[go: up one dir, main page]

JPH04100808A - Production of polyolefin - Google Patents

Production of polyolefin

Info

Publication number
JPH04100808A
JPH04100808A JP21976990A JP21976990A JPH04100808A JP H04100808 A JPH04100808 A JP H04100808A JP 21976990 A JP21976990 A JP 21976990A JP 21976990 A JP21976990 A JP 21976990A JP H04100808 A JPH04100808 A JP H04100808A
Authority
JP
Japan
Prior art keywords
group
solid catalyst
catalyst component
bis
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP21976990A
Other languages
Japanese (ja)
Other versions
JP2678396B2 (en
Inventor
Yoshio Tajima
吉雄 田島
Kazutoshi Nomiyama
野見山 和敏
Naoki Kataoka
片岡 直紀
Kazuo Matsuura
一雄 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP21976990A priority Critical patent/JP2678396B2/en
Priority to DE1991614087 priority patent/DE69114087T2/en
Priority to EP91307633A priority patent/EP0474391B1/en
Publication of JPH04100808A publication Critical patent/JPH04100808A/en
Application granted granted Critical
Publication of JP2678396B2 publication Critical patent/JP2678396B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

PURPOSE:To produce a polyolefin having a narrow molecular weight distribution, low stickiness and high bulk density by polymerizing an olefin in the presence of a catalyst comprising a specified solid catalyst component and a modified organoaluminum compound. CONSTITUTION:A polyolefin is obtained by (co)polymerizing an olefin in the presence of a catalyst comprising a solid catalyst prepared by bringing a porous inorganic oxide (having a surface area of most suitably 150-350m<2>/g and a pore volume of desirably 1.0-2.5cm<3>/g, e.g. alumina or silica), an alkoxysilane compound of formula I (wherein R is a 1-24 C hydrocarbon group; X is halogen and 0<n<=3) and an organometallic compound of formula II (wherein M is a group TV transition metal; R<1> is cyclopentadienyl, indenyl, 7-24 C aralkyl or the like; X is halogen, H or a 1-24 C hydrocarbon group; 2<=p<=4; 0<=r<=2; and p+r=4) into contact with each other and an Al-O-Al bond-containing modified organoaluminum compound prepared by reacting an organoaluminum compound with water.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は特定触媒を用いたポリオレフィンの製造方法に
関する。さらに詳しくは、本発明は活性の高い特定な触
媒の存在下にオレフィンを重合または共重合することに
より、分子量分布または組成分布が狭く、粘着性が少な
く、しかもかさ密度の高いポリオレフィンを製造する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing polyolefin using a specific catalyst. More specifically, the present invention is a method for producing polyolefins with narrow molecular weight distribution or composition distribution, low stickiness, and high bulk density by polymerizing or copolymerizing olefins in the presence of a specific highly active catalyst. Regarding.

[従来技術] 近年、メタロセン系成分とメチルアンモキサンとからな
る触媒系が、エチレンの単独重合およびエチレンとα−
オレフィンの共重合において注目を浴びている。この触
媒系は遷移金属あたりの活性が比較的高く、また得られ
るポリマーは分子量分布が狭く、エチレン・α−オレフ
ィン共重合体においては組成分布か比較的狭く、べたつ
きも少ないなどの特長を備えている。
[Prior art] In recent years, a catalyst system consisting of a metallocene component and methyl ammoxane has been used for the homopolymerization of ethylene and for the polymerization of ethylene and α-
It is attracting attention in the copolymerization of olefins. This catalyst system has relatively high activity per transition metal, and the resulting polymer has a narrow molecular weight distribution, a relatively narrow composition distribution for ethylene/α-olefin copolymers, and low stickiness. There is.

例えば、特開昭58−19309号には上記触媒系が記
載されている。この触媒系は均一系重合触媒であるか、
これを用いて気相重合を行った場合には、重合反応器中
でブロック状ポリマーが生成し、これが重合反応器壁ま
たは撹拌機へ付着するため、連続運転かほとんど不可能
になってしまう問題点があった。
For example, JP-A-58-19309 describes the above catalyst system. Is this catalyst system a homogeneous polymerization catalyst?
When this is used for gas phase polymerization, a block polymer is generated in the polymerization reactor and this adheres to the walls of the polymerization reactor or the stirrer, making continuous operation almost impossible. There was a point.

この問題点を解決するため、触媒成分を無機酸化物担体
に担持させて使用する方法が提案されている(特開昭6
1−296008号、特開昭61−108610号)。
In order to solve this problem, a method has been proposed in which the catalyst component is supported on an inorganic oxide carrier (Japanese Unexamined Patent Publication No. 6
No. 1-296008, JP-A-61-108610).

しかし、提案された方法でも、触媒活性は未だ充分でな
く、これを改良する目的で助触媒として活性剤化合物を
追加供給する方法が提案されている(特開昭63−51
407号、特開平1−101315号)。
However, even with the proposed method, the catalytic activity is still insufficient, and in order to improve this, a method of additionally supplying an activator compound as a co-catalyst has been proposed (Japanese Patent Laid-Open No. 63-51
No. 407, JP-A No. 1-101315).

[発明が解決しようとする課H しかしながら、これらのような従来技術では、遷移金属
あたりの触媒活性こそ向上させ得るものの、得られたポ
リマーのかさ密度は未だ十分でなく、また粒子形状も満
足できるものではなかった。
[Problem to be solved by the invention H] However, although these conventional techniques can improve the catalytic activity per transition metal, the bulk density of the obtained polymer is still insufficient, and the particle shape is not satisfactory. It wasn't something.

特に、実質上溶媒の存在しない気相条件下における重合
では、ポリマー粒子形状が良いこと、かさ密度が大きい
ことが、連続運転時の重要な要素であり、この要求に応
え得る方法の開発が望まれていた。
In particular, in polymerization under gas phase conditions in the absence of a substantial solvent, good polymer particle shape and high bulk density are important factors during continuous operation, and it is desirable to develop a method that can meet these requirements. It was rare.

[問題を解決するための手段] 本発明者らは、上述の欠点ならびに要求を解決すべく鋭
意検討した結果、ついに所期の目的に適うポリオレフィ
ンの新規な製造方法を見出し、本発明に到達した。すな
わち、本発明の方法は、[I](i)多孔質無機酸化物
、 (if)一般式Al(OR)  X   (式中、Rは
炭素数1〜 3−n 24の炭化水素基、Xはハロゲン原子を示し、nはOw
n≦3である)で表される化合物、および(lii)一
般式R’  MX  (式中、Mは周期律表■族r の遷移金属元素を示し、R1はシクロペンタジェニル基
、置換シクロペンタジェニル基、インデニル基、置換イ
ンデニル基または炭素数7〜24のアラルキル基を示し
、R1同士は炭素数2〜8のアルキレン基を介し結合し
ていてもよく、Xはハロゲン原子、水素原子または炭素
数1〜24の炭化水素残基を示し、pおよびrは2≦p
≦4.0≦r≦2やおよびp +r−4を満たすもので
ある)で表される化合物 を相互に接触させることにより得られる固体触媒成分と
、 [11]有機アルミニウム化合物と水との反応によって
得られる^l−0−Al結合を含む変性有機アルミニウ
ム化合物 とからなる触媒の存在下に、オレフィンを重合または共
重合することを特徴とする。
[Means for Solving the Problem] As a result of intensive studies to solve the above-mentioned drawbacks and demands, the present inventors finally found a new method for producing polyolefin that meets the intended purpose, and arrived at the present invention. . That is, the method of the present invention comprises [I] (i) porous inorganic oxide, (if) general formula Al(OR) indicates a halogen atom, n is Ow
(n≦3), and (lii) a compound represented by the general formula R' MX (wherein M represents a transition metal element of Group I of the periodic table, R1 is a cyclopentadienyl group, a substituted cyclo It represents a pentagenyl group, an indenyl group, a substituted indenyl group, or an aralkyl group having 7 to 24 carbon atoms, R1 may be bonded to each other via an alkylene group having 2 to 8 carbon atoms, and X is a halogen atom or a hydrogen atom. or a hydrocarbon residue having 1 to 24 carbon atoms, and p and r are 2≦p
≦4.0≦r≦2 and p + r-4) A solid catalyst component obtained by contacting each other with [11] an organoaluminum compound and water It is characterized by polymerizing or copolymerizing an olefin in the presence of a catalyst comprising a modified organoaluminum compound containing a ^l-0-Al bond obtained by .

本発明の方法で用いる新規な重合触媒は、遷移金属あた
りの活性が極めて高く、連続重合が可能であり、しかも
得られるポリオレフィンは粒子形状が良好てかさ密度が
高い特長を有し、特に実質上溶媒の存在しない気相重合
条件下において製造された重合生成物も、上記した特長
を具備するものである。これに加えて、本発明の方法で
得られたポリオレフィン、特にエチレンとα−オレフィ
ンとの共重合体は、組成分布か狭く、表面粘着性も極め
て少ないという優れた特長を備えているばかりでなく、
ダイスウェル比か大きい等の特長を有している。
The novel polymerization catalyst used in the method of the present invention has an extremely high activity per transition metal and can be continuously polymerized.Moreover, the resulting polyolefin has good particle shape and high bulk density. Polymerization products produced under gas phase polymerization conditions in the absence of a solvent also have the above-mentioned features. In addition, the polyolefin obtained by the method of the present invention, particularly the copolymer of ethylene and α-olefin, not only has excellent features such as a narrow composition distribution and extremely low surface tackiness. ,
It has features such as a large die swell ratio.

以下、本発明についてさらに詳細に説明する。The present invention will be explained in more detail below.

本発明のポリオレフィン製造方法では、前記した「固体
触媒成分」と[変性有機アルミニウム化合物」とからな
る特定の触媒か使用されるが、まず、これらの触媒成分
について詳述する。
In the polyolefin production method of the present invention, a specific catalyst consisting of the above-mentioned "solid catalyst component" and "modified organoaluminum compound" is used, and first, these catalyst components will be explained in detail.

[1]固体触媒成分 本発明で使用される固体触媒成分は前記した通り、(D
多孔質無機酸化物、(ii)Al(OR)nXa−nで
表される化合物および(111) R’  MX  で
表さr れる化合物を相互に接触させることにより得られるもの
である。
[1] Solid catalyst component As described above, the solid catalyst component used in the present invention is (D
It is obtained by bringing a porous inorganic oxide, (ii) a compound represented by Al(OR)nXa-n, and a compound represented by (111) R' MX into contact with each other.

本発明に使用される多孔質無機酸化物としては、通常、
表面積が50〜1000イ/ g 1好ましくはio。
The porous inorganic oxide used in the present invention is usually
Surface area 50-1000 i/g 1 preferably io.

〜500ゴ/g、さらに好ましくは150〜350イ/
gであり、細孔容積か通常0.5〜3.OcI′/ g
、好ましくは1.0〜25α″/gである多孔性を有し
た無機の酸化物が望ましい。このような多孔質無機酸化
物としては、例えばシリカ、アルミナ、シリカ・アルミ
ナ、チタニア、ジルコニア、トリアあるいはこれらの混
合物などが挙げられ、特にシリカ、アルミナが好ましい
。これらの多孔性無機酸化物は、市販品をそのまま本発
明の触媒調製に用いても良いが、予め不活性ガス中にお
いて加熱処理するか、または乾燥して使用することが望
ましい。この時の加熱または乾燥条件は特に限定されな
いか、通常150〜800℃、好ましくは200〜60
0℃の温度範囲が望ましく、また加熱または乾燥時間は
通常0.5〜IO時間、好ましくは2〜5時間が望まし
い。
~500 go/g, more preferably 150-350 go/g
g, and the pore volume is usually 0.5 to 3. OcI′/g
An inorganic oxide having a porosity of 1.0 to 25 α''/g is desirable. Examples of such porous inorganic oxides include silica, alumina, silica/alumina, titania, zirconia, and thoria. Alternatively, mixtures thereof may be mentioned, and silica and alumina are particularly preferred. Commercially available commercial products of these porous inorganic oxides may be used as they are in the preparation of the catalyst of the present invention, but they may be heat-treated in an inert gas in advance. The heating or drying conditions at this time are not particularly limited, but are usually 150 to 800°C, preferably 200 to 60°C.
A temperature range of 0° C. is desirable, and the heating or drying time is usually 0.5 to IO hours, preferably 2 to 5 hours.

一般式Al(OR)  X   (ここでRは炭素数1
〜 3−n 24、好ましくは1〜12のアルキル基、Xはl\ロゲ
ン原子を示し、nは0<y1≦3である)で表される化
合物としては、例えばトリメトキシアルミニウム、ジメ
トキシモノクロルアルミニウム、メトキシジクロロアル
ミニウム、トリエトキシアルミニウム、ジェトキシモノ
クロルアルミニウム、エトキシジクロロアルミニウム、
トリイソプロポキシアルミニウム、ジイソプロポキシモ
ノクロルアルミニウム、イソプロポキシジクロロアルミ
ニウム、トリn−ブトキシアルミニウム、ジローブトキ
シモノクロルアルミニウム、n−ブトキシジクロロアル
ミニウム、トリ5ec−ブトキシアルミニウム、ジ5e
e−ブトキシモノクロロアルミニウム、5eC−ブトキ
シジクロロアルミニウム、トリペントキシアルミニウム
、ジェトキシモノクロルアルミニウム、ペントキシジク
ロロアルミニウム、トリフエノキシアルミニウム、ジフ
ェノキシモノクロロアルミニウム、モノフェノキシジク
ロロアルミニウム、トリトリルオキジアルミニウム、ジ
トリルオキシモノクロロアルミニウム、トリルオキシジ
クロロアルミニウム、トリベンジルオキジアルミニウム
等が挙げられ、好ましくはトリエトキシアルミニウム、
トリイソプロポキシアルミニウム、トリn−ブトキシア
ルミニウムが挙げられる。
General formula Al(OR)
- 3-n 24, preferably an alkyl group of 1 to 12, X represents a l\logen atom, and n is 0<y1≦3) Examples of the compound include trimethoxyaluminum, dimethoxymonochloroaluminum, , methoxydichloroaluminum, triethoxyaluminum, jetoxymonochloraluminum, ethoxydichloroaluminum,
Triisopropoxyaluminum, diisopropoxymonochloraluminum, isopropoxydichloroaluminum, tri-n-butoxyaluminum, dibutoxymonochloraluminum, n-butoxydichloroaluminum, tri5ec-butoxyaluminum, di5e
e-Butoxymonochloroaluminum, 5eC-butoxydichloroaluminum, tripentoxyaluminum, jetoxymonochloraluminum, pentoxydichloroaluminum, triphenoxyaluminum, diphenoxymonochloroaluminum, monophenoxydichloroaluminum, tritolyloxyaluminum, ditolyloxy Examples include monochloroaluminum, tolyloxydichloroaluminum, tribenzyloxyaluminum, etc., and preferably triethoxyaluminum,
Examples include triisopropoxyaluminum and tri-n-butoxyaluminum.

一般式R’  MX  て表される化合物は、式中のr Mが周期律表■族の遷移元素であり、R1がシクロペン
タジェニル基、置換シクロペンタジェニル基、インデニ
ル基、置換インデニル基または炭素数7〜24、好まし
くは7〜13のアラルキル基であり、R1同士は炭素数
2〜8、好ましくは2〜4のアルキレン基を介し結合し
ていてもよく、Xは塩素、臭素またはフッ素等のハロゲ
ン原子、水素原子または炭素数1〜24、好ましくは1
〜12の炭化水素残基であり、p、qおよびrは2≦p
≦4゜0≦r≦2.p+r−4を満足する数である。
In the compound represented by the general formula R' MX, r M in the formula is a transition element of group Ⅰ of the periodic table, and R1 is a cyclopentagenyl group, a substituted cyclopentagenyl group, an indenyl group, a substituted indenyl group. or an aralkyl group having 7 to 24 carbon atoms, preferably 7 to 13 carbon atoms, R1 may be bonded to each other through an alkylene group having 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms, and X is chlorine, bromine or A halogen atom such as fluorine, a hydrogen atom, or a carbon number of 1 to 24, preferably 1
~12 hydrocarbon residues, p, q and r are 2≦p
≦4゜0≦r≦2. This is a number that satisfies p+r-4.

さらに詳細には、式中のR1が置換シクロペンタジェニ
ル基および置換インデニル基である場合に於ける当該置
換基としては、炭素数1〜6のメチル基、エチル基、プ
ロピル基等のアルキル基または水素原子であり、またR
1のアラルキル基としては、ベンジル基、フェネチル基
、ベンズヒドリル基、トリチル基、フェニルブチル基、
フェニルプロピル基等か例示される。
More specifically, when R1 in the formula is a substituted cyclopentadienyl group or a substituted indenyl group, the substituent includes an alkyl group having 1 to 6 carbon atoms such as a methyl group, an ethyl group, a propyl group, etc. or a hydrogen atom, and R
As the aralkyl group of 1, benzyl group, phenethyl group, benzhydryl group, trityl group, phenylbutyl group,
Examples include phenylpropyl group.

R1同士を結合するアルキレン基か存在する場合、該ア
ルキレン基はR1かシクロペンタジェニル基、置換シク
ロペンタジェニル基、インデニル基、置換インデニル基
の場合、通常かかる環を結合するものである。また、X
の炭化水素残基としては、メチル基、エチル基、プロピ
ル基等のアルキル基、フェニル基、トリル基等のアリー
ル基、ベンジル基、フェネチル基、ベンズヒドリル基、
トリチル基、フェニルブチル基、フェニルプロピル基等
のアラルキル基、エトキシ基、プロポキシ基、フェノキ
シ基等のアルコキシ基、アリールオキシ基等が好例とし
て挙げられる。また、r−2の場合、Xは同種でも異種
であってもよい。
When there is an alkylene group that connects R1 to each other, the alkylene group usually connects such a ring when R1 is a cyclopentagenyl group, a substituted cyclopentagenyl group, an indenyl group, or a substituted indenyl group. Also, X
Hydrocarbon residues include alkyl groups such as methyl, ethyl and propyl groups, aryl groups such as phenyl and tolyl groups, benzyl groups, phenethyl groups, benzhydryl groups,
Examples include aralkyl groups such as trityl, phenylbutyl and phenylpropyl groups, alkoxy groups such as ethoxy, propoxy and phenoxy groups, and aryloxy groups. Moreover, in the case of r-2, X may be the same or different.

一般式R’  MX  て表される化合物の具体例とr しては、ビス(シクロペンタジェニル)ジクロロチタニ
ウム、ビス(シクロペンタジェニル)メチルクロロチタ
ニウム、ビス(シクロペンタジェニル)ジメチルチタニ
ウム、ビス(シクロペンタジェニル)エトキシクロロチ
タニウム、ビス(シクロベンタジエニル)プロポキンク
ロロチタニウム、ビス(シクロペンタジェニル)フェノ
キシクロロチタニウム、ビス(シクロペンタジェニル)
プロピルクロロチタニウム、ビス(シクロペンタジェニ
ル)ジフェニルチタニウム、ビス(シクロペンタジェニ
ル)ジトリルチタニウム、ビス(シクロペンタジェニル
)チタニウムベンジル、ビス(シクロペンタジェニル)
チタニウムモノクロロモノハライド、ビス(メチルシク
ロペンタジェニル)ジメチルチタニウム、テトラシクロ
ペンタジェニルチタニウム、ビス(インデニル)ジクロ
ロチタニウム、ビス(インデニル)ジメチルチタニウム
、エチレンビス(インデニル)チタニウムジクロリド、
エチレンビス(テトラヒドロインデニル)チタニウムジ
クロリド、テトラネオペンチルチタニウム、テトラネオ
フィルチタニウム、テトラベンジルチタニウム、ビス(
シクロペンタジェニル)ジクロロジルコニウム、ビス(
シクロペンタジェニル)メチルクロロジルコニウム、ビ
ス(シクロペンタジェニル)ジメチルジルコニウム、ビ
ス(インデニル)ジメチルジルコニウム、ビス(インデ
ニル)ジクロロジルコニウム、エチレンビス(インデニ
ル)ジクロロジルコニウム、エチレンビス(テトラヒド
ロインデニル)ジクロロジルコニウム、ビス(メチルシ
クロペンタジェニル)ジメチルジルコニウム、ビス(シ
クロペンタジェニル)ジルコニウムモノクロロモノハイ
ドライド、ビス(シクロペンタジェニル)ジルコニウム
ジベンジル、テトラシクロペンタジェニルジルコニウム
、テトラベンジルジルコニウム、ビス(シクロペンタジ
ェニル)エトキシクロロジルコニウム、ビス(シクロペ
ンタジェニル)プロポキシクロロジルコニウム、ビス(
シクロペンタジェニル)フェノキシクロロジルコニウム
、ビス(シクロペンタジェニル)プロピルクロロジルコ
ニウム、ビス(シクロペンタジェニル)ジフェニルジル
コニウム、ビス(シクロペンタジェニル)ジトリルジル
コニウム、ビス(シクロペンタジェニル)モノメチルモ
ノハライドジルコニウム、ビス(シクロペンタジェニル
)モノエチルモノクロリドジルコニウム、ビス(シクロ
ペンタジェニル)モノエチルモノクロリドジルコニウム
、テトラネオペンチルジルコニウム、テトラネオフィル
ジルコニウム、ビス(シクロペンタジェニル)ジメチル
ハフニウム、ビス(シクロペンタジェニル)ジクロロハ
フニウム、ビス(シクロペンタジェニル)メチルクロロ
ハフニウム、ビス(シクロペンタジェニル)エチルクロ
ロハフニウム、ビス(シクロペンタジェニル)プロピル
クロロハフニウム、ビス(シクロペンタジェニル)フェ
ニルクロロハフニウム、ビス(シクロペンタジェニル)
ジフェニルハフニウム、ビス(シクロペンタジェニル)
ジトリルハフニウム、ビス(シクロペンタジェニル)モ
ノクロロモノハライドハフニウム、ビス(シクロペンタ
ジェニル)モノメチルモノハライドハフニウム、ビス(
シクロペンタジェニル)ジベンジルハフニウム、エチレ
ンビス(インデニル)ジクロロハフニウム、エチレンビ
ス(テトラヒドロインデニル)ジクロロハフニウム、テ
トラネオペンチルハフニウム、テトラネオフィルハフニ
ウム等が例示され、好ましくは、ビス(シクロペンタジ
ェニル)ジクロロチタニウム、ビス(シクロペンタジェ
ニル)ジメチルチタニウム、ビス(シクロペンタジェニ
ル)ジクロロジルコニウム、ビス(シクロペンタジェニ
ル)ジメチルジルコニウム、ビス(シクロペンタジェニ
ル)ジクロロハフニウム、ビス(シクロペンタジェニル
)ジメチルハフニウムが挙げられる。
Specific examples of compounds represented by the general formula R' MX and r include bis(cyclopentagenyl)dichlorotitanium, bis(cyclopentagenyl)methylchlorotitanium, bis(cyclopentagenyl)dimethyltitanium, Bis(cyclopentadienyl)ethoxychlorotitanium, bis(cyclopentadienyl)propoquine chlorotitanium, bis(cyclopentadienyl)phenoxychlorotitanium, bis(cyclopentadienyl)
Propylchlorotitanium, bis(cyclopentagenyl)diphenyltitanium, bis(cyclopentagenyl)ditolyltitanium, bis(cyclopentagenyl)titaniumbenzyl, bis(cyclopentagenyl)
Titanium monochloromonohalide, bis(methylcyclopentadienyl)dimethyltitanium, tetracyclopentadienyltitanium, bis(indenyl)dichlorotitanium, bis(indenyl)dimethyltitanium, ethylenebis(indenyl)titanium dichloride,
Ethylene bis(tetrahydroindenyl) titanium dichloride, tetraneopentyl titanium, tetraneophyl titanium, tetrabenzyl titanium, bis(
cyclopentagenyl) dichlorozirconium, bis(
cyclopentagenyl) methylchlorozirconium, bis(cyclopentagenyl) dimethylzirconium, bis(indenyl) dimethylzirconium, bis(indenyl) dichlorozirconium, ethylenebis(indenyl)dichlorozirconium, ethylenebis(tetrahydroindenyl)dichlorozirconium , bis(methylcyclopentadienyl) dimethylzirconium, bis(cyclopentajenyl)zirconium monochloromonohydride, bis(cyclopentajenyl)zirconium dibenzyl, tetracyclopentajenylzirconium, tetrabenzylzirconium, bis(cyclopentajenyl)zirconium genyl)ethoxychlorozirconium, bis(cyclopentagenyl)propoxychlorozirconium, bis(
cyclopentagenyl) phenoxychlorozirconium, bis(cyclopentagenyl)propylchlorozirconium, bis(cyclopentagenyl)diphenylzirconium, bis(cyclopentagenyl)ditolylzirconium, bis(cyclopentagenyl)monomethylmono Zirconium halide, bis(cyclopentagenyl) monoethyl monochloride zirconium, bis(cyclopentagenyl) monoethyl monochloride zirconium, tetraneopentyl zirconium, tetraneophyl zirconium, bis(cyclopentagenyl) dimethyl hafnium, bis (cyclopentagenyl)dichlorohafnium, bis(cyclopentagenyl)methylchlorohafnium, bis(cyclopentagenyl)ethylchlorohafnium, bis(cyclopentagenyl)propylchlorohafnium, bis(cyclopentagenyl)phenyl Chlorhafnium, bis(cyclopentagenyl)
Diphenylhafnium, bis(cyclopentagenyl)
Ditolyl hafnium, bis(cyclopentagenyl) monochloromonohalide hafnium, bis(cyclopentagenyl) monomethyl monohalide hafnium, bis(
Examples thereof include bis(cyclopentagenyl) dibenzyl hafnium, ethylene bis(indenyl) dichlorohafnium, ethylene bis(tetrahydroindenyl) dichlorohafnium, tetraneopentyl hafnium, and tetraneophyl hafnium. ) dichlorotitanium, bis(cyclopentagenyl) dimethyltitanium, bis(cyclopentagenyl) dichlorozirconium, bis(cyclopentagenyl) dimethylzirconium, bis(cyclopentagenyl) dichlorohafnium, bis(cyclopentagenyl) ) dimethyl hafnium.

もちろん、これらの化合物を二種以上混合して用いるこ
ともてきる。
Of course, two or more of these compounds can also be used in combination.

本発明に用いられる固体触媒成分は前記の三成分、すな
わち(i)多孔質無機酸化物、(ii)一般式Al(O
R)。X3−0て表される化合物および(Ili) −
般式R’  MX  て表される化合物を相互に接触さ
p   「 せることにより得られる。
The solid catalyst component used in the present invention consists of the three components mentioned above, namely (i) porous inorganic oxide, (ii) general formula Al(O
R). A compound represented by X3-0 and (Ili) -
It can be obtained by bringing compounds represented by the general formula R' MX into contact with each other.

接触順序は任意に選ぶことができるが、一般的には成分
(i)〜(iii)の同時接触、成分(i)に成分(i
f)を接触させ、次いで成分(jii)を接触させる手
順、成分(i)と成分(jii)を接触させた後、成分
(ji)を接触させる手順の何れかが採用される。
The order of contact can be arbitrarily selected, but generally components (i) to (iii) are contacted simultaneously, component (i) is contacted with component (i), and component (i) is contacted with component (i).
Either a procedure of bringing f) into contact and then contacting component (jii) or a procedure of bringing component (i) and component (jii) into contact and then contacting component (ji) is adopted.

中でも成分(i)と成分(i i)とを接触させた後、
成分(iii)を接触させる手順が望ましい。また、接
触方法も任意に選ぶことができ、例えばヘプタン、ヘキ
サン、ペンタン、ノナン、ベンゼン、トルエン等で例示
される不活性炭化水素類や、各種のアルコール類、フェ
ノール類、エーテル類、ケトン類、エステル類、アミン
類、ニトリル類、または1.2ジクロロエタン、テトラ
クロルエタン、エチリデンクロライド、四塩化炭素、ク
ロロホルム、クロルベンゼン、ジクロロベンゼン等で例
示されるハロゲン含有化合物類あるいはこれらの混合物
から選ばれる有機溶媒中において、通常0〜200℃、
好ましくは50〜100℃の温度で通常5分〜30時間
、好ましくは30分〜10時間接触させた後、有機溶媒
を除去する方法を採用することができる。
Among them, after bringing component (i) and component (i i) into contact,
A procedure of contacting component (iii) is preferred. In addition, the contact method can be arbitrarily selected. For example, inert hydrocarbons such as heptane, hexane, pentane, nonane, benzene, toluene, etc., various alcohols, phenols, ethers, ketones, An organic compound selected from esters, amines, nitriles, halogen-containing compounds such as 1.2 dichloroethane, tetrachloroethane, ethylidene chloride, carbon tetrachloride, chloroform, chlorobenzene, dichlorobenzene, etc., or mixtures thereof. In a solvent, usually 0 to 200°C,
Preferably, a method can be employed in which the organic solvent is removed after contacting at a temperature of 50 to 100°C for usually 5 minutes to 30 hours, preferably 30 minutes to 10 hours.

本発明における固体触媒成分の製造に際しては、前述の
通り成分(i)と成分(if)を接触させた後、成分(
iii)を接触させることが特に好ましいが、これにつ
いてさらに詳細に説明する。成分(i)と(if)の接
触は、前記溶媒中に成分(ii)を予め溶解させ、その
溶液を成分(j)に含浸させる方法が、あるいは前記溶
媒中に成分(i)と成分(ii)を同時に添加して行う
ことができる。いずれにしても成分(i)と成分(j 
i)とは、通常0〜200 ”C1好ましくは20〜1
00℃の温度で、通常5分〜30時間、好マシくは30
分〜20時間接触せしめることが望ましい。成分(if
)を溶媒に溶解させる際の濃度は特に限定されるもので
はないが、通常は溶媒1リツトルに対し0.1〜5モル
、好ましくは0.5〜1,5モルが望ましい。また、成
分(i)と成分(ji)の使用割合は、通常成分(+)
 、1 gに対して成分(N)が0.01〜5ミリモル
、好ましくは0.1〜1.5 ミリモル含有されるよう
に選択することが好ましい。なお、成分(+)との接触
によって、成分(ii)の少なくとも一部は成分(i)
と反応するものと推測される。
In producing the solid catalyst component in the present invention, component (i) and component (if) are brought into contact as described above, and then component (
It is particularly preferable to contact iii), which will be explained in more detail. Components (i) and (if) may be brought into contact by dissolving component (ii) in advance in the solvent and impregnating component (j) with the solution, or by dissolving component (i) and component (if) in the solvent. ii) can be added at the same time. In any case, component (i) and component (j
i) is usually 0 to 200" C1, preferably 20 to 1
At a temperature of 00℃, usually 5 minutes to 30 hours, preferably 30 hours.
It is desirable that the contact be carried out for 20 minutes to 20 hours. Ingredients (if
) in a solvent is not particularly limited, but it is usually 0.1 to 5 mol, preferably 0.5 to 1.5 mol per liter of solvent. In addition, the usage ratio of component (i) and component (ji) is usually component (+)
It is preferable to select the component (N) so that it is contained in an amount of 0.01 to 5 mmol, preferably 0.1 to 1.5 mmol, per 1 g. In addition, upon contact with component (+), at least a portion of component (ii) is converted to component (i).
It is presumed that this will be the reaction.

成分(+)に所望量の成分(ji)を含有させた後は、
これを望ましくは同様の溶媒で洗浄後、成分(iiDと
接触させる。この場合、成分(iii)を含有成分(+
>は乾燥後、成分(fil)と接触させてもよく、また
、何ら乾燥することなく分散液のまま成分(jjj)と
の接触に供してもよい。
After adding the desired amount of component (ji) to component (+),
This is preferably washed with a similar solvent and then brought into contact with component (iiD). In this case, component (iii) is
> may be brought into contact with the component (fil) after drying, or may be brought into contact with the component (jjj) as a dispersion without any drying.

成分(jij)を接触させるに際しての条件もまた特に
限定させるものではないが、−殻内には前記有機溶媒中
通常20〜200℃、好ましくは50〜100℃の温度
で通常5分〜30時間、好ましくは30分〜10時間撹
拌下に接触させた後、しかるのち、該有機溶媒を除去す
る方法などが好適な方法として例示される。
The conditions for contacting the component (jij) are also not particularly limited, but - the inside of the shell is heated in the organic solvent at a temperature of usually 20 to 200°C, preferably 50 to 100°C, usually for 5 minutes to 30 hours. Examples of suitable methods include a method in which the organic solvent is removed after contacting the organic solvent with stirring, preferably for 30 minutes to 10 hours.

本発明の固体触媒成分における各成分の存在割合は、成
分(11)を含有する成分(1)Igあたり、成分(j
l)が通常0.O1〜5ミリモル、好ましくは0.1−
1.5 ミリモル含まれていることが望ましく、また、
成分(iii)は、各成分を接触させて得られた固体触
媒成分中に遷移金属元素として通常0.1〜10重量%
、好ましくは0.5〜8.0重量%の範囲で含まれてい
ることが好ましい。
The abundance ratio of each component in the solid catalyst component of the present invention is as follows: per Ig of component (1) containing component (11), component (j
l) is usually 0. 1-5 mmol of O, preferably 0.1-
It is desirable that the content is 1.5 mmol, and
Component (iii) is usually 0.1 to 10% by weight as a transition metal element in the solid catalyst component obtained by contacting each component.
, preferably in a range of 0.5 to 8.0% by weight.

[11]変性有機アルミニウム化合物 本発明において使用される変性有機アルミニウム化合物
は、有機アルミニウム化合物と水との反応生成物で、分
子中に少なくとも^1−0−^1結合を含有するもので
あり、その結合数は1〜10o個、好ましくは1〜50
個である。有機アルミニウムと水との反応は、通常不活
性炭化水素中で行われる。
[11] Modified organoaluminum compound The modified organoaluminum compound used in the present invention is a reaction product of an organoaluminum compound and water, and contains at least ^1-0-^1 bonds in the molecule, The number of bonds is 1 to 10o, preferably 1 to 50
It is individual. The reaction between organoaluminium and water is usually carried out in an inert hydrocarbon.

不活性炭化水素としてはペンタン、ヘキサン、ヘプタン
、シクロヘキサン、メチルシクロヘキサン、ベンゼン、
トルエン、キシレン等の脂肪族、脂環族、芳香族炭化水
素か挙げられるが、脂肪族、芳香族炭化水素が好ましい
Inert hydrocarbons include pentane, hexane, heptane, cyclohexane, methylcyclohexane, benzene,
Examples include aliphatic, alicyclic, and aromatic hydrocarbons such as toluene and xylene, and aliphatic and aromatic hydrocarbons are preferred.

有機アルミニウム化合物としては、一般式RnAlX 
  (Rは炭素数1〜18、好ましくは1〜12−n のアルキル基、アルケニル基、アリール基、アラルキル
基等の炭化水素基、Xは水素原子またはハロゲン原子を
表わし、nは1≦n≦3の範囲のものである)で表され
る化合物であり、好ましくは、トリアルキルアルミニウ
ムが用いられる。
The organoaluminum compound has the general formula RnAlX
(R represents a hydrocarbon group such as an alkyl group, alkenyl group, aryl group, or aralkyl group having 1 to 18 carbon atoms, preferably 1 to 12-n, X represents a hydrogen atom or a halogen atom, and n represents 1≦n≦ 3), and trialkylaluminum is preferably used.

トリアルキルアルミニウムのアルキル基としてメチル基
、エチル基、プロピル基、イソプロピル基、ブチル基、
イソブチル基、ペンチル基、ヘキシル基、オクチル基、
デシル基、ドデシル基等を例示できるが、メチル基か特
に好ましい。
The alkyl group of trialkylaluminum includes methyl group, ethyl group, propyl group, isopropyl group, butyl group,
Isobutyl group, pentyl group, hexyl group, octyl group,
Examples include decyl group and dodecyl group, but methyl group is particularly preferred.

水と有機アルミニウム化合物との比(水/A1モル比)
は0.25/ 1〜1.2/1、特に0.5/1〜1/
1が好ましく、また反応温度は通常−70〜100℃、
好ましくは一20〜20℃である。反応時間は通常5〜
48時間、好ましくは10〜24時間が良い。反応に要
する水として、硫酸銅水和物、硫酸アルミニウム水和物
等の結晶水を利用して実施することもできる。
Ratio of water and organoaluminum compound (water/A1 molar ratio)
is 0.25/1 to 1.2/1, especially 0.5/1 to 1/
1 is preferred, and the reaction temperature is usually -70 to 100°C,
Preferably it is -20 to 20°C. Reaction time is usually 5~
48 hours, preferably 10 to 24 hours. The reaction can also be carried out using crystal water of copper sulfate hydrate, aluminum sulfate hydrate, etc. as the water required for the reaction.

オレフィンの重合または共重合 本発明は前記した固体触媒成分と変性有機アルミニウム
化合物からなる触媒の存在下に、オレフィンの重合体ま
たは共重合体を製造するものである。固体触媒成分と変
性有機アルミニウムは、別々に重合系内に供給すること
ができ、また、予め両者を接触させた後、重合系内に供
給してもよい。
Olefin Polymerization or Copolymerization The present invention is for producing an olefin polymer or copolymer in the presence of a catalyst consisting of the solid catalyst component described above and a modified organoaluminum compound. The solid catalyst component and the modified organoaluminum can be supplied separately into the polymerization system, or they may be brought into contact with each other beforehand and then supplied into the polymerization system.

固体触媒成分と変性有機アルミニウム化合物との使用割
合は、固体触媒成分内の遷移金属に対すする変性有機ア
ルミニウム化合物中のアルミニウムの原、子比で1〜1
00,000 、好ましくは5〜1 、000の範囲に
ある。
The usage ratio of the solid catalyst component and the modified organoaluminum compound is 1 to 1 in terms of the atomic ratio of aluminum in the modified organoaluminum compound to the transition metal in the solid catalyst component.
00,000, preferably in the range of 5 to 1,000.

本発明の方法はチーグラー触媒で重合できるすべてのオ
フインの重合に適用可能であり、特に炭素数2〜12の
α−オレフィンが好ましく、例えば、エチレン、プロピ
レン、ブテン−1、ヘキセン−1,4−メチルペンテン
−1などのα−オレフィン類の単独重合およびエチレン
とプロピレン、エチレンとブテン−11エチレンとヘキ
セン−1、エチレンと4−メチルペンテン−1等のエチ
レンと炭素数3〜12、好ましくは3〜6のα−オレフ
ィンの共重合、プロピレンとブテン−1の共重合および
エチレンと他の2種以上のα−オレフィンとの共重合な
どが好適に使用される。
The method of the present invention is applicable to the polymerization of all off-ynes that can be polymerized with Ziegler catalysts, and α-olefins having 2 to 12 carbon atoms are particularly preferred, such as ethylene, propylene, butene-1, hexene-1,4- Homopolymerization of α-olefins such as methylpentene-1, ethylene and propylene, ethylene and butene-11, ethylene and hexene-1, ethylene and 4-methylpentene-1, etc., and ethylene with 3 to 12 carbon atoms, preferably 3 Copolymerization of α-olefins 1 to 6, copolymerization of propylene and butene-1, copolymerization of ethylene and two or more other α-olefins, etc. are preferably used.

また、ポリオレフィンの改質を目的とする場合のジエン
との共重合も好ましく行われる。この時使用されるジエ
ン化合物の例としてはブタジェン、1.4−へキサジエ
ン、エチリデンノルボルネン、ジシクロペンタジェン等
を挙げることができる。
Copolymerization with dienes is also preferably carried out for the purpose of modifying polyolefins. Examples of diene compounds used at this time include butadiene, 1,4-hexadiene, ethylidenenorbornene, dicyclopentadiene, and the like.

なお、共重合の際のコモノマー含有率は任意に選択でき
うるちのであるが、例えば、エチレンと炭素数3〜12
のα−オレフィンとの共重合の場合、エチレン・α−オ
レフィン共重合体のα−オレフィン含有量は40モル%
以下、好ましくは30モル%以下さらに好ましくは20
モル%以下とするのが望ましい。
The comonomer content during copolymerization can be selected arbitrarily, but for example, ethylene and carbon atoms of 3 to 12
In the case of copolymerization with α-olefin, the α-olefin content of the ethylene/α-olefin copolymer is 40 mol%.
or less, preferably 30 mol% or less, more preferably 20
It is desirable that it be less than mol%.

本発明の触媒を使用してのオレフィンの重合はスラリー
重合、溶液重合または気相重合にて行うことができる。
Polymerization of olefins using the catalyst of the present invention can be carried out by slurry polymerization, solution polymerization or gas phase polymerization.

特に本発明の触媒は気相重合に好適に用いることができ
る。重合反応は、すべて実質的に酸素、水等を絶った状
態で、不活性炭化水素の存在下、または不存在下で行わ
れる。該不存在下においては、生成するポリマーを流動
化状態に保ちながら重合を行う流動床気相反応法、およ
び撹拌式気相反応法を適用することができ、さらに連続
式、回分式のいずれも適用することができる。この時の
重合条件は、温度が通常20〜200 ”C1好ましく
は50〜100℃、圧力が常圧〜70kg/c7G。
In particular, the catalyst of the present invention can be suitably used for gas phase polymerization. All polymerization reactions are carried out substantially in the absence of oxygen, water, etc., and in the presence or absence of inert hydrocarbons. In its absence, a fluidized bed gas phase reaction method in which polymerization is carried out while keeping the produced polymer in a fluidized state and a stirring gas phase reaction method can be applied, and both continuous and batch methods can be applied. Can be applied. The polymerization conditions at this time are that the temperature is usually 20 to 200°C, preferably 50 to 100°C, and the pressure is normal pressure to 70kg/c7G.

好ましくは常圧〜20kg/cjGであり、時間は特に
限定されないが、滞留時間にして通常5分〜10時間、
好ましくは10分〜5時間で実施される。生成重合体ま
たは共重合体の分子量の調節は、重合温度、触媒のモル
比などの重合条件を変えることによってもある程度調節
できるが、重合系中に水素を添加することにより効果的
に行われる。もちろん、本発明の触媒を用いて、水素濃
度、重合温度などの重合条件の異なった2段階ないしそ
れ以上の多段階の重合反応も何ら支障な〈実施できる。
Preferably, the pressure is normal pressure to 20 kg/cjG, and the time is not particularly limited, but the residence time is usually 5 minutes to 10 hours,
Preferably it is carried out for 10 minutes to 5 hours. Although the molecular weight of the produced polymer or copolymer can be controlled to some extent by changing polymerization conditions such as polymerization temperature and catalyst molar ratio, it is effectively carried out by adding hydrogen to the polymerization system. Of course, using the catalyst of the present invention, a two-step or more multi-step polymerization reaction with different polymerization conditions such as hydrogen concentration and polymerization temperature can be carried out without any hindrance.

[実施例] 以下に本発明を実施例によって具体的に説明するが、本
発明は以下の実施例に限定されるものではない。
[Examples] The present invention will be specifically explained below using Examples, but the present invention is not limited to the following Examples.

なお、実施例および比較例で得られた重合体の物性測定
は次の方法で行った。
The physical properties of the polymers obtained in Examples and Comparative Examples were measured by the following method.

メルトインデックス(M I ) ASTM D 1238757Tに基づき測定した。そ
の際の条件ハ190’c、2.16kg荷重をM l 
2′6、Iokg荷重を1vl)IQとして示した。
Melt Index (M I ) Measured based on ASTM D 1238757T. At that time, the conditions were 190'c, 2.16kg load M l
2'6, Iokg load is expressed as 1vl) IQ.

ダイスウェル比(D S R) Ml測定装置を用いて次式で定義する。Dice swell ratio (DSR) It is defined by the following equation using an Ml measuring device.

オリフィス径(2,1mm) 密度 ASTM D 1505−68に準拠した。Orifice diameter (2.1mm) density Compliant with ASTM D 1505-68.

DSCによる融点測定 セイコー電子製のDSC−20型融点測定装置使用(サ
ンプル量5i+g)。
Melting point measurement by DSC: Seiko Electronics DSC-20 type melting point measuring device was used (sample amount 5i+g).

測定法は次のとおりである。180 ’Cで3分保持次
いで10℃/分で0℃まで冷却、0℃で10分保持、そ
の後lO℃/分で昇温した。
The measurement method is as follows. The temperature was maintained at 180'C for 3 minutes, then cooled to 0°C at a rate of 10°C/min, held at 0°C for 10 minutes, and then raised at a rate of 10°C/min.

メチルアルモキサン(MAO)の調製 硫酸銅5水塩13gを電磁誘導撹拌機付き300 m1
3つ目フラスコに入れ、更にトルエン50m1を入れ懸
濁させた。次いで0℃てトルメチルアルミニウムの1m
■of/m+の溶液150m1を2時間かけて滴下し、
滴下終了後25℃に昇温し、その温度で24時間反応さ
せた。
Preparation of methylalumoxane (MAO) 13 g of copper sulfate pentahydrate was added to 300 m1 with an electromagnetic induction stirrer.
The mixture was placed in a third flask, and 50 ml of toluene was added thereto for suspension. Then, 1 m of tolumethylaluminum was added at 0°C.
■Drop 150ml of solution of/m+ over 2 hours,
After the dropwise addition was completed, the temperature was raised to 25°C, and the reaction was continued at that temperature for 24 hours.

次いで反応物を濾過し、反応生成物を含有する液中のト
ルエンを除去して白色結晶状メチルアルモキサン4gを
得た。
The reaction product was then filtered to remove toluene from the liquid containing the reaction product to obtain 4 g of white crystalline methylalumoxane.

テトラベンジルジルコニウムの調製 電磁誘導撹拌機を備えた1ヱ3つロフラスコにベンジル
マグネシウムクロリド70gを含むジエチルエーテル溶
液500 mlを、窒素雰囲気下0℃において入れる。
Preparation of Tetrabenzylzirconium 500 ml of a diethyl ether solution containing 70 g of benzylmagnesium chloride is placed in a three-bottle flask equipped with an electromagnetic induction stirrer at 0° C. under a nitrogen atmosphere.

次いで四塩化ジルコニウム30gを窒素雰囲気下30分
かけて添加した。その混合物を2時間撹拌し、その間に
温度を室温にまで上昇させた。
Next, 30 g of zirconium tetrachloride was added over 30 minutes under a nitrogen atmosphere. The mixture was stirred for 2 hours, during which time the temperature was allowed to rise to room temperature.

次いでデカリン300 mlを添加し、室温で1時間撹
拌した。生成した塩化マグネシウムを分離し、得られた
デカリン溶液を50℃に加熱しつつ、窒素ガスを吹き込
みながらエーテルを除去した。得られたデカリン溶液か
らテトラベンジルジルコニウム32gを得た。
Then, 300 ml of decalin was added and stirred at room temperature for 1 hour. The produced magnesium chloride was separated, and the resulting decalin solution was heated to 50° C. and ether was removed while blowing nitrogen gas. 32 g of tetrabenzylzirconium was obtained from the obtained decalin solution.

固体触媒成分A 460℃で焼成したシリカ(富士ディビソン社グレード
#952 ) 20gを、電磁誘導撹拌機を備えた30
0 mlの3つロフラスコに入れ、さらにアルミニウム
イソプロピレートAl(O4Prh 2.Ogを100
m1のn−ヘキサンに溶解させた溶液を室温にて加えた
。次いで窒素雰囲気下50℃に昇温し、2時間撹拌した
。撹拌後、上澄液を除去し、100m1のnヘキサンに
て洗浄し、窒素ブローにて乾燥した。
Solid catalyst component A: 20 g of silica (Fuji Davison grade #952) calcined at 460°C was placed in a
0 ml in a three-bottle flask, and add 100 g of aluminum isopropylate Al (O4Prh 2.Og).
A solution of m1 in n-hexane was added at room temperature. Then, the temperature was raised to 50°C under a nitrogen atmosphere, and the mixture was stirred for 2 hours. After stirring, the supernatant was removed, washed with 100 ml of n-hexane, and dried with nitrogen blow.

次いで1.2−ジクロロエタン70m1に、ビス(シク
ロペンタジェニル)ジクロロエタン(以下Cp2TiC
12と略記) 1.2 gを溶解させた液を、窒素上室
温で前記の乾燥物に加え、次いで室温で2時間撹拌後、
50℃窒素ブローにて1.2ジクロロチタンを除去して
固体触媒成分Aを得た。この固体触媒成分Aは1.03
vt%のTiを含有していた。
Next, bis(cyclopentadienyl)dichloroethane (hereinafter Cp2TiC) was added to 70ml of 1,2-dichloroethane.
A solution in which 1.2 g (abbreviated as 12) was dissolved was added to the above dried product at room temperature over nitrogen, and then after stirring at room temperature for 2 hours,
Solid catalyst component A was obtained by removing 1.2 dichlorotitanium using nitrogen blowing at 50°C. This solid catalyst component A is 1.03
It contained vt% of Ti.

固体触媒成分B 100 mlのn−へキサンに溶解させたアルミニウム
イソプロビレ−)Al(OiPr)3の量を2.0gか
ら4.0gに増加させた以外は、固体触媒成分Aと同様
にして固体触媒成分Bを調製した。この固体触媒成分B
は0.95wt%のTiを含有していた。
Solid catalyst component B Same as solid catalyst component A except that the amount of aluminum isopropylene (OiPr)3 dissolved in 100 ml of n-hexane was increased from 2.0 g to 4.0 g. Solid catalyst component B was prepared. This solid catalyst component B
contained 0.95 wt% Ti.

固体触媒成分C 固体触媒成分Aの調製において、1,2−ジクロロエタ
ン70m1に、1.2gのCI)2 TlCI2溶解さ
せた溶液の代わりに、トルエン100 mlにビス(シ
クロペンタジェニル)ジクロロジルコニウム(以下CI
)2 ZrCl2と略記) 0.73gを溶解させた溶
液を用いたこと以外は、固体触媒成分Aと同様に固体触
媒成分Cを調製した。この固体触媒成分Cは0.99v
t%のZrを含有していた。
Solid catalyst component C In the preparation of solid catalyst component A, instead of a solution of 1.2 g of CI)2 TlCI2 dissolved in 70 ml of 1,2-dichloroethane, bis(cyclopentadienyl) dichlorozirconium ( Below CI
)2 ZrCl2) Solid catalyst component C was prepared in the same manner as solid catalyst component A, except that a solution in which 0.73 g of ZrCl2 was dissolved was used. This solid catalyst component C is 0.99v
It contained t% of Zr.

固体触媒成分り 固体触媒成分Bの調製において、1,2−ジクロロエタ
ン70m1に1.2gのCp2 TiCl2を溶解させ
た溶液の代わりに、トルエン100m1に0.8gのC
p2 ZrCl2を溶解させた溶液を使用したこと以外
は、固体触媒成分Bと同様に固体触媒成分りを調製した
。この固体触媒成分りは1.Ovt%のZ「を含有して
いた。
Solid Catalyst Component In the preparation of solid catalyst component B, 0.8 g of Cp2 TiCl2 was dissolved in 100 ml of toluene instead of a solution of 1.2 g Cp2TiCl2 dissolved in 70 ml 1,2-dichloroethane.
A solid catalyst component was prepared in the same manner as solid catalyst component B except that a solution in which p2 ZrCl2 was dissolved was used. This solid catalyst component is 1. It contained Ovt% of Z''.

固体触媒成分E 固体触媒成分Aの調製において、Al(01Prhの代
わりにアルミニウム第二級ブトキサイドAl(Osec
Bu)32.5 gを使用し、かツcI)2TiC1z
の使用量を1.2gから2.6gに増量させた以外は、
固体触媒成分Aと同様に固体触媒成分Eを調製した。こ
の固体触媒成分EはTjを2.0wt%含有していた。
Solid catalyst component E In the preparation of solid catalyst component A, aluminum secondary butoxide Al (Osec
Bu) 32.5 g was used, and cI) 2TiC1z
Except for increasing the usage amount from 1.2g to 2.6g,
Solid catalyst component E was prepared in the same manner as solid catalyst component A. This solid catalyst component E contained 2.0 wt% of Tj.

固体触媒成分F 固体触媒成分Aの調製において、460℃焼成シリカ(
#952)に代えて600℃燃成シリカ(#952)を
使用し、さらに1,2−ジクロロエタン70m1に1.
2gのCp2 TiCl2を溶解させた溶液の代わりに
、トルエン100 mlに1gのビス(シクロペンタジ
ェニル)ジメチルチタンを溶解させた溶液を使用したこ
と以外は、固体触媒成分Aと同様に固体触媒成分Fを調
製した。この固体触媒成分FはTiを1.03νt%含
有していた。
Solid catalyst component F In the preparation of solid catalyst component A, 460°C calcined silica (
#952) was replaced with 600°C combustion silica (#952), and 70ml of 1,2-dichloroethane was added with 1.
A solid catalyst component was used in the same manner as solid catalyst component A, except that a solution of 1 g of bis(cyclopentagenyl)dimethyltitanium dissolved in 100 ml of toluene was used instead of a solution of 2 g of Cp2TiCl2 dissolved therein. F was prepared. This solid catalyst component F contained 1.03 νt% of Ti.

固体触媒成分G 固体触媒成分Fの調製において、トルエン100m1に
ビス(シクロペンタジェニル)ジメチルチタン1gを溶
解させた溶液に代えて、トルエン100m1にビス(シ
クロペンタジェニル)ジメチルジルコニウム0.65g
を溶解させた溶液を使用したこと以外は、固体触媒成分
Fと同様に固体触媒成分Gを調製した。この固体触媒成
分GはZrをl 、 Ovt%含有していた。
Solid catalyst component G In the preparation of solid catalyst component F, 0.65 g of bis(cyclopentadienyl)dimethylzirconium was added to 100 ml of toluene instead of a solution of 1 g of bis(cyclopentadienyl)dimethyltitanium dissolved in 100 ml of toluene.
Solid catalyst component G was prepared in the same manner as solid catalyst component F, except that a solution in which . This solid catalyst component G contained 1 Ovt% of Zr.

固体触媒成分H 固体触媒成分Aの調製において、Al (OiPr)3
の代わりに、ジイソプロポキンアルミニウムクロリドA
l(OiPr)2Cl 1.8gを使用したこと以外は
、固体触媒成分Aと同様に固体触媒成分Hを調製した。
Solid catalyst component H In the preparation of solid catalyst component A, Al (OiPr)3
instead of diisopropoquine aluminum chloride A
Solid catalyst component H was prepared in the same manner as solid catalyst component A, except that 1.8 g of l(OiPr)2Cl was used.

この固体触媒成分HはTiを1.05wt%含有してい
た。
This solid catalyst component H contained 1.05 wt% of Ti.

固体触媒成分I 固体触媒成分Aの調製において、1,2−ジクロロエタ
ン70m1に1.2gのCp2 TiCl2を溶解させ
た溶液の代わりに、トルエン50m1とデカ9250m
1混合溶媒にテトラベンジルジルコニウム(以下(Bz
)a Zrと略記)を1.2 g:溶解させた液を使用
した。トルエン−プロリン混合溶媒を除去して固体触媒
成分Iを得た。この固体触媒成分IはZrを(1,98
vt%含有していた。
Solid catalyst component I In the preparation of solid catalyst component A, 50 ml of toluene and 9250 ml of Deca instead of a solution of 1.2 g of Cp2TiCl2 dissolved in 70 ml of 1,2-dichloroethane
1 mixed solvent with tetrabenzylzirconium (hereinafter (Bz
) a A solution in which 1.2 g of (abbreviated as Zr) was dissolved was used. Solid catalyst component I was obtained by removing the toluene-proline mixed solvent. This solid catalyst component I contains Zr (1,98
It contained vt%.

固体触媒成分J 固体触媒成分Aの調製において、1,2−ジクロロエタ
ン70m1にCp2 TiCl2を溶解させた溶液の代
わりに、トルエン70m1にビス(シクロペンタジェニ
ル)ジクロロハフニウム(以下Cp2 Hfeb ト略
記)を0.5g溶解させた溶液を使用した。トルエンを
除去して固体触媒成分Jを得た。この固体触媒成分Jは
Hfを0.99wt%9wt%含有。
Solid catalyst component J In the preparation of solid catalyst component A, bis(cyclopentadienyl) dichlorohafnium (hereinafter abbreviated as Cp2 Hfeb) was added to 70 ml of toluene instead of a solution of Cp2 TiCl2 dissolved in 70 ml of 1,2-dichloroethane. A solution containing 0.5g was used. Solid catalyst component J was obtained by removing toluene. This solid catalyst component J contained 0.99 wt% and 9 wt% of Hf.

固体触媒成分に 固体触媒成分への調製において、1.2−ジクロロエタ
ン70m1にCp2 TiCl2を溶解させた溶液の代
ワリに、トルエン70m1にビス(インデニル)ジクロ
ロチタニウム(以下(Ind) 2 TiCl2と略記
)を1.75g溶解させた溶液を使用した。トルエンを
除去して固体触媒成分Kを得た。この固体触媒成分には
Tiを1wt%含有していた。
In preparing the solid catalyst component, bis(indenyl) dichlorotitanium (hereinafter abbreviated as (Ind) 2 TiCl2) was added to 70 ml of toluene instead of a solution of Cp2 TiCl2 dissolved in 70 ml of 1,2-dichloroethane. A solution in which 1.75g of was dissolved was used. Solid catalyst component K was obtained by removing toluene. This solid catalyst component contained 1 wt% of Ti.

固体触媒成分り 直径1/2インチのステンレススチール製ポールが25
ケ入った内容積400 mlのステンレススチール製ポ
ットに、Al(OiPrh lOgおよびCp2 Ti
C120,55gを入れ、窒素雰囲気下、室温で16時
間ボールミーリングを行った。得られた固体粉末1g中
には1.0νt%のチタンが含まれていた。
25 1/2 inch diameter stainless steel poles with solid catalyst component
Al (OiPrh lOg and Cp2 Ti
55 g of C120 was added, and ball milling was performed at room temperature under a nitrogen atmosphere for 16 hours. 1 g of the obtained solid powder contained 1.0 νt% titanium.

固体触媒成分M 460℃で焼成したシリカ(富士ディビソン社グレード
#952 ) 20gを電磁誘導撹拌機を備えた300
m13つ目フラスコに入れ、次いで1,2−ジクロロエ
タン70m1に1.1gのCp2 TiCl2を溶解さ
せた溶液を窒素上室温で加えた。次いで室温で2時間撹
拌後、50℃窒素ブローにて12−ジクロロエタンを除
去して固体触媒成分Mを得た。この固体触媒成分Mは1
.0wt%のTiを含有していた。
Solid catalyst component M: 20 g of silica (Fuji Davison grade #952) calcined at 460°C was placed in a 300-meter tube equipped with an electromagnetic induction stirrer
A solution of 1.1 g of Cp2TiCl2 in 70 ml of 1,2-dichloroethane was added at room temperature over nitrogen. After stirring at room temperature for 2 hours, 12-dichloroethane was removed by nitrogen blowing at 50° C. to obtain solid catalyst component M. This solid catalyst component M is 1
.. It contained 0 wt% Ti.

実施例1 撹拌機を付した容量3ヱのステンレススチール製オート
クレーブを窒素置換し、ポリエチレンベレット20gを
加え、更に固体触媒成分A100■とメチルアンモキサ
ン2 、7aa+o l /m+溶液3.9mlを加え
て撹拌下60℃に加熱した。次いでエチレンとブテン−
1の混合ガス(ブテン−1/エチレンのモル比0.25
)を94cgf/dGとなるよう前記のオートクレーブ
に張り込んで重合を開始し、エチレンとブテン−1の混
合ガス(ブテン−1エチレンのモル比0.05)を連続
的に供給しつつ、全圧を9kgr/cdGに維持し、2
時間の重合を行った。
Example 1 A stainless steel autoclave with a capacity of 3 mm equipped with a stirrer was purged with nitrogen, 20 g of polyethylene pellets were added, and 100 mm of solid catalyst component A and 3.9 ml of methyl ammoxane 2,7 aa+ol/m+ solution were added. The mixture was heated to 60° C. with stirring. Then ethylene and butene
1 mixed gas (butene-1/ethylene molar ratio 0.25
) was charged into the autoclave at 94 cgf/dG to start polymerization, and while continuously supplying a mixed gas of ethylene and butene-1 (mole ratio of butene-1 ethylene: 0.05), the total pressure was increased. maintained at 9kgr/cdG, 2
Polymerization was carried out for hours.

重合終了後余剰の混合ガスを排出し、冷却、内8物を取
り出し、ベレットを除いて白色ポリマー43gを得た。
After the polymerization was completed, the excess mixed gas was discharged and cooled, and eight of the reactants were taken out and the pellets were removed to obtain 43 g of a white polymer.

実施例2〜実施例11 実施例1において使用した固体触媒成分Aの代わりに、
固体触媒成分B−Kをそれぞれ用いた以外は実施例1と
同様に重合を行った。
Examples 2 to 11 Instead of the solid catalyst component A used in Example 1,
Polymerization was carried out in the same manner as in Example 1 except that solid catalyst components B-K were used.

比較例1 実施例1において使用した固体触媒成分Aの代わりに、
Cp2TiCh 10■を用い、メチルアンモキサン2
.7+aa+ol/ml溶液の使用量を3.9mlから
7.4mlに増量した以外は実施例1と同様に重合を行
った。
Comparative Example 1 Instead of solid catalyst component A used in Example 1,
Methyl ammoxane 2 using Cp2TiCh 10
.. Polymerization was carried out in the same manner as in Example 1, except that the amount of the 7+aa+ol/ml solution used was increased from 3.9 ml to 7.4 ml.

比較例2 実施例1において使用した固体触媒成分Aの代わりに、
固体触媒成分りを使用した以外は実施例1と同様に重合
を行った。
Comparative Example 2 Instead of the solid catalyst component A used in Example 1,
Polymerization was carried out in the same manner as in Example 1 except that a solid catalyst component was used.

比較例3 実施例1において使用した固体触媒成分Aの代わりに、
固体触媒成分Mを使用した以外は実施例1と同様に重合
を行った。
Comparative Example 3 Instead of the solid catalyst component A used in Example 1,
Polymerization was carried out in the same manner as in Example 1 except that solid catalyst component M was used.

比較例4 実施例1において使用した固体触媒成分Aの代わりに、
CI)2 ZrCh 10■を用い、メチルアンモキサ
ン2.7maol/ml溶液の使用量を3.9mlから
[i、3mlに増加させた以外は実施例1と同様に重合
を行った。
Comparative Example 4 Instead of solid catalyst component A used in Example 1,
Polymerization was carried out in the same manner as in Example 1, except that 10 ml of CI)2 ZrCh was used and the amount of the 2.7 maol/ml solution of methylamoxane was increased from 3.9 ml to [i, 3 ml.

以上の各実施例および比較例で使用した重合触媒の構成
および得られた重合体のそれぞれの物性測定結果を表1
および表2に示す。
Table 1 shows the composition of the polymerization catalyst used in each of the above Examples and Comparative Examples and the physical property measurement results of the obtained polymers.
and shown in Table 2.

〔発明の効果] 本発明の方法で用いる触媒は、遷移金属あたりの活性が
極めて高く、連続重合を可能であり、しかも得られるポ
リオレフィンは粒子形状が良好でかさ密度も高い特長を
有し、実質上溶媒の存在しない気相重合条件下において
製造される重合生成物も上記の特長を具備するものであ
る。本発明の製造方法により得られたポリオレフィン、
特にエチレンとα−オレフィンとの共重合体は、ダイス
ウェル比が大きく、かつ組成分布も狭く、表面粘着性の
極めて少ないという優れた特長を有している。本発明の
製造方法においては固体触媒成分の遷移金属としてジル
コニウムを用いたときでも、高分子量のエチレン・α−
オレフィン共重合体を製造することができる。
[Effects of the Invention] The catalyst used in the method of the present invention has extremely high activity per transition metal and enables continuous polymerization, and the resulting polyolefin has good particle shape and high bulk density, and is substantially Polymerization products produced under gas phase polymerization conditions in the absence of a solvent also have the above-mentioned features. Polyolefin obtained by the production method of the present invention,
In particular, a copolymer of ethylene and α-olefin has excellent features such as a high die swell ratio, a narrow composition distribution, and extremely low surface tackiness. In the production method of the present invention, even when zirconium is used as the transition metal of the solid catalyst component, high molecular weight ethylene and α-
Olefin copolymers can be produced.

Claims (1)

【特許請求の範囲】 1 [ I ](i)多孔質無機酸化物、 (ii)一般式Al(OR)_nX_3_−_n(式中
、Rは炭素数1〜24の炭化水素基、Xはハロゲン原子
を示し、nは0<n≦3である)で表される接触反応物
、および (iii)一般式R^1_pMX_r(式中、Mは周期
律表IV族の遷移金属元素を示し、R^1はシクロペンタ
ジエニル基、置換シクロペンタジエニル基、インデニル
基、置換インデニル基または炭素数7〜24のアラルキ
ル基を示し、R^1同士は炭素数2〜8のアルキレン基
を介し結合していてもよく、Xはハロゲン原子、水素原
子または炭素数1〜24の炭化水素残基を示し、pおよ
びrは2≦p≦4、 0≦r≦2やおよびp+r=4を満たすものである)で
表される化合物を相互に接触させることにより得られる
固体触媒成分と、 [II]有機アルミニウム化合物と水との反応によって得
られるAl−O−Al結合を含む変性有機アルミニウム
化合物とからなる触媒の存在下に、オレフィンを重合ま
たは共重合することを特徴とするポリオレフィンの製造
方法。
[Claims] 1 [I] (i) Porous inorganic oxide, (ii) General formula Al(OR)_nX_3_-_n (wherein, R is a hydrocarbon group having 1 to 24 carbon atoms, and X is a halogen and (iii) a catalytic reactant represented by the general formula R^1_pMX_r (where M represents a transition metal element of Group IV of the periodic table, and R ^1 represents a cyclopentadienyl group, substituted cyclopentadienyl group, indenyl group, substituted indenyl group, or aralkyl group having 7 to 24 carbon atoms, and R^1 are bonded to each other through an alkylene group having 2 to 8 carbon atoms. X represents a halogen atom, a hydrogen atom, or a hydrocarbon residue having 1 to 24 carbon atoms, and p and r satisfy 2≦p≦4, 0≦r≦2, and p+r=4. [II] A modified organoaluminum compound containing an Al-O-Al bond obtained by the reaction of an organoaluminum compound and water. A method for producing a polyolefin, which comprises polymerizing or copolymerizing an olefin in the presence of a catalyst.
JP21976990A 1990-08-21 1990-08-21 Method for producing polyolefin Expired - Fee Related JP2678396B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21976990A JP2678396B2 (en) 1990-08-21 1990-08-21 Method for producing polyolefin
DE1991614087 DE69114087T2 (en) 1990-08-21 1991-08-19 Polyolefins.
EP91307633A EP0474391B1 (en) 1990-08-21 1991-08-19 Polyolefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21976990A JP2678396B2 (en) 1990-08-21 1990-08-21 Method for producing polyolefin

Publications (2)

Publication Number Publication Date
JPH04100808A true JPH04100808A (en) 1992-04-02
JP2678396B2 JP2678396B2 (en) 1997-11-17

Family

ID=16740719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21976990A Expired - Fee Related JP2678396B2 (en) 1990-08-21 1990-08-21 Method for producing polyolefin

Country Status (1)

Country Link
JP (1) JP2678396B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007123110A1 (en) 2006-04-19 2007-11-01 Japan Polypropylene Corporation NOVEL TRANSITION METAL COMPOUND, CATALYST FOR OLEFIN POLYMERIZATION CONTAINING THE SAME, AND METHOD FOR PRODUCING PROPYLENE/ETHYLENE-α-OLEFIN BLOCK COPOLYMER BY USING THE CATALYST
US7446073B2 (en) * 1998-12-30 2008-11-04 Exxonmobil Chemical Patents Inc. Catalyst compounds, catalyst systems thereof and their use in a polymerization process

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446073B2 (en) * 1998-12-30 2008-11-04 Exxonmobil Chemical Patents Inc. Catalyst compounds, catalyst systems thereof and their use in a polymerization process
WO2007123110A1 (en) 2006-04-19 2007-11-01 Japan Polypropylene Corporation NOVEL TRANSITION METAL COMPOUND, CATALYST FOR OLEFIN POLYMERIZATION CONTAINING THE SAME, AND METHOD FOR PRODUCING PROPYLENE/ETHYLENE-α-OLEFIN BLOCK COPOLYMER BY USING THE CATALYST
US7906599B2 (en) 2006-04-19 2011-03-15 Japan Polypropylene Corporation Transition metal compound, catalyst for olefin polymerization containing the same, and method for producing propylene/ethylene-α-olefin block copolymer by using the catalyst

Also Published As

Publication number Publication date
JP2678396B2 (en) 1997-11-17

Similar Documents

Publication Publication Date Title
US5106804A (en) Catalyst and prepolymer used for the preparation of polyolefins
AU770747B2 (en) Organometal compound catalyst
EP0294942B1 (en) Solid catalyst for polymerizing an olefin
WO1988002008A1 (en) New supported polymerization catalyst
EP0245482A1 (en) Supported polymerization catalyst
JP4234327B2 (en) Polymerization process using improved bulky ligand metallocene-type catalyst system
EP0447070B1 (en) Catalyst and prepolymer used for polymerising olefins, and (co)polymer of ethylene obtainable therefrom
EP0447071A1 (en) Catalyst and prepolymer used for polymerising olefins, and (co-)polymer of ethylene obtainable therefrom
JP3459272B2 (en) Olefin polymerization and copolymerization methods
US20050003950A1 (en) Method of making mixed ziegler-natta/metallocece catalysts
JPH0780937B2 (en) Olefin Polymerization Method
JPH0780932B2 (en) Method for polymerizing α-olefin
JPH04100808A (en) Production of polyolefin
JPH072793B2 (en) Method for producing polyolefin
JPH0832733B2 (en) Olefin Polymerization Method
JP3806188B2 (en) Polymerization catalyst and method for producing polyolefin using the same
JPH0780936B2 (en) Olefin Polymerization Method
JP2678397B2 (en) Method for producing polyolefin
JPH09157321A (en) Polymerization catalyst and manufacture of polylefin using the same
JP3237249B2 (en) Olefin polymerization catalyst and method for producing ethylene-α-olefin copolymer using the catalyst
JP6824012B2 (en) A method for producing a catalyst component for olefin polymerization, a method for producing a catalyst for olefin polymerization, and a method for producing an olefin polymer.
JP2752964B2 (en) Olefin polymerization method
JP3451761B2 (en) Catalyst for producing olefin polymer and method for producing olefin polymer
JPH1112312A (en) Catalyst for producing olefin polymer and method for producing olefin polymer
JP3237250B2 (en) Olefin polymerization catalyst and method for producing ethylene-α-olefin copolymer using the catalyst

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees