JPH04107920A - Manufacturing method of semiconductor device - Google Patents
Manufacturing method of semiconductor deviceInfo
- Publication number
- JPH04107920A JPH04107920A JP22712390A JP22712390A JPH04107920A JP H04107920 A JPH04107920 A JP H04107920A JP 22712390 A JP22712390 A JP 22712390A JP 22712390 A JP22712390 A JP 22712390A JP H04107920 A JPH04107920 A JP H04107920A
- Authority
- JP
- Japan
- Prior art keywords
- insulating layer
- etching
- layer
- connection hole
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 7
- 238000004519 manufacturing process Methods 0.000 title claims description 3
- 238000005530 etching Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 22
- 239000000758 substrate Substances 0.000 claims description 12
- 238000000992 sputter etching Methods 0.000 claims description 9
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 239000002184 metal Substances 0.000 claims description 3
- 238000000059 patterning Methods 0.000 claims description 3
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 42
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 18
- 229910052786 argon Inorganic materials 0.000 description 9
- 229910004205 SiNX Inorganic materials 0.000 description 8
- 239000011229 interlayer Substances 0.000 description 7
- 238000001020 plasma etching Methods 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
Landscapes
- Electrodes Of Semiconductors (AREA)
- Drying Of Semiconductors (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔概 要〕
本発明は多層配線型集積回路の接続孔形成に関し、
接続孔肩部の面取りをアルゴン・スパッタエツチングに
よって行う際に、スパッタ飛沫が接続孔内面に被着残留
する問題を解消することを目的とし、
本発明に包含される接続孔肩部の面取り工程は、第1の
配線層上に堆積した第1の絶縁層に接続孔を開口する工
程、
該接続孔内部表面を含む第1の絶縁層表面を、第1の絶
縁層とは化学的性質の異なる第2の絶縁層を被覆する工
程、
アルゴン・スパッタエツチングを施して、該接続孔開口
縁部の該第2の絶縁層とその下の該第1の絶縁層を斜め
方向にエツチングする工程、上記工程を実施した後、該
第1の絶縁層に対するよりエツチング速度が大であるエ
ツチング法によって該第2の絶縁層を除去する工程から
成り、本発明に包含される第2の配線層の形成は、上記
処理を施した半導体基板に金属配線層を被着し、パター
ニングすることから成るものとして構成する。[Detailed Description of the Invention] [Summary] The present invention relates to the formation of connection holes in multilayer wiring integrated circuits, and is concerned with the problem that when chamfering the shoulders of the connection holes by argon sputter etching, spatter droplets adhere to the inner surfaces of the connection holes. Aiming at solving the remaining problem, the process of chamfering the connection hole shoulder included in the present invention includes the steps of: opening a connection hole in the first insulating layer deposited on the first wiring layer; A step of coating the surface of the first insulating layer, including the inner surface of the hole, with a second insulating layer having chemical properties different from that of the first insulating layer, and applying argon sputter etching to the opening edge of the connection hole. A step of etching the second insulating layer and the first insulating layer thereunder in an oblique direction. After performing the above step, etching the second insulating layer by an etching method having a higher etching rate than that of the first insulating layer. The formation of the second wiring layer included in the present invention consists of depositing a metal wiring layer on the semiconductor substrate subjected to the above treatment and patterning it. do.
本発明は集積回路(IC)の多層配線形成に関わり、特
に層間接続孔の開口処理に関わる。The present invention relates to the formation of multilayer wiring for integrated circuits (ICs), and particularly relates to the opening treatment of interlayer connection holes.
ICの高集積化、パターンの微細化に伴い、多層配線の
層間接続孔やコンタクト孔は直径1μm以下の微細なも
のとなっている。一般に急峻な段差を持つ基板表面に導
電体層を被着形成すると、段差の肩の部分が不連続にな
り易い。その結果、これをパターニングして上層配線を
形成すると接続孔の肩の部分で段切れが生ずることにな
る。上記のように直径が0.8〜1μm程度になると、
孔内に導電体層を堆積することも困難になるため、この
段切れの問題は一層深刻である。With the increasing integration of ICs and the miniaturization of patterns, interlayer connection holes and contact holes in multilayer interconnections have become finer, with a diameter of 1 μm or less. Generally, when a conductive layer is deposited on the surface of a substrate having a steep step, the shoulder portion of the step tends to become discontinuous. As a result, if this is patterned to form an upper layer wiring, a break will occur at the shoulder of the connection hole. As mentioned above, when the diameter becomes about 0.8 to 1 μm,
This problem of discontinuity is made even more serious because it is also difficult to deposit conductor layers within the holes.
段差部に於ける段切れの問題を解決する方法として通常
採られるのは、段差部の肩の部分に面取りを施し、この
傾斜面を被覆して導電材料等を堆積することである。接
続孔の場合にはこの斜面化は、開口部の径を増し、孔の
垂直断面形状をY字型とすることになる。本明細書では
この接続孔肩部を斜面化する処理を面取りと呼称する。The usual method for solving the problem of the step breakage is to chamfer the shoulder portion of the step and cover this slope with a conductive material or the like. In the case of a connection hole, this slope increases the diameter of the opening and makes the vertical cross-sectional shape of the hole Y-shaped. In this specification, the process of making the shoulder of the connection hole slope is called chamfering.
面取りが施された接続孔の古典的な形成法は、先ず等方
性エツチングによって上の開いた凹部を作成し、次にこ
の凹部中央に異方性エツチングによって垂直な貫通孔を
開けるものである。この2段階処理では2度のエツチン
グの夫々でマスク合わせが行われるため、加工精度を高
めることが困難であり、微細パターンの処理には適して
いない。The classical method for forming chamfered connection holes is to first create an open recess at the top by isotropic etching, and then create a vertical through hole in the center of this recess by anisotropic etching. . In this two-step process, since mask alignment is performed in each of the two etchings, it is difficult to improve the processing accuracy and is not suitable for processing fine patterns.
高度に集積化されたICの接続孔形成には、貫通孔に対
し面取りが自己整合的に行われる処理法が要求される。Forming connection holes in highly integrated ICs requires a processing method that chamfers the through holes in a self-aligning manner.
C従来の技術と発明が解決しようとする課題3反応性イ
オンエツチング(RIE)に代表される異方性エツチン
グにより、S r OzやPSGのような絶縁材料層を
選択的にエツチングすることによって、はゾ垂直な側面
を持つ貫通孔を開けることができる。この開孔の上端す
なわち肩の部分の断面形状ははゾ直角のエツジを持つの
であるが、この部分に対し不活性ガスを用いるスパッタ
エツチングを施すことによって、肩の部分に傾斜を付け
ることが、すなわち開孔の面取りを行うことができる。C Problems to be Solved by the Prior Art and the Invention 3 By selectively etching an insulating material layer such as SrOz or PSG by anisotropic etching represented by reactive ion etching (RIE), can drill through holes with vertical sides. The cross-sectional shape of the upper end of this opening, that is, the shoulder part, has an edge that is perpendicular to . That is, the opening can be chamfered.
不活性ガスはアルゴンが用いられることが多い。Argon is often used as the inert gas.
第2図はこの従来技術の工程を示す断面模式図であり、
ここで該図面を参照しながら上記面取り処理の従来技術
の工程を説明する。FIG. 2 is a schematic cross-sectional view showing the process of this prior art.
Here, the conventional process of the chamfering process will be described with reference to the drawings.
先ず同図(a)に示す如く、基板1の表面を例えばPS
Gである絶縁材料層2で被覆し、リソグラフィとRIE
により、接続孔3を開口する。この接続孔下の基板領域
は下層配線或いは半導体基板の素子領域であり、接続孔
の肩の部分はRIEの異方性の故にエツジ状となってい
る。First, as shown in FIG. 1(a), the surface of the substrate 1 is coated with a
coated with an insulating material layer 2 of G, lithography and RIE
This opens the connection hole 3. The substrate region under this contact hole is a lower layer wiring or an element region of a semiconductor substrate, and the shoulder portion of the contact hole has an edge shape due to the anisotropy of RIE.
これにアルゴン・スパッタエツチングを施すと、エツジ
部が優先的にエツチングされ、同図(b)に示す如く、
接続孔の肩の部分に斜面5が形成される。When this is subjected to argon sputter etching, the edges are preferentially etched, as shown in Figure (b).
A slope 5 is formed at the shoulder portion of the connection hole.
即ち、面取りが行われる。 この処理によって接続孔の
断面形状は所望のものとなるが、スパッタ処理中にエツ
チングされた被加工材か飛散して接続孔の底面や側面に
付着することが起こる。このスパッタ飛沫のような付着
物6か存在する状態で上層配線を形成すれば、下層配線
との接続抵抗が増し、甚だしい場合は接続不良という事
態を招来することになる。That is, chamfering is performed. Although this process provides the desired cross-sectional shape of the connection hole, the etched workpiece may scatter during the sputtering process and adhere to the bottom or side surfaces of the connection hole. If the upper layer wiring is formed in the presence of deposits 6 such as sputter droplets, the connection resistance with the lower layer wiring will increase, and in extreme cases, a connection failure will occur.
本発明の目的は、アルゴン・スパッタエツチングによっ
て層間接続孔の面取りを行う場合にもスパッタ飛沫が孔
底に付着することのない処理法を提供することであり、
それによって層間接続やコンタクト接続の接続抵抗が無
用に高抵抗化していない高性能のICを提供することで
ある。An object of the present invention is to provide a processing method that prevents sputter droplets from adhering to the bottom of the hole even when chamfering the interlayer connection hole by argon sputter etching.
Thereby, it is an object of the present invention to provide a high-performance IC in which the connection resistance of interlayer connections and contact connections does not become unnecessarily high.
上記目的を達成するため、本発明に包含される接続孔肩
部の面取り工程は、
第1の配線層上に堆積した第1の絶縁層に接続孔を開口
する工程、
骸接続孔内部表面を含む第1の絶縁層表面を、第1の絶
縁層とは化学的性質の異なる第2の絶縁層を被覆する工
程、
アルゴン・スパッタエツチングを施して、該接続孔開口
部の該第2の絶縁層を斜め方向にエツチングし、更に該
エツチングにより露出した該第1の絶縁層を斜め方向に
エツチングする工程、上記工程を実施した後、該第1の
絶縁層に対するよりエツチング速度が大であるエツチン
グ法によって該第2の絶縁層を除去する工程から成って
おり、
更に、本発明に包含される第2の配線層の形成は、
上記処理を施した半導体基板に金属配線層を被着し、パ
ターニングすることにより実施される。In order to achieve the above object, the process of chamfering the connection hole shoulder included in the present invention includes: a process of opening a connection hole in the first insulating layer deposited on the first wiring layer; and a process of chamfering the inner surface of the connection hole. A step of coating the surface of the first insulating layer containing a second insulating layer having a chemical property different from that of the first insulating layer, performing argon sputter etching to remove the second insulating layer at the opening of the connection hole. etching the layer in an oblique direction, and further etching the first insulating layer exposed by the etching in an oblique direction; after performing the above steps, etching the first insulating layer at a higher etching rate; Further, the formation of the second wiring layer included in the present invention includes depositing a metal wiring layer on the semiconductor substrate subjected to the above treatment, This is done by patterning.
アルゴン・スパッタエツチングは、例えばPSGとSi
Nxのような異種材料に対しは\゛同じエツチング速度
となるように処理条件を設定することが可能である。そ
こで、RIHによってPSG層に接続孔を開けた後、S
+Nx膜で表面を被覆し、これにアルゴン・スパッタエ
ツチングを施せば、接続孔の肩の部分ではSiNx膜が
斜め方向に削られた後、露出したPSG層も引き続き斜
め方向にエツチングされる。For example, argon sputter etching can be performed on PSG and Si.
For dissimilar materials such as Nx, it is possible to set the processing conditions so that the etching rate is the same. Therefore, after opening a connection hole in the PSG layer using RIH,
If the surface is coated with a +Nx film and subjected to argon sputter etching, the SiNx film is etched diagonally at the shoulder portion of the contact hole, and then the exposed PSG layer is also etched diagonally.
この処理によるPSG層の形状変化は上記の従来技術と
同じであるが、接続孔の側面と底面はSiNx膜で被覆
されているから、スパッタ飛沫は被覆膜に付着すること
になる。従って、PSG層に対する必要な面取りを行っ
た後、SiNx膜を除去すれば、付着物も同時に除去さ
れ、接続孔内面に異物が付着残留することはない。The change in shape of the PSG layer due to this treatment is the same as in the prior art described above, but since the side and bottom surfaces of the connection hole are covered with the SiNx film, sputter droplets will adhere to the coating film. Therefore, if the SiNx film is removed after performing the necessary chamfering on the PSG layer, the deposits will also be removed at the same time, and no foreign matter will remain attached to the inner surface of the connection hole.
被覆膜として、上記の如く層間絶縁材とは化学的性質の
異なる材料を選択することにより、その除去に際して、
層間絶縁層や更には下層配線をエツチングしない処理が
可能となり、接続孔の広がりや下層配線の細化が避けら
れる。By selecting a material with chemical properties different from those of the interlayer insulation material as the coating film as described above, upon its removal,
Processing that does not involve etching the interlayer insulating layer or even the lower layer wiring becomes possible, and it is possible to avoid widening of connection holes and thinning of the lower layer wiring.
第1図は本発明の処理工程を模式的に示す断面図である
。以下、該図面を参照しながら実施例にお4する処理を
説明する。FIG. 1 is a cross-sectional view schematically showing the processing steps of the present invention. Hereinafter, the processing performed in the fourth embodiment will be explained with reference to the drawings.
先ず同図(alに示す如く、基板1の表面を例えばPS
Gである絶線材料層2で被覆し、リソグラフィとRIE
により、接続孔3を開口する。この接続孔下の基板領域
は下層配線或いは半導体基板の素子領域であり、接続孔
の肩の部分はRIEの異方性の故にエツジ状となってい
る。この処理は従来技術によるものであって、PSG層
の厚さは0.6μm、RIEの処理条件はエツチング・
ガスがAr、圧力0. I Torr、高周波電カフ0
0Wで、1.0μmφの接続孔が開けられる。First, as shown in the same figure (al), the surface of the substrate 1 is coated with, for example, PS
Covered with a layer of disconnected material 2 of G, lithography and RIE
This opens the connection hole 3. The substrate region under this contact hole is a lower layer wiring or an element region of a semiconductor substrate, and the shoulder portion of the contact hole has an edge shape due to the anisotropy of RIE. This process is based on conventional technology, the thickness of the PSG layer is 0.6 μm, and the RIE process conditions are etching and etching.
The gas is Ar and the pressure is 0. I Torr, high frequency electric cuff 0
At 0W, a connection hole of 1.0 μmφ is opened.
次に同図(b)に示す如く、基板全面を厚さ0.1μm
のSiNx膜4で被覆する。減圧CVD法のように被覆
性の良好な処理法によってSiNx膜を形成すれば、接
続孔の側面や底面ははゾ均等な厚さに被覆される。Next, as shown in the same figure (b), the entire surface of the substrate was coated with a thickness of 0.1 μm.
It is coated with a SiNx film 4 of. If the SiNx film is formed using a treatment method that provides good coverage, such as low-pressure CVD, the side and bottom surfaces of the connection hole will be coated with a very uniform thickness.
以上の処理の後、これにアルゴン・スパッタエツチング
を施せば、同図fc)に示す如く、接続孔の肩の部分で
は最初SiNx膜が斜め方向にエツチングされ、それに
より露出したPSG層も続いて斜め方向にエツチングさ
れる。この時、スパッタ飛沫のような付着物6はSiN
x膜上に付着する。After the above processing, if argon sputter etching is applied to this, the SiNx film will first be etched obliquely at the shoulder part of the contact hole, as shown in figure fc), and the exposed PSG layer will also be etched. Etched diagonally. At this time, deposits 6 such as sputter droplets are removed from SiN.
x adheres on the membrane.
続いて、基板を熱リン酸でエツチングしてSiNx膜を
除去すれば、同図(diのように接続孔の面取りが行わ
れた状態が得られる。Subsequently, by etching the substrate with hot phosphoric acid to remove the SiNx film, a state in which the connection hole has been chamfered as shown in the same figure (di) is obtained.
以上説明した如く、本発明の処理法によれば、接続孔内
面に付着した異物は被覆膜と共に除去されるため、清浄
な接続面が得られ、接続孔が狭められることもない。そ
のため、層間接続やコンタクト接続が高抵抗化すること
を避けて、接続孔の面取りを行うことができる。As explained above, according to the treatment method of the present invention, foreign matter adhering to the inner surface of the connection hole is removed together with the coating film, so that a clean connection surface is obtained and the connection hole is not narrowed. Therefore, the connection hole can be chamfered while avoiding high resistance in interlayer connections and contact connections.
更に本発明の面取りは、自己整合的に行われるため位置
合わせマーシンを必要せず、微細パターンの高集積IC
を形成するのに適している0Furthermore, since the chamfering of the present invention is performed in a self-aligned manner, no positioning machine is required, and it is possible to improve
0 suitable for forming
第1図は本発明実施例の工程を示す断面模式図、第2図
は従来技術の面取り工程を示す断面模式第3図は従来技
術の問題点を示す図
であって、
図において
1は基板、
2はPSG層、
3は接続孔、
4はSiNx膜、
5は傾斜面、
6は付着物
である。
本発明実施例の工程を示す断面模式図
第1図FIG. 1 is a schematic cross-sectional diagram showing the process of the embodiment of the present invention, FIG. 2 is a schematic cross-sectional diagram showing the chamfering process of the prior art, and FIG. 3 is a diagram showing the problems of the prior art. , 2 is a PSG layer, 3 is a connection hole, 4 is a SiNx film, 5 is an inclined surface, and 6 is a deposit. Fig. 1 is a schematic cross-sectional diagram showing the steps of the embodiment of the present invention.
Claims (1)
する工程、 該接続孔内部表面を含む第1の絶縁層表面を、第1の絶
縁層とは化学的性質の異なる第2の絶縁層を被覆する工
程、 不活性ガスを用いるスパッタエッチングを施して、該接
続孔開口縁が傾斜面を持つように該接続孔開口部の該第
2の絶縁層と該第1の絶縁層とをエッチングする工程、 上記工程を実施した後、該第1の絶縁層に対するより該
第2の絶縁層に対するエッチング速度が大であるエッチ
ング法によって該第2の絶縁層を除去する工程、及び 上記処理を施した半導体基板に金属配線層を被着し、パ
ターニングを施して該第1の導電層に接続された第2の
配線層を形成する工程を包含することを特徴とする半導
体装置の製造方法。[Claims] A step of opening a contact hole in a first insulating layer deposited on a first wiring layer; a step of coating a second insulating layer having different chemical properties, performing sputter etching using an inert gas to coat the second insulating layer at the opening of the connection hole so that the edge of the opening of the connection hole has an inclined surface; and the first insulating layer, after performing the above step, etching the second insulating layer using an etching method that has a higher etching rate for the second insulating layer than for the first insulating layer. and a step of depositing a metal wiring layer on the semiconductor substrate subjected to the above treatment and patterning it to form a second wiring layer connected to the first conductive layer. A method for manufacturing a featured semiconductor device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22712390A JPH04107920A (en) | 1990-08-29 | 1990-08-29 | Manufacturing method of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22712390A JPH04107920A (en) | 1990-08-29 | 1990-08-29 | Manufacturing method of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04107920A true JPH04107920A (en) | 1992-04-09 |
Family
ID=16855843
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22712390A Pending JPH04107920A (en) | 1990-08-29 | 1990-08-29 | Manufacturing method of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04107920A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1079508A (en) * | 1996-08-09 | 1998-03-24 | United Microelectron Corp | Improved method of manufacturing self-aligned silicide |
-
1990
- 1990-08-29 JP JP22712390A patent/JPH04107920A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1079508A (en) * | 1996-08-09 | 1998-03-24 | United Microelectron Corp | Improved method of manufacturing self-aligned silicide |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0563940B2 (en) | ||
JPH04107920A (en) | Manufacturing method of semiconductor device | |
JPS5950544A (en) | Formation of multi-layer wiring | |
JPS63269546A (en) | Manufacture of semiconductor device | |
JPS5877246A (en) | Formation of multilayer wiring structure | |
JPH0590203A (en) | Manufacture of semiconductor device | |
JPS62136857A (en) | Manufacture of semiconductor device | |
JPH03104127A (en) | How to form fine patterns | |
JPS6346751A (en) | Method of forming low resistance junction layer in insulating layer between two metallized surfaces | |
JPH06177255A (en) | Manufacture of semiconductor integrated circuit device | |
JPH01194334A (en) | Manufacture of semiconductor integrated circuit | |
JPS5874037A (en) | Preparation of semiconductor device | |
JPH03263833A (en) | Taper etching method | |
JPS60147137A (en) | Forming process of multilayered metallic wiring | |
JPH0463461A (en) | Method of forming multilayer wiring in semiconductor device | |
JPS63133647A (en) | Manufacture of semiconductor device | |
JPH05243219A (en) | Manufacture of semiconductor device | |
JPH03205829A (en) | Manufacture of semiconductor device | |
JPH01287948A (en) | Connection hole forming method for semiconductor device | |
JPS6052043A (en) | Manufacture of wiring structure | |
JPS61183943A (en) | Electrode wiring method | |
JP2000114261A (en) | Semiconductor device and manufacturing method thereof | |
JPS6344740A (en) | Manufacturing method of semiconductor device | |
JPH03225922A (en) | Manufacturing method of semiconductor device | |
JPS62195150A (en) | Manufacture of semiconductor device |