film (4) to the surface of the substrate (1). In addition, θl is the first conductive layer (3)
The angle that the glabella insulating film (4) makes with the plane of the substrate (1),
θ2 is when the interlayer insulating film (4) of the separated conductive layer (9) is
) is the angle made with respect to the plane.
第2図は第1図に示すものの半導体装置のメモリセル部
の製造工程を示す断面図である0まず、P導電型の基板
(1)上に熱酸化法等によりフィールドゲート酸化膜α
ηを500人程鹿の膜厚に形成する。続いて、その上に
CVD法等によシ分離導電層(9)となるドープトポリ
シリコン膜(9a)を2.000〜3,000人程鹿の
膜厚に形成し、さらにその上に高温のCVD法等により
第1の層間絶縁!(4)となる第1のシリコン酸化膜(
4a)を2,000〜3,000人程度の膜厚に形成す
る。この後、例えば、ポジ型のレジストを所定膜厚に形
成し、フォトリングラフィ技術によりバターニングを行
い、レジストパターン(6)を形成する(第2図(a)
)。FIG. 2 is a cross-sectional view showing the manufacturing process of the memory cell part of the semiconductor device shown in FIG.
Form η to the thickness of about 500 deer. Subsequently, a doped polysilicon film (9a) that will become the isolation conductive layer (9) is formed on top of it by CVD or the like to a thickness of about 2,000 to 3,000 layers, and then First interlayer insulation using high temperature CVD method! (4) The first silicon oxide film (
4a) is formed to a thickness of about 2,000 to 3,000 people. After this, for example, a positive type resist is formed to a predetermined thickness, and patterning is performed using photolithography technology to form a resist pattern (6) (see FIG. 2(a)).
).
次に、レジストパターン@をマスクに第1の層間絶縁膜
(4)となる第1のシリコン酸化膜(4a)、分離導電
層(9)となるドープトポリシリコン膜(9a)を順次
異方性の反応性イオンエツチング(以下、RTEと称す
)等によシ、選択的にエツチング除去する。これにより
パターン化された第1のシリコン酸化膜(4a)、ドー
プトポリシリコン膜(9a)が得られる。この後、レジ
ストパターン四をアッシング法等によシ除去する(第2
図(b))。Next, using the resist pattern @ as a mask, the first silicon oxide film (4a), which will become the first interlayer insulating film (4), and the doped polysilicon film (9a), which will become the isolation conductive layer (9), are sequentially anisotropically formed. The etching is selectively removed by reactive ion etching (hereinafter referred to as RTE) or the like. As a result, a patterned first silicon oxide film (4a) and doped polysilicon film (9a) are obtained. After this, resist pattern 4 is removed by ashing method etc. (second
Figure (b)).
次に、パターン化されたtlfJlのシリコン酸化膜(
4a)を被覆するように基板(1)土の全面に高温のC
VD法等により、第1の層間絶縁膜(4)となる第2の
シリコン酸化膜(4b)を2,000−3,000 A
程度の膜厚に形成する。この膜(4b)は上記パターン
化された第1のシリコン酸化!(4a)と同材質よりな
るものであシ、ここで一体化して第1の層間絶縁膜(4
)となる(第2図(C))。Next, the patterned silicon oxide film of tlfJl (
4a) High-temperature C is applied to the entire surface of the substrate (1) soil so as to cover it.
The second silicon oxide film (4b), which will become the first interlayer insulating film (4), is heated at 2,000-3,000 A by VD method or the like.
Form the film to a thickness of approximately This film (4b) is the first silicon oxide film patterned above! It is made of the same material as (4a), and is integrated here to form the first interlayer insulating film (4a).
) (Figure 2 (C)).
次に、異方性のRIEを施し、第1のシリコン酸化膜(
4a)、基板(1)の各主面が露出されるように第2の
シリコン酸化膜(ab)、フィールドゲート酸化膜01
)をエツチング除去する。Next, anisotropic RIE is performed to form the first silicon oxide film (
4a), a second silicon oxide film (ab) and a field gate oxide film 01 are formed so that each main surface of the substrate (1) is exposed.
) is removed by etching.
ここで、第1のシリコン酸化膜(4a)、分離導電層(
9)のパターンの段差側側壁部に、第2のシリコン酸化
膜(4b)の一部が残存した状態となる。なお、この残
存した第2のシリコン酸化膜(4b)は、第1のシリコ
ン酸化膜(4a)、フィールドゲート酸化膜αηと一体
化した*lの眉間絶1#膜(4)となる。この@1の層
間絶縁膜(4)によシ分離導電層(9)が被覆された状
態となる(第2図(d))。Here, the first silicon oxide film (4a), the isolation conductive layer (
A portion of the second silicon oxide film (4b) remains on the step-side side wall of the pattern 9). Note that this remaining second silicon oxide film (4b) becomes a *l eyebrow-cut 1# film (4) that is integrated with the first silicon oxide film (4a) and the field gate oxide film αη. The isolation conductive layer (9) is now covered by the interlayer insulating film (4) of @1 (FIG. 2(d)).
次に、基板(1)が所定処理された後、熱酸化法等によ
シ基板(1)上にシリコン酸化膜よりなるゲート酸化膜
@を150人程鹿の膜厚に形成する(第2図(e))。Next, after the substrate (1) has been subjected to a predetermined process, a gate oxide film made of a silicon oxide film is formed on the substrate (1) using a thermal oxidation method or the like to a thickness of approximately 150 mm. Figure (e)).
次に、第1の層間絶縁膜(4)、ゲート酸化膜(至)上
の全面にCVD法等により、第1のJW層(3)となる
ドープトポリシリコン膜(3a)を2,000〜3,0
00 A程度の膜厚に形成した後、そのbに高温のCV
D法等により、第2の眉間絶縁膜中となるシリコン酸化
膜(20a)を3,000−4,000人程鹿の膜厚に
形成する。この後、第2の層間絶縁膜(ホ)となる第3
のシリコン酸化膜(20a) )に、例えば、ポジ型レ
ジストを形成し、これをフォトリングラフィ技術による
バターニングを行ってレジストパターンα尋を形成する
(第2図(f) )。Next, a doped polysilicon film (3a), which will become the first JW layer (3), is deposited on the entire surface of the first interlayer insulating film (4) and the gate oxide film (3) to a thickness of 2,000 μm by CVD or the like. ~3,0
After forming a film with a thickness of about 00 A, high-temperature CV is applied to that b.
A silicon oxide film (20a), which will become the second glabellar insulating film, is formed to a thickness of about 3,000 to 4,000 times using the D method or the like. After this, the third layer becomes the second interlayer insulating film (e).
For example, a positive type resist is formed on the silicon oxide film (20a), and this is patterned by photolithography to form a resist pattern α thick (FIG. 2(f)).
次に、レジストパターンQ4をマスクに第3のシリコン
酸化膜(20a)、ドープトポリシリコン膜(3a)を
順次、異方性のRIE等により、選択的にエツチング除
去する。これによりパターン化されたWX3のシリコン
酸化膜(20a)、 ドープトポリシリコン膜(3a)
が得られ、この後、レジストパターン04をアッシング
法等によシ除去する(第2図@)。Next, using the resist pattern Q4 as a mask, the third silicon oxide film (20a) and the doped polysilicon film (3a) are selectively etched away in sequence by anisotropic RIE or the like. This patterned WX3 silicon oxide film (20a) and doped polysilicon film (3a).
After that, the resist pattern 04 is removed by an ashing method or the like (FIG. 2@).
次に、パターン化された第3のシリコン酸化膜(20a
)を被覆すゐように、基板(1)上の全面に高温のC
VD法等によシ、第2の層間絶縁膜(ホ)となる#I4
のシリコン酸化111(20a)を3,000〜4,0
00人程変の膜厚に形成する。この膜(20b)は上記
パターン化された第3のシリコン酸化1K(20a)と
同材贋よりなるものであり、一体化して第2の眉間絶縁
膜(1)となる(第2図(h))。Next, a patterned third silicon oxide film (20a
) to coat the entire surface of the substrate (1).
#I4 becomes the second interlayer insulating film (e) by VD method etc.
Silicon oxide 111 (20a) of 3,000 to 4,0
It is formed to a thickness of about 0.000. This film (20b) is made of the same material as the third patterned silicon oxide 1K (20a), and is integrated to form the second glabellar insulating film (1) (see Fig. 2 (h). )).
次に、第1の眉間絶縁膜(4)、基板(1)の一部の各
工面が算出されるように異方性の只IEを施し、第4の
シリコン酸化膜(20b)をエツチング除去する。この
とき、第3のシリコン酸化膜(20a) 、 第1の導
電層(3)のパターンの段差側壁部に第4のシリコン酸
化膜(20b)の一部が残存した状態となる。Next, anisotropic IE is applied to the first glabella insulating film (4) and a portion of the substrate (1) so that the respective surfaces are calculated, and the fourth silicon oxide film (20b) is etched away. do. At this time, a portion of the fourth silicon oxide film (20b) remains on the step sidewall of the pattern of the third silicon oxide film (20a) and the first conductive layer (3).
なお、この残存した第4のシリコン酸化膜(20b)は
第3のシリコン酸化膜(20a )および既に形成され
ている第1の眉間絶縁膜(4)と一体化したものとなる
(第2図(1))。Note that this remaining fourth silicon oxide film (20b) is integrated with the third silicon oxide film (20a) and the already formed first glabella insulating film (4) (Fig. 2). (1)).
このようにして、第1図に示す半導体装置が得られる。In this way, the semiconductor device shown in FIG. 1 is obtained.
また、第3図は第1図に相当する部分の平面図であシ、
第4図(a) 、 (b)は第3図のそれぞれ■a −
■a線s Pub−Pub線における断面図でおる。こ
こで、素子領域(7)の図示右端部の領域において、分
離導電層(9)の図示右端から第1の導電層(3)の図
示左端面を2.000人程&に図示右側にずらせて配置
させることによって段差りは段差hlと段差h2との2
つに分割され、基板(1)と眉間絶縁膜(4)とのなす
角θも角θ1と角θ2とに分割され、高段差および角の
垂直化を防ぐことが出来、残渣(8)の発生の解消とな
るO
ところで、上記実施例では第1の導電層(3)を素子領
域(7)に面する領域で、移動するものとしているが直
線的に配置される第1の導電層(3)の一部を部分的に
他よシ狭く形成させても良い。即ち、第5図はこのよう
な場合の他の実施例を示す平面図であり、第6図(a)
、 (10は第5図のそれぞれ■a −■a線、■b
−vIb線における断面図である。このものは。Also, Figure 3 is a plan view of a portion corresponding to Figure 1.
Figures 4 (a) and (b) are respectively ■a - of Figure 3.
■A line s A cross-sectional view taken along the Pub-Pub line. Here, in the region at the right end of the element region (7) in the figure, the left end surface of the first conductive layer (3) is shifted from the right end of the separation conductive layer (9) to the right in the figure by about 2,000 people. By arranging the
The angle θ formed between the substrate (1) and the glabella insulating film (4) is also divided into angle θ1 and angle θ2, which can prevent high steps and verticalization of the corners, and reduce the amount of residue (8). Incidentally, in the above embodiment, the first conductive layer (3) is movable in the region facing the element region (7), but the first conductive layer (3) disposed linearly is 3) may be formed to be partially narrower than the rest. That is, FIG. 5 is a plan view showing another embodiment in such a case, and FIG. 6(a)
, (10 is the line ■a - ■a and ■b in Figure 5, respectively)
It is a sectional view taken along the -vIb line. This thing.
素子−領域(7)の図示右端部におけるlX1の導電層
(3)の幅が狭くなシ、それを除く部分ではそれより広
く形成させである。ここでs ”1は広い形成幅、W2
は狭い形成幅であり、ωはそれらの幅の差である。幅ω
が大きくなりすぎるとtslの導電層(3)の電気抵抗
が高くなり、素子の特性劣化を生ずるので幅ωFi第1
の導電層(3)の広い幅WlのlX3程度までとするこ
とが望ましす。fk訃、第1の導電層(3)の端面部を
ずらす場合と第1の導電層(3)に狭い幅W2を形成さ
せた場合との両者を併用しても同様の効果が得られる。The width of the lX1 conductive layer (3) at the right end of the element region (7) in the figure is narrow, but the width is wider in the other parts. Here, s”1 is a wide forming width, W2
is the narrow formation width and ω is the difference between their widths. Width ω
If the width ωFi becomes too large, the electrical resistance of the conductive layer (3) of tsl will increase and the characteristics of the device will deteriorate.
It is desirable that the wide width Wl of the conductive layer (3) is up to about lX3. Similar effects can be obtained by using both the case where the end face portion of the first conductive layer (3) is shifted and the case where the narrow width W2 is formed in the first conductive layer (3).
以h、h記実施例はフィールドシールド分離を用いた半
導体装置について述べたが、LOCO8分離を用いた半
導体装置であっても良い。In the embodiments h and h above, semiconductor devices using field shield isolation have been described, but semiconductor devices using LOCO8 isolation may also be used.
第7図、第8図はそれぞれLOG!O8分離を用いた半
導体装置の場合である。Figures 7 and 8 are LOG! This is the case of a semiconductor device using O8 separation.
第7図は第1の導電層(3)を素子分離領域(5)@に
所定長さ(ト)だけ移動したものの構造断面図を示し、
分離部を除いて平面的には第3図に相当する例であり、
第8図は第1の導電層(3)の所定部分に狭い幅W2を
形成させたものの構造断面図を示し、分離部を除いて平
面的には第5図に相当する例である。FIG. 7 shows a structural cross-sectional view of the first conductive layer (3) moved to the element isolation region (5) by a predetermined length (T),
This is an example corresponding to Fig. 3 in plan view except for the separation part,
FIG. 8 shows a cross-sectional view of a structure in which a narrow width W2 is formed in a predetermined portion of the first conductive layer (3), and is an example corresponding to FIG. 5 in plan view except for the separation portion.
この場合においても、上記フィールドシールド分離構造
を有するものと同様に段差が抑制され、良好な導電層の
形成が行われて、信頼性の高い半導体装置が得られる効
果がある。In this case as well, similar to the case with the field shield isolation structure, steps are suppressed, a good conductive layer is formed, and a highly reliable semiconductor device can be obtained.
なお、上記実施例において、基板(1)がP導電型の場
合について述べたが、これがN導電型であり、この上に
導電層が形成される場合であっても良いことは言うまで
もない。In the above embodiments, the case where the substrate (1) is of P conductivity type has been described, but it goes without saying that it may be of N conductivity type and a conductive layer may be formed thereon.
以上のようにこの発明によれば、素子分離領域上に形成
された導電層が素子分離領域と素子領域とが接する部分
上では段差および基板平面と側壁とのなす角が充分に緩
和されるため、導電層の側壁部への残渣の発生がなく、
良好な半導体装置が得られる効果がある。As described above, according to the present invention, the step and the angle between the substrate plane and the sidewall are sufficiently relaxed on the portion where the conductive layer formed on the element isolation region contacts the element isolation region. , no residue is generated on the sidewalls of the conductive layer,
This has the effect of providing a good semiconductor device.
第1図はこの発明の一実施例によるフィールドシールド
分離を用いた半導体装置のメモリセル部の構造を示す断
面図、第2図(a)〜(1)は第1図に示すものの製造
工程を示す断面図、83図は第1図に相当する部分の平
面図sK4図(a) 、 (Iy)はそれぞれ第3図の
■a−■a線、■b −yb線における断面図。
第5図はこの発明の他の実施例であって、導電層が第3
図に示すものと異なる平面形状を有した場合の平面図、
第6図(!L) 、 (b)はそれぞれ第5図のVla
−M−線、lb−■b線における断面図、第7図および
第8図はこの発明のさらに他の実施例を示すLocos
分離を用いた半導体装置の断面図、第9図はLOC!O
8分離を用いた従来の半導体装置の断面図、第10図は
フィールドシールド分離を用いた従来の半導体装置の断
面図でおる。
図において、(1)は半導体基板、(2)はフィールド
酸化膜、(3)は第1の導電層、(4)は第1の層間絶
縁膜、(5)は素子分離領域、(7)は素子領域、(9
)は分離導電層、勾は第2の層間絶縁膜である。
なお、各図中同一符号は同一、又は相当部分を示す。FIG. 1 is a cross-sectional view showing the structure of a memory cell portion of a semiconductor device using field shield isolation according to an embodiment of the present invention, and FIGS. 2(a) to (1) show the manufacturing process of the device shown in FIG. The sectional view shown in FIG. 83 is a plan view of a portion corresponding to FIG. 1, and FIGS. 4(a) and 4(Iy) are sectional views taken along the line ■a-■a and the line ■b-yb in FIG. 3, respectively. FIG. 5 shows another embodiment of the invention, in which the conductive layer is
A plan view with a planar shape different from that shown in the figure,
Figure 6 (!L) and (b) are the Vla of Figure 5, respectively.
-M- line, lb-■b line sectional views, FIGS. 7 and 8 are Locos showing still other embodiments of the present invention.
A cross-sectional view of a semiconductor device using isolation, Figure 9 is LOC! O
FIG. 10 is a cross-sectional view of a conventional semiconductor device using field shield separation. In the figure, (1) is a semiconductor substrate, (2) is a field oxide film, (3) is a first conductive layer, (4) is a first interlayer insulating film, (5) is an element isolation region, and (7) is a first conductive layer. is the element region, (9
) is a separation conductive layer, and gradient is a second interlayer insulating film. Note that the same reference numerals in each figure indicate the same or equivalent parts.
Claims (1)
領域とが設けられ、この素子分離領域上に第1の絶縁層
を介して導電層が形成され、この導電層が上記第1の絶
縁層上の素子形成領域側に形成されるべき段差部を避け
た部分に形成されており、 上記導電層を被覆する第2の絶縁層は、上記第1の絶縁
層の段差部の上記基板との境界部より上記素子分離領域
側に上記素子形成領域側におけるその端部を有して被覆
するようになされた構造を備えた半導体装置。[Claims] A semiconductor substrate is provided with an element formation region and an element isolation region that separates the element formation region, and a conductive layer is formed on the element isolation region with a first insulating layer interposed therebetween. The second insulating layer is formed in a portion of the first insulating layer that avoids a step portion to be formed on the side of the element formation region, and the second insulating layer covering the conductive layer is formed on the first insulating layer. A semiconductor device having a structure in which an end portion thereof on the element forming region side is covered with a boundary portion with the substrate on the element isolation region side.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22736290A JPH04107950A (en) | 1990-08-28 | 1990-08-28 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22736290A JPH04107950A (en) | 1990-08-28 | 1990-08-28 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04107950A true JPH04107950A (en) | 1992-04-09 |
Family
ID=16859612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22736290A Pending JPH04107950A (en) | 1990-08-28 | 1990-08-28 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04107950A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012195592A (en) * | 2005-05-13 | 2012-10-11 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
-
1990
- 1990-08-28 JP JP22736290A patent/JPH04107950A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012195592A (en) * | 2005-05-13 | 2012-10-11 | Semiconductor Energy Lab Co Ltd | Semiconductor device |
US8878262B2 (en) | 2005-05-13 | 2014-11-04 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
US9412766B2 (en) | 2005-05-13 | 2016-08-09 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
US9972646B2 (en) | 2005-05-13 | 2018-05-15 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
US10847550B2 (en) | 2005-05-13 | 2020-11-24 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
US11081505B2 (en) | 2005-05-13 | 2021-08-03 | Semiconductor Energy Laboratory Co., Ltd. | Semiconductor device and manufacturing method of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3472401B2 (en) | Method for manufacturing semiconductor device | |
JPS5836508B2 (en) | Manufacturing method of semiconductor device | |
JPH11243150A (en) | Manufacture of semiconductor device | |
JPH0645551A (en) | Semiconductor device and its manufacture | |
US6849521B2 (en) | Method for manufacturing a semiconductor device | |
JPH09139495A (en) | Semiconductor device and manufacturing method thereof | |
JPH11330262A (en) | Method for manufacturing semiconductor device | |
JPH03138930A (en) | Field effect transistor with polysilicon window pad | |
KR940003606B1 (en) | Semiconductor device | |
JPH04107950A (en) | Semiconductor device | |
US5376230A (en) | Method of manufacturing a semiconductor device | |
KR950011986B1 (en) | Manufacturing method of highly integrated semiconductor connection device | |
JP2767104B2 (en) | Method for manufacturing semiconductor device | |
JP2798953B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH11354650A (en) | Semiconductor device and its manufacture | |
JPH0252859B2 (en) | ||
KR910008125B1 (en) | Semiconductor memory device having stacked capacitor structure and manufacturing method thereof | |
EP0528290B1 (en) | Semiconductor device and manufacturing method thereof | |
JPS63197365A (en) | Manufacture of semiconductor device | |
JPS60234326A (en) | Manufacture of semiconductor device | |
JPH11354787A (en) | Manufacture of semiconductor device | |
JPH04213860A (en) | Semiconductor device | |
JPS6149439A (en) | Manufacture of semiconductor device | |
JPS63283060A (en) | Insulating isolation type semiconductor device and its manufacturing method | |
JPS59117114A (en) | Manufacture of semiconductor device |