JPH04105309A - Manufacture of metallic magnetic substance film - Google Patents
Manufacture of metallic magnetic substance filmInfo
- Publication number
- JPH04105309A JPH04105309A JP22293690A JP22293690A JPH04105309A JP H04105309 A JPH04105309 A JP H04105309A JP 22293690 A JP22293690 A JP 22293690A JP 22293690 A JP22293690 A JP 22293690A JP H04105309 A JPH04105309 A JP H04105309A
- Authority
- JP
- Japan
- Prior art keywords
- film
- composition
- magnetic substance
- metal
- metallic magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 14
- 239000000126 substance Substances 0.000 title abstract 7
- 239000000203 mixture Substances 0.000 claims abstract description 44
- 229910052751 metal Inorganic materials 0.000 claims abstract description 38
- 239000002184 metal Substances 0.000 claims abstract description 36
- 238000000034 method Methods 0.000 claims abstract description 15
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 12
- 239000000956 alloy Substances 0.000 claims abstract description 12
- 239000004065 semiconductor Substances 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 239000000696 magnetic material Substances 0.000 claims 1
- 229910000702 sendust Inorganic materials 0.000 abstract description 13
- 239000000758 substrate Substances 0.000 abstract description 5
- 238000001755 magnetron sputter deposition Methods 0.000 abstract description 4
- 239000000919 ceramic Substances 0.000 abstract 1
- 239000011159 matrix material Substances 0.000 abstract 1
- 239000000463 material Substances 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 9
- 238000007740 vapor deposition Methods 0.000 description 9
- 238000004544 sputter deposition Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000003628 erosive effect Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- -1 that is Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y25/00—Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/3213—Exchange coupling of magnetic semiconductor multilayers, e.g. MnSe/ZnSe superlattices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
- H01F41/302—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Nanotechnology (AREA)
- Power Engineering (AREA)
- Magnetic Heads (AREA)
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Manufacturing & Machinery (AREA)
- Thin Magnetic Films (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、金属磁性体膜の製造方法に関し、特に、磁気
へラドコア材として用いられる、スパッタ法、或は、蒸
着法により成膜される軟磁性体膜の製造方法に関する。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a metal magnetic film, and in particular, a metal magnetic film formed by a sputtering method or a vapor deposition method, which is used as a magnetic helad core material. The present invention relates to a method for manufacturing a soft magnetic film.
(従来の技術)
従来、金属磁性体膜をスパッタ法、或は、蒸着法で成膜
する際、膜組成制御は、もっばら、母材となるスパッタ
ターゲット、或は、蒸着源の組成を制御することによっ
ていた。しかしながら、この方法では、母材組成のばら
つき、また、成膜条件の変化、成膜装置の特性などによ
る、母材からの組成ずれにより、膜組成が一定になりに
くかった。結果として、膜特性がばらつき、また、最適
膜組成を得るための母材組成選択に、多大な時間とコス
トがかかることになっていた。更に、成膜に伴う母材の
侵食によっても、膜の組成ずれが引き起こされていた。(Prior art) Conventionally, when forming a metal magnetic film using a sputtering method or a vapor deposition method, the film composition has mainly been controlled by controlling the composition of the sputter target or vapor deposition source, which is the base material. It was by doing. However, with this method, it is difficult to maintain a constant film composition due to variations in the composition of the base material, as well as composition deviations from the base material due to changes in film-forming conditions, characteristics of the film-forming apparatus, and the like. As a result, the film properties vary, and it takes a lot of time and cost to select the base material composition to obtain the optimum film composition. Furthermore, erosion of the base material during film formation also caused compositional deviations in the film.
特に、組成により、磁気へラドコア材として重要な特性
である磁歪定数が大きく変化するFe5iAl合金(セ
ンダスト合金)などの軟磁性体膜においては、この問題
が大きかった。This problem is particularly serious in soft magnetic films such as Fe5iAl alloy (Sendust alloy), whose magnetostriction constant, which is an important property for magnetic herad core materials, varies greatly depending on the composition.
第1表
第1表に、異なるメーカーで作製されたXとYのFe8
4.9Si9.6A15.5(wt%)合金ターゲット
を用いて、マグネトロンスパッタ装置にて成膜したFe
5iA1膜の、飽和磁歪λSを示す。公称のターゲット
組成は同一であっても、λSが異なることから、膜組成
が異なることが伺える。この原因として、実際のターゲ
ット組成が、分析方法の違い、分析誤差により、公称値
からずれていたこと、ターゲットの結晶粒の成長程度の
違いによりスパッタ状態が異なったこと田本応用磁気学
会誌Vo1.11. No、 2. p299゜198
7)などが考えられる。Table 1 Table 1 shows X and Y Fe8 produced by different manufacturers.
Fe film formed using a magnetron sputtering device using a 4.9Si9.6A15.5 (wt%) alloy target
The saturation magnetostriction λS of the 5iA1 film is shown. Even if the nominal target composition is the same, the difference in λS indicates that the film composition is different. The causes of this are that the actual target composition deviated from the nominal value due to differences in analysis methods and analysis errors, and that the sputtering state differed due to differences in the growth degree of crystal grains in the target.Tamoto Journal of Applied Magnetics Vol. .11. No, 2. p299゜198
7) etc. are possible.
第1図に、ターゲットとしてFe94.5−xsixA
15.5(wt%)合金を用い、マグネトロンスパッタ
装置A、Bにて成膜したFe5iA1膜のλSの組成依
存性を示す。Figure 1 shows Fe94.5-xsixA as a target.
15 shows the composition dependence of λS of Fe5iA1 films formed using magnetron sputtering apparatuses A and B using a 15.5 (wt%) alloy.
同一ターゲットを用いても、装置が異なることでλSが
異なることから、膜組成が異なることが伺える。Even if the same target is used, the λS is different depending on the equipment, which indicates that the film composition is different.
(発明が解決しようとする課題)
以上のように、所望の膜組成、即ち、膜特性を得るため
には、母材メーカー(スパッタ法の場合はターゲット、
蒸着法の場合は蒸着源)、成膜装置ごとに母材組成を選
択する必要があった。(Problems to be Solved by the Invention) As described above, in order to obtain the desired film composition, that is, film characteristics, it is necessary to
In the case of vapor deposition, it was necessary to select the base material composition for each vapor deposition source) and film forming apparatus.
更に、同一装置、同一母材であっても、成膜条件が変化
することにより膜組成も変化することは、一般に良く知
られており、この面からも、母材の組成選択が必要であ
る。Furthermore, it is generally well known that even with the same equipment and the same base material, the film composition changes as the film forming conditions change, and from this perspective as well, it is necessary to select the composition of the base material. .
従来は、以上のように、さまざまに変化する膜組成を母
材組成だけで制御してきていた。そのため、母材組成決
定のために、多大な時間とコストが必要であった。Conventionally, as described above, the variously changing film compositions have been controlled solely by the base material composition. Therefore, a great deal of time and cost was required to determine the base material composition.
また、組成決定後も、ターゲット、或は、蒸着源の成膜
に伴う侵食により、膜組成が変化し、磁歪などの磁気特
性がばらつくといった問題があった。Further, even after the composition has been determined, there is a problem in that the film composition changes due to erosion of the target or vapor deposition source during film formation, causing variations in magnetic properties such as magnetostriction.
本発明は、上記のように、スパッタ法、蒸着法により金
属磁性体膜を成膜する際、膜組成の制御性を向上させる
ことにより、膜特性の安定性を向上させ、母材組成選定
にががる時間、コストを低減することを目的としている
。As described above, the present invention improves the controllability of the film composition when forming a metal magnetic film by sputtering or vapor deposition, thereby improving the stability of the film properties and making it easier to select the base material composition. The aim is to reduce the time and cost involved.
(課題を解決するための手段)
スパッタ法、或は、蒸着法により金属磁性体膜を成膜す
る際に、その上層、又は、下層に金属、或は、半導体膜
を成膜し、その後、熱処理することで、上層、又は、下
層の金属元素、或は、半導体元素を、金属磁性体膜中に
拡散させ、組成の厳密な制御を行う。(Means for solving the problem) When forming a metal magnetic film by a sputtering method or a vapor deposition method, a metal or semiconductor film is formed as an upper layer or a lower layer, and then, By heat treatment, the metal element or semiconductor element in the upper layer or the lower layer is diffused into the metal magnetic film, and the composition is strictly controlled.
(作用)
第2図(a)、 (b)、 (c)、 (d)は本発明
の製造方法において、成膜直後の構造を、第3図は成膜
後熱処理を施した膜の構造を示す。図において2−1.
3−1は金属磁性体膜、2−2は上層膜又は下層膜、2
−3.3−2は基板である。この方法により、金属磁性
体膜の母材の組成が最適化されていなくても、上層、或
は、下層に成膜する膜の成分と厚さをコントロールする
ことにより、所望の膜特性を得ることができる。(Function) Figures 2 (a), (b), (c), and (d) show the structure immediately after film formation in the manufacturing method of the present invention, and Figure 3 shows the structure of the film after heat treatment after film formation. shows. In the figure 2-1.
3-1 is a metal magnetic film, 2-2 is an upper layer film or a lower layer film, 2
-3.3-2 is a substrate. With this method, even if the composition of the base material of the metal magnetic film is not optimized, desired film characteristics can be obtained by controlling the components and thickness of the film formed on the upper or lower layer. be able to.
そして、従来必要としていた、母材最適化に必要な時間
とコストを節約することが出来る。さらに、成膜に伴っ
て、母材が侵食されることにより生じていた組成変動に
おいても、上層、或は、下層の厚さをコントロールする
ことで調節することが出来る。In addition, the time and cost required for base material optimization, which was previously required, can be saved. Furthermore, compositional fluctuations caused by erosion of the base material during film formation can be adjusted by controlling the thickness of the upper layer or the lower layer.
金属磁性体膜をセンダスト(Fe、 Si、 A1合金
)とした場合、上層、或は、下層に成膜する膜を、Fe
膜とすることでセンダストのFe組成を、Si膜とする
ことでSi組成を、Al膜とすることでA1組成を制御
することが出来る。又、Cr膜とすることで、磁歪を制
御することが出来、更に、膜の耐蝕性を向上させること
が出来る。When the metal magnetic film is Sendust (Fe, Si, A1 alloy), the film formed on the upper or lower layer is made of Fe.
The Fe composition of sendust can be controlled by using a film, the Si composition can be controlled by using a Si film, and the A1 composition can be controlled by using an Al film. Furthermore, by using a Cr film, magnetostriction can be controlled and the corrosion resistance of the film can be further improved.
(実施例)
マグネトロンスパッタ法により、ターゲットとしてFe
84.9Si9.6A15.5(センダスト)合金を用
い、セラミックス基板上に5.um厚のセンダスト膜を
形成した。このとき、センダスト膜と基板との間に、C
r膜を形成し、その厚みを0.0.05.0.1.0.
2.、、nとした。更に、これらの膜に、I X 1O
−5Torr以下の高真空中で680°C12時間の熱
処理を施した。その後、飽和磁歪λS、膜中のCr組成
、及び、Cr分布状況を評価した。(Example) Fe was used as a target by magnetron sputtering method.
Using 84.9Si9.6A15.5 (Sendust) alloy, 5. A sendust film with a thickness of 1 um was formed. At this time, there is a C between the sendust film and the substrate.
r film is formed and its thickness is set to 0.0.05.0.1.0.
2. ,, n. Furthermore, I X 1O to these films
Heat treatment was performed at 680° C. for 12 hours in a high vacuum of -5 Torr or less. Thereafter, the saturation magnetostriction λS, the Cr composition in the film, and the Cr distribution state were evaluated.
第4図にλs、 Cr組成のCr膜厚依存性を示す。C
r膜厚が増すに従ってλSは負側に変化する。このとき
膜中の04或は単調増加した。Figure 4 shows the dependence of λs and Cr composition on Cr film thickness. C
As the r film thickness increases, λS changes to the negative side. At this time, 04 in the film increased monotonically.
以上のように、Cr下地膜を用いてセンダスト膜の磁歪
を制御することができた。As described above, the magnetostriction of the Sendust film could be controlled using the Cr underlayer.
このとき、ターゲットは組成を変更したものを改めて造
る必要なしに、Cr膜厚を換えるだけで所望のλSを得
ることが出来、時間的にも経済的にも効率を上げること
が出来た。At this time, it was possible to obtain the desired λS by simply changing the Cr film thickness without having to manufacture a new target with a different composition, and it was possible to improve efficiency both in terms of time and economy.
又、成膜に伴いターゲットが侵食され膜組成ずれが発生
し、磁歪が変化しても、Cr膜厚を制御するだけで所望
の特性を得ることが出来た。Further, even if the target was eroded during film formation and a film composition shift occurred, and the magnetostriction changed, the desired characteristics could be obtained simply by controlling the Cr film thickness.
(発明の効果)
以上説明したように、本発明により、スパッタ法、蒸着
法で金属磁性膜を成膜する際、母材組成が最適化されて
いなくても、その母材を使って、所望の特性を持った膜
を得ることが可能となった。(Effects of the Invention) As explained above, according to the present invention, when forming a metal magnetic film by sputtering or vapor deposition, even if the base material composition is not optimized, the base material can be used to achieve the desired result. It became possible to obtain a film with the following characteristics.
即ち、従来のように母材組成を最適化するために要した
時間とコストが不用となり、更に、成膜に伴う母材侵食
による膜組成ずれにたいしても、母材を変更しなくても
、膜特性を安定化させられるようになった。In other words, the time and cost required for optimizing the base material composition as in the past is no longer necessary, and furthermore, the film can be easily fixed without changing the base material, even if the film composition shifts due to base material erosion during film formation. Characteristics can now be stabilized.
第1図は、スパッタ法により成膜したセンダスト膜の飽
和磁歪λSのSi組成依存性を示す図、第2図は、本製
造方法における成膜直後の構造図であり、2−1.3−
1は金属磁性体膜、2−2は上層或は下層膜、2−3お
よび3−2は基板、第3図は、成膜後熱処理を施した膜
の構造図、第4図は、Cr膜厚を変えたときのセンダス
ト膜のλS、及び、センダスト膜中のCr量を示す図。
c
第1図FIG. 1 is a diagram showing the Si composition dependence of the saturation magnetostriction λS of a Sendust film formed by a sputtering method, and FIG. 2 is a structural diagram immediately after film formation in this manufacturing method, and 2-1.3-
1 is a metal magnetic film, 2-2 is an upper or lower layer film, 2-3 and 3-2 are substrates, FIG. 3 is a structural diagram of a film subjected to heat treatment after film formation, and FIG. 4 is a Cr FIG. 7 is a diagram showing the λS of the sendust film and the amount of Cr in the sendust film when the film thickness is changed. c Figure 1
Claims (6)
上層或いは下層に、金属膜或は半導体膜を成膜し、その
後熱処理により、金属元素或は半導体元素を金属磁性体
膜中に拡散させ、金属磁性体膜の組成制御を行うことを
特徴とする金属磁性体膜の製造方法。(1) In a method for manufacturing a metal magnetic film, a metal film or a semiconductor film is formed on the upper or lower layer of a metal magnetic material, and then a metal element or a semiconductor element is diffused into the metal magnetic film by heat treatment. A method for manufacturing a metal magnetic film, characterized in that the composition of the metal magnetic film is controlled by controlling the composition of the metal magnetic film.
金膜であることを特徴とする特許請求の範囲第1項記載
の金属磁性体膜の製造方法。(2) The method for manufacturing a metal magnetic film according to claim 1, wherein the metal magnetic film is an alloy film containing Fe, Al, and Si.
属膜が、Cr膜或はCrを含む合金膜であることを特徴
とする特許請求の範囲第1項または第2項記載の金属磁
性体膜の製造方法。(3) Claim 1 or 2, characterized in that the metal film formed above or below the metal magnetic film is a Cr film or an alloy film containing Cr. A method for manufacturing a magnetic metal film.
属膜がFe膜或はFeを含む合金膜であることを特徴と
する特許請求の範囲第1項または第2項記載の金属磁性
体膜の製造方法。(4) The metal film formed above or below the metal magnetic film is an Fe film or an alloy film containing Fe. A method for manufacturing a metal magnetic film.
属膜がAl膜或はAlを含む合金膜であることを特徴と
する特許請求の範囲第1項または第2項記載の金属磁性
体膜の製造方法。(5) The metal film formed above or below the metal magnetic film is an Al film or an alloy film containing Al. A method for manufacturing a metal magnetic film.
導体膜或は金属膜が、Si膜或はSiを含む合金膜であ
ることを特徴とする特許請求の範囲第1項または第2項
記載の金属磁性体膜の製造方法。(6) The semiconductor film or the metal film formed above or below the metal magnetic film is a Si film or an alloy film containing Si. 2. The method for producing a magnetic metal film according to item 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22293690A JPH04105309A (en) | 1990-08-24 | 1990-08-24 | Manufacture of metallic magnetic substance film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22293690A JPH04105309A (en) | 1990-08-24 | 1990-08-24 | Manufacture of metallic magnetic substance film |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04105309A true JPH04105309A (en) | 1992-04-07 |
Family
ID=16790192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22293690A Pending JPH04105309A (en) | 1990-08-24 | 1990-08-24 | Manufacture of metallic magnetic substance film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04105309A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6301086B1 (en) * | 1998-11-12 | 2001-10-09 | Sumitomo Special Metals Co., Ltd. | Thin-film magnetic head supporting structure and method for manufacturing the same |
WO2002023564A1 (en) * | 2000-09-18 | 2002-03-21 | Koninklijke Philips Electronics N.V. | Method of manufacturing a spin valve structure |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61194635A (en) * | 1985-02-22 | 1986-08-29 | Hitachi Ltd | Production of thin film permanent magnet |
JPH04102308A (en) * | 1990-08-21 | 1992-04-03 | Nec Kansai Ltd | Manufacture of fe-si-al-based alloy magnetic film |
-
1990
- 1990-08-24 JP JP22293690A patent/JPH04105309A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61194635A (en) * | 1985-02-22 | 1986-08-29 | Hitachi Ltd | Production of thin film permanent magnet |
JPH04102308A (en) * | 1990-08-21 | 1992-04-03 | Nec Kansai Ltd | Manufacture of fe-si-al-based alloy magnetic film |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6301086B1 (en) * | 1998-11-12 | 2001-10-09 | Sumitomo Special Metals Co., Ltd. | Thin-film magnetic head supporting structure and method for manufacturing the same |
WO2002023564A1 (en) * | 2000-09-18 | 2002-03-21 | Koninklijke Philips Electronics N.V. | Method of manufacturing a spin valve structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0821482B2 (en) | High stability laminated film resistor and manufacturing method thereof | |
JPH02161617A (en) | Production of magnetic recording medium | |
JPH04105309A (en) | Manufacture of metallic magnetic substance film | |
JPH0635654B2 (en) | Target material with high stability of thin-film magnetic properties against atmospheric changes | |
US4752344A (en) | Magnetic layer and method of manufacture | |
JPH0785452B2 (en) | Magnetic film and method for manufacturing the same | |
JPH0484403A (en) | Soft magnetic thin film | |
US5534080A (en) | Method for producing Mn-Al thin films | |
EP0183120B1 (en) | Magnetic recording member | |
JPH03263306A (en) | Magnetic film and magnetic head | |
JPH0519967B2 (en) | ||
JP2761267B2 (en) | Soft magnetic alloy film | |
JPH0744107B2 (en) | Soft magnetic thin film | |
JPH06215939A (en) | Thin film magnetic material | |
KR100390391B1 (en) | Alloy Compositions for Base Layer of High Density Longitudinal Magnetic Recording Media | |
JP2607288B2 (en) | Magnetic recording medium and method of manufacturing the same | |
JPH0350808A (en) | Preparation of superstructural nitriding alloy film | |
JP3236277B2 (en) | Method for manufacturing soft magnetic alloy film | |
JP3056401B2 (en) | Soft magnetic alloy film | |
JP2546275B2 (en) | Soft magnetic thin film | |
JPH03112104A (en) | Soft magnetic alloy film | |
JP2000030939A (en) | Magnetic element and its manufacture | |
JPH04214831A (en) | Soft magnetic film | |
JPS62200552A (en) | Production of photomagnetic recording medium | |
JPH02103715A (en) | Perpendicular magnetic recording medium and its production |