[go: up one dir, main page]

JPH0410556B2 - - Google Patents

Info

Publication number
JPH0410556B2
JPH0410556B2 JP59224142A JP22414284A JPH0410556B2 JP H0410556 B2 JPH0410556 B2 JP H0410556B2 JP 59224142 A JP59224142 A JP 59224142A JP 22414284 A JP22414284 A JP 22414284A JP H0410556 B2 JPH0410556 B2 JP H0410556B2
Authority
JP
Japan
Prior art keywords
oil
polymer
acrylamide
recovery
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59224142A
Other languages
Japanese (ja)
Other versions
JPS61102994A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP22414284A priority Critical patent/JPS61102994A/en
Publication of JPS61102994A publication Critical patent/JPS61102994A/en
Publication of JPH0410556B2 publication Critical patent/JPH0410556B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Solid Fuels And Fuel-Associated Substances (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は石油強制回収(EOR)に使用する圧
入液に関するものであり、圧入液の油層に対する
抵抗フアクター及び残存抵抗フアクターを改良
し、更に石油回収用薬剤の使用効率を向上させる
ものである。 従来の技術 石油採掘技術は、現在までに大きく3つの段階
を経て発展して来た。第1段階は現在一次回収法
と云われ油層のもつ自然のエネルギーで自噴する
ままに油を回収するもので、回収率は埋蔵量の1/
3程度と言われる。第2段階は、自噴能力の減退
した油田に、地表から人工的に水あるいはガスを
圧入して油を押し出すもので二次回収法と云われ
る。 これらの回収法によつては、貯溜岩の孔隙に油
滴として存在する油、岩石表面に油膜として付着
している油、二次回収法はガス又は水に全く接触
しない領域に存在する油は、未回収となり、原油
の1/3〜2/3が地下に残存すると考えられている。 加圧水又は加圧ガスを使用する第2次回収方法
では(1)圧入流体が低浸透率層または低浸透率領域
を回避すること、(2)フインガーリングを起こすこ
と、(3)粘度の高い原油の下あるいは上を走るこ
と、(4)割れ目を通してチヤネリングすること等が
回収率が低くする原因とされている。そこで更に
石油回収率を向上することを目的として圧入水の
流動抵抗を増すことが考えられ、この手段として
ポリマー水溶液を使用することが知られており、
合成ポリマーとしてポリアクリルアミド、バイオ
ポリマーとしてザンサンガム等が実用に供されて
いる。 この残存油を回収する技術が第3段階であつ
て、Enhanced Oil Recovery(EOR)と呼ばれて
いる。 本発明はEOR方法に関するものである。 発明が解決しようとする問題点 前述の如く、ポリアクリルアミドを用いて圧入
液の流動抵抗を増加させることは既に知られてい
るが、アクリルアミド系重合体自体の改質につい
ては未だ充分検討されていない。本発明において
は、ポリアクリルアミド(アクリルアミド系重合
体)に少量の添加物を添加することにより、さら
にすぐれた圧入液特性を発現させる石油回収用薬
剤を提供しようとするものである。 問題点を解決するための手段・作用 本発明は、アクリルアミド系重合体100重量部
とチオ尿素類0.05〜5.0重量部とからなる抵抗フ
アクターおよび残存抵抗フアクターの改良された
石油回収用重合体組成物である。 すなわち本発明は、従来石油強制回収に使用さ
れているポリアクリルアミド水溶液にさらに少量
のチオ尿素類を添加することにより、石油回収率
の増加につながる抵抗フアクター(RF)及び残
存抵抗フアクター(RRF)を改良し、石油回収
率を増加させ、又ポリアクリルアミドの使用量も
従来より少なくてすむ。 ここでRF及びRRFは次の方法で算出できるこ
とが知られている。(Polymer Science and
Technology Vol.2、Water−Soluble Polymers
P105−126、Water−Soluble Polmers in
Petroleum Recovery)。 前述の加圧水による石油回収方法においては置
換流体すなわち加圧水と、被置換流体すなわち原
油との易動度の比が回収率に大きく影響すること
は古くから知られている。 易動度比(M)次のように定義される。 M=(Kw/μw)/(K0/μ0) ……(1) ここに、 Kwは不動油飽和率における水の相対浸透率 K0は不動水飽和率における油の相対浸透率 μwは水の粘度 μ0は油の粘度 通常の加圧水の場合Mが10〜30と非常に高い価
をとり、水の方が油より動き易い性質で示すこと
が低い油回収率と関連するもので、何らかの手段
によりMを1〜2に低下させれば、油を押し出す
作用がスムースに行われる。 ポリマー攻法においては上記水をポリマー溶液
に読み替えるわけであるが、このMを低下させる
ためのポリマー溶液の性能を知るために、抵抗フ
アクターRFが測定される。 RF=(Kw/μw)/(Kp/μp) ……(2) ここに、 Kpは不動油飽和率におけるポリマー溶液の相
対浸透率 μpはポリマー溶液の粘度 このRFはポリマーの濃度、ポリマーの分子量
および溶媒の性質等に影響されるが、このRFの
値が大きければ石油回収用溶液として好ましいこ
とは(1)式とその説明から容易に理解される。次に
アクリルアミド系重合体溶液のもう一つの特徴
は、一度ポリマー溶液を岩石に通過させることに
よつて、その岩石の浸透率を半永久的に低下させ
ることである。この浸透率の低下を表示するもの
が残存抵抗フアクターRRFである。 RRF=(Kw/μn)(ポリマー溶液通過前)/(Kw/μ
w)(ポリマー溶液通過後) ……(3) このRRFが大きくなればポリマー溶液通過後
の岩石の浸透率は小さくなり、原理的には原油層
をポリマー溶液層で押し、ポリマー溶液層を水層
で押して原油を採掘するポリマー攻法にとつては
好ましい現象である。 なお、上記(2)及び(3)式は、 K/μ=QL/A・ΔP ただし、 A:コアの断面積 L:コアの長さ Q:流量 であることから、次の(4)及び(5)式のようになる。 RF=QwL/A・ΔPp・A・ΔPw/QpL =(Qw/ΔPw)(ΔPp/Qp) =(ΔPp/Qp)/(ΔPw/Qw) ……(4) RRF=(Qw/ΔPw)(ΔPw′/Qw′) =(ΔP′w/Qw′)/(ΔPw/Qw) ……(5) 発明者はこれら2つの抵抗フアクターから本発
明の石油回収用重合体組成物の組成を特定の範囲
に限定したものであつて、アクリルアミド系重合
体100重量部に対しチオ尿素類の添加量が0.05重
量部未満であれば、上述の2つの抵抗フアクター
の上昇効果が期待できず、またチオ尿素類の添加
量が5.0重量部を超えるとかえつて上述の2つの
抵抗フアクターが低下する。すなわち2つの抵抗
フアクターはアクリルアミド系重合体100重量部
に対しチオ尿素類の添加量0.05〜5.0重量部の間
に極大値を有するのであつて、チオ尿素類の添加
量はさらに好ましくは0.5〜2.0重量部である。 なお、本発明において、アクリルアミド系重合
体とは、アクリルアミド成分を含む全ての水溶性
重合体を包含する。 具体的には、アクリルアミドと、アクリル酸
(塩)、メタアクリル酸(塩)、2−アクリルアミ
ド−2−メチルプロパンスルホン酸(塩)等の共
重合物、あるいは、これらのアニオン性重合体に
水溶性を損なわない範囲でメタアクリルアミド、
アクリロニトリル、ジメチルアミノエチルメタア
クリレート3級塩、4級化物、アクリル酸低級ア
ルキルエステル、等を含む重合物、また所謂共重
合反応に依つたものに限らず、重合後種々の化学
反応により、アミド基を他の官能基に変換したも
の、例えばアルカリにより加水分解したり、メチ
ロール化したものを包含する。 また、上記の2種類以上の重合体と混合物を包
含する。 又見掛の重合度は10000以上のものが好ましい。 又、本発明でいうチオ尿素類とは次の一般式
INDUSTRIAL APPLICATION FIELD The present invention relates to an injection fluid used in forced oil recovery (EOR), and improves the resistance factor and residual resistance factor of the injection fluid against the oil layer, and further improves the efficiency of use of oil recovery agents. It is something. Conventional Technology Oil extraction technology has evolved through three major stages to date. The first stage is currently called the primary recovery method, in which oil is recovered as it self-gushes using the natural energy of the oil layer, and the recovery rate is 1/1 of the reserves.
It is said to be around 3. The second stage is called the secondary recovery method, in which water or gas is artificially injected from the ground into oil fields where the artesian ability has diminished to push out the oil. Depending on these recovery methods, oil that exists as oil droplets in the pores of reservoir rocks, oil that is attached to the rock surface as an oil film, and secondary recovery methods recover oil that exists in areas that do not come into contact with gas or water at all. It is thought that 1/3 to 2/3 of the crude oil remains underground, remaining unrecovered. Secondary recovery methods using pressurized water or pressurized gas prevent (1) the injected fluid from avoiding low permeability layers or regions, (2) fingering, and (3) high viscosity crude oils. (4) Channeling through cracks, etc. are said to be the causes of low recovery rates. Therefore, in order to further improve the oil recovery rate, it is considered to increase the flow resistance of the injection water, and it is known that a polymer aqueous solution is used as a means for this.
Polyacrylamide is used as a synthetic polymer, and xanthan gum is used as a biopolymer. The third stage is the technology to recover this residual oil and is called Enhanced Oil Recovery (EOR). The present invention relates to an EOR method. Problems to be Solved by the Invention As mentioned above, it is already known that polyacrylamide can be used to increase the flow resistance of injection fluid, but the modification of the acrylamide polymer itself has not yet been sufficiently studied. . The present invention aims to provide an oil recovery agent that exhibits even better injection fluid properties by adding a small amount of additives to polyacrylamide (acrylamide-based polymer). Means/Action for Solving the Problems The present invention provides a polymer composition for oil recovery with an improved resistance factor and residual resistance factor comprising 100 parts by weight of an acrylamide polymer and 0.05 to 5.0 parts by weight of a thiourea. It is. That is, the present invention adds a small amount of thioureas to the polyacrylamide aqueous solution conventionally used for forced oil recovery, thereby reducing the resistance factor (RF) and residual resistance factor (RRF) that lead to an increase in oil recovery. This improves the oil recovery rate and allows less polyacrylamide to be used than before. It is known that RF and RRF can be calculated by the following method. (Polymer Science and
Technology Vol.2, Water−Soluble Polymers
P105−126, Water−Soluble Polmers in
Petroleum Recovery). In the aforementioned oil recovery method using pressurized water, it has been known for a long time that the mobility ratio between the displacement fluid, ie, pressurized water, and the fluid to be replaced, ie, crude oil, greatly influences the recovery rate. Mobility ratio (M) is defined as follows. M = (Kw / μw) / (K 0 / μ 0 ) ... (1) where, Kw is the relative permeability of water at the saturation rate of immobile oil K 0 is the relative permeability of oil at the saturation rate of immobile water μw is The viscosity of water μ 0 is the viscosity of oil. In the case of normal pressurized water, M has a very high value of 10 to 30, and water is more mobile than oil, which is associated with a low oil recovery rate. If M is lowered to 1 to 2 by some means, the action of pushing out the oil will be performed smoothly. In the polymer attack method, the water is replaced with a polymer solution, and in order to know the performance of the polymer solution in reducing M, the resistance factor RF is measured. RF = (Kw/μw)/(Kp/μp) ...(2) where, Kp is the relative permeability of the polymer solution at the fixed oil saturation rate μp is the viscosity of the polymer solution This RF is the concentration of the polymer, the molecular weight of the polymer It is easily understood from equation (1) and its explanation that a large value of RF is preferable as a solution for oil recovery, although it is influenced by the properties of the solvent and the properties of the solvent. Another feature of the acrylamide polymer solution is that once the polymer solution is passed through the rock, it semi-permanently reduces the permeability of the rock. The residual resistance factor RRF indicates this decrease in permeability. RRF=(Kw/μn) (before passing through polymer solution)/(Kw/μn)
w) (After passing through the polymer solution) ...(3) As this RRF increases, the permeability of the rock after passing through the polymer solution decreases.In principle, the crude oil layer is pushed by the polymer solution layer, and the polymer solution layer is This is a favorable phenomenon for the polymer mining method, which extracts crude oil by pressing layers. In addition, the above equations (2) and (3) are as follows: K/μ=QL/A・ΔP However, since A: Core cross-sectional area L: Core length Q: Flow rate, the following (4) and It becomes as shown in equation (5). RF=QwL/A・ΔPp・A・ΔPw/QpL = (Qw/ΔPw) (ΔPp/Qp) = (ΔPp/Qp)/(ΔPw/Qw) ……(4) RRF=(Qw/ΔPw) (ΔPw '/Qw') = (ΔP'w/Qw')/(ΔPw/Qw)...(5) The inventor determined the composition of the oil recovery polymer composition of the present invention to be within a specific range based on these two resistance factors. If the amount of thioureas added is less than 0.05 parts by weight per 100 parts by weight of the acrylamide polymer, the effect of increasing the two resistance factors mentioned above cannot be expected; When the amount added exceeds 5.0 parts by weight, the two resistance factors mentioned above are rather reduced. That is, the two resistance factors have maximum values between 0.05 and 5.0 parts by weight of thioureas per 100 parts by weight of the acrylamide polymer, and the amount of thioureas added is more preferably 0.5 to 2.0 parts by weight. Parts by weight. In the present invention, the acrylamide polymer includes all water-soluble polymers containing an acrylamide component. Specifically, copolymers of acrylamide and acrylic acid (salt), methacrylic acid (salt), 2-acrylamide-2-methylpropanesulfonic acid (salt), etc., or water-soluble anionic polymers of these methacrylamide within the range that does not impair the properties of the
Polymers containing acrylonitrile, tertiary salts of dimethylaminoethyl methacrylate, quaternized products, lower alkyl acrylic esters, etc., as well as those that rely on so-called copolymerization reactions, as well as amide groups by various chemical reactions after polymerization. It includes those converted into other functional groups, such as those hydrolyzed with alkali or methylolated. It also includes two or more of the above polymers and mixtures. Further, the apparent degree of polymerization is preferably 10,000 or more. In addition, the thioureas referred to in the present invention have the following general formula:

【式】または[expression] or

【式】 (ただし式中のR1、R2は水素、または主として
炭素および水素からなる有機の基を、またR3
主として炭素および水素からなる有機の基をあら
わす)で示される構造部分を少なくとも1個有す
る化合物である。 たとえば、このようなチオ尿素類としては、チ
オ尿素、N、N′−ジフエニルチオ尿素、ジオル
ト−トリルチオ尿素、エチレン尿素などが挙げら
れる。 また本発明の重合体組成物とは、アクリルアミ
ド系重合体とチオ尿素類が固体状で混合されてい
る固体組成物のみならず、使用状態において実質
的にアクリルアミド系重合体とチオ尿素類が共存
する状態であればよく、溶液あるいはスラリー状
で共存する場合、ゲル状と粉末状で混在する場合
等も含むものであつて、アクリルアミド系重合体
とチオ尿素類の混合方法について通常知られてい
る何れの方法をも用いることができる。 しかして本発明の重合体組成物が石油回収に効
果を発揮する濃度は約100ppm〜50000ppm水溶液
であり、特に100ppm〜10000ppmの濃度が好まし
い。 実施例 アクリルアミド80モル%、アクリル酸ナトリウ
ム20モル%からなる共重合体で、その分子量が約
15000000であるアクリルアミド系重合体を、食塩
0.14g/、塩化カルシウム無水物0.18g/を
含む塩水(溶媒)を用いて溶液中のアクリルアミ
ド系重合体の濃度が300ppmになるごとく調製し、
粉末のチオ尿素を所定量加えて撹拌溶解し、第1
表に示すチオ尿素含有量の異るサンプル7ケを得
た。 これら重合体組成物溶液サンプルについて油層
岩のモデルとして浸透率900〜1000ミリダルシー
のベレア砂岩を用いてコアテストを行つた。 1サンプル毎に新しいコアに次の順序で流体を
流し、流量Qとコア前後の圧力差ΔPを求め、(4)
式、(5)式により抵抗フアクターRFおよび残存抵
抗フアクターRRFを求めた。 なお、液温は25℃±1℃に保持した。 測定順序 液体 流量 差圧 1 溶媒 Qw ΔPw 2 サンプル Qp ΔPp 3 溶媒 Q′w ΔP′w RF=(ΔPp/Qp)/(ΔPw/Qw) ……(4) RRF=(ΔP′w/Qw′)/(ΔPw/Qw)……(5) 得られた結果を第1表に示す。
[Formula] (In the formula, R 1 and R 2 represent hydrogen or an organic group consisting mainly of carbon and hydrogen, and R 3 represents an organic group mainly consisting of carbon and hydrogen.) A compound having at least one. For example, such thioureas include thiourea, N,N'-diphenylthiourea, diortho-tolylthiourea, ethyleneurea, and the like. In addition, the polymer composition of the present invention is not only a solid composition in which an acrylamide polymer and a thiourea are mixed in solid form, but also a solid composition in which the acrylamide polymer and a thiourea coexist in a state of use. This includes cases where they coexist in solution or slurry form, gel form and powder form, etc., and the method for mixing acrylamide polymers and thioureas is generally known. Either method can be used. Therefore, the concentration at which the polymer composition of the present invention is effective for oil recovery is about 100 ppm to 50,000 ppm aqueous solution, and a concentration of 100 ppm to 10,000 ppm is particularly preferred. Example: A copolymer consisting of 80 mol% acrylamide and 20 mol% sodium acrylate, with a molecular weight of approx.
15000000 acrylamide-based polymer with salt
Using salt water (solvent) containing 0.14 g/, calcium chloride anhydride 0.18 g/, the concentration of acrylamide polymer in the solution was adjusted to 300 ppm,
Add a predetermined amount of powdered thiourea and dissolve with stirring.
Seven samples with different thiourea contents shown in the table were obtained. Core tests were conducted on these polymer composition solution samples using Berea sandstone with a permeability of 900 to 1000 millidarcy as a model of oil reservoir rock. For each sample, flow the fluid into a new core in the following order, find the flow rate Q and the pressure difference ΔP before and after the core, and (4)
The resistance factor RF and the residual resistance factor RRF were determined using equations (5) and (5). Note that the liquid temperature was maintained at 25°C±1°C. Measurement order Liquid Flow rate Differential pressure 1 Solvent Qw ΔPw 2 Sample Qp ΔPp 3 Solvent Q′w ΔP′w RF=(ΔPp/Qp)/(ΔPw/Qw) ……(4) RRF=(ΔP′w/Qw′) /(ΔPw/Qw)...(5) The obtained results are shown in Table 1.

【表】 する添加重量部
結果から判るようにチオ尿素添加量0.05〜5.0
重量%において、抵抗フアクター及び残存抵抗フ
アクターが最大ピークを与え、これは前述のごと
く石油回収率を増加させるものである。 発明の効果 本発明の石油回収用重合体組成物によれば、従
来ポリマー攻法に使用されているポリアクリルア
ミドの使用量の削減あるいは石油回収率の向上を
図ることができ、その経済効果はきわめて大き
い。
[Table] Parts by weight added As seen from the results, the amount of thiourea added is 0.05 to 5.0
In weight percent, the resistance factor and the residual resistance factor give the maximum peak, which increases the oil recovery as discussed above. Effects of the Invention According to the polymer composition for oil recovery of the present invention, it is possible to reduce the amount of polyacrylamide used conventionally in polymer flooding methods or to improve the oil recovery rate, and the economic effect thereof is extremely high. big.

Claims (1)

【特許請求の範囲】[Claims] 1 アクリルアミド系重合体100重量部とチオ尿
素類0.05〜5.0重量部とからなる抵抗フアクター
および残存抵抗フアクターの改良された石油回収
用重合体組成物。
1. A polymer composition for oil recovery with an improved resistance factor and residual resistance factor comprising 100 parts by weight of an acrylamide polymer and 0.05 to 5.0 parts by weight of a thiourea.
JP22414284A 1984-10-26 1984-10-26 Polymer composition for recovering petroleum Granted JPS61102994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22414284A JPS61102994A (en) 1984-10-26 1984-10-26 Polymer composition for recovering petroleum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22414284A JPS61102994A (en) 1984-10-26 1984-10-26 Polymer composition for recovering petroleum

Publications (2)

Publication Number Publication Date
JPS61102994A JPS61102994A (en) 1986-05-21
JPH0410556B2 true JPH0410556B2 (en) 1992-02-25

Family

ID=16809204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22414284A Granted JPS61102994A (en) 1984-10-26 1984-10-26 Polymer composition for recovering petroleum

Country Status (1)

Country Link
JP (1) JPS61102994A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927828A (en) * 1982-08-05 1984-02-14 Seikagaku Kogyo Co Ltd Preparation of amebocyte lysate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5927828A (en) * 1982-08-05 1984-02-14 Seikagaku Kogyo Co Ltd Preparation of amebocyte lysate

Also Published As

Publication number Publication date
JPS61102994A (en) 1986-05-21

Similar Documents

Publication Publication Date Title
Pei et al. Investigation of the degradation and stability of acrylamide-based polymers in acid solution: Functional monomer modified polyacrylamide
US10655055B2 (en) Weak gel system for chemical enhanced oil recovery
US3002960A (en) Polyacrylamide preparation
CA1178040A (en) Enhanced oil displacement processes and compositions
EP0115836B1 (en) Polymeres useful in the recovery and processing of natural resources
RU2160759C2 (en) Aqueous drilling or collecting mud and method of drilling shaft of borehole (variants)
US4439332A (en) Stable emulsion copolymers of acrylamide and ammonium acrylate for use in enhanced oil recovery
US20070044967A1 (en) Gelable liquid and method for selectively inhibiting the gelation of a gelable liquid
US20140326457A1 (en) Process For The Enhanced Recovery Of Oil By Injection Of A Polymer Solution
US5270382A (en) Compositions and applications thereof of water-soluble copolymers comprising an ampholytic imidazolium inner salt
CN110452326B (en) Coating agent for water-based drilling fluid and preparation method thereof
CA1239921A (en) Composition for and method of altering the permeability of a subterranean formation
US4637467A (en) Permeability contrast correction
CN113528113A (en) Fracturing fluid comprising (co) polymer containing 2-acrylamido-2-methylpropanesulfonic acid as monomer
US20110263465A1 (en) Use Of Vinyl Phosphonic Acid For Producing Biodegradable Mixed Polymers And The Use Thereof For Exploring And Extracting Petroleum And Natural Gas
US10927247B2 (en) Method for inhibiting the permeation of water in an extraction well of a hydrocarbon fluid from an underground reservoir
JPS6230109A (en) Calcium resistant n-substituted amides as aqueous thickener
CN113583653A (en) Novel aqueous fracturing fluid composition and fracturing method using the same
JPH0410556B2 (en)
US3994344A (en) Method for recovery of acidic crude oils
US3858652A (en) Mobility control in low permeability reservoirs
JPH0410557B2 (en)
EP0008153B1 (en) Process for recovering oil from subterranean oil-bearing formations and an emulsion useful therein
US8794327B2 (en) Enhanced oil recovery method using associative polymers
GB2213850A (en) Enhanced oil recovery process