[go: up one dir, main page]

JPH0399142A - Regenerative gas engine cogeneration system - Google Patents

Regenerative gas engine cogeneration system

Info

Publication number
JPH0399142A
JPH0399142A JP23668889A JP23668889A JPH0399142A JP H0399142 A JPH0399142 A JP H0399142A JP 23668889 A JP23668889 A JP 23668889A JP 23668889 A JP23668889 A JP 23668889A JP H0399142 A JPH0399142 A JP H0399142A
Authority
JP
Japan
Prior art keywords
heat
gas engine
heat storage
vessel
course
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23668889A
Other languages
Japanese (ja)
Inventor
Ryoichi Hashimoto
橋本 涼一
Toshio Ohashi
稔生 大橋
Noboru To
昇 陶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Mitsubishi Petrochemicals Engineering Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Mitsubishi Petrochemicals Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd, Mitsubishi Petrochemicals Engineering Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP23668889A priority Critical patent/JPH0399142A/en
Publication of JPH0399142A publication Critical patent/JPH0399142A/en
Pending legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

PURPOSE:To accomplish the high efficiency of a heat storage type gas engine co-generation system by a method wherein the exhaust heat of a gas engine is stored in heat storage materials in which high polymer materials are cross- linked and the heat released from the heat storage materials is used as heat source for the operation of an absorption refrigerator. CONSTITUTION:The heat medium in a heat source course 15 is heated by a heat exchanger 16 installed in an exhaust heat recovery course 12 and used as heat source for driving an absorption refrigerator 14. In a heat storage vessel 17 cross-linking molecular heat storage materials are packed and the vessel 17 is included in the course 12 for exchanging heat with the exhaust gas from a gas engine 1 so that the vessel is installed in parallel with a cushion tank 13 by means of a heat storage course 18. When the heat load for space cooling is lower than the heat energy recovered in the course 12, that is, excess energy is obtained, the heat storage for the vessel 17 is carried out and when the load is larger on the contrary, the vessel is automatically controlled to release heat.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、ガスエンジンにより発電機を駆動して電力を
発生させると共にガスエンジンの排熱を利用して給湯、
暖房用の熱源を得ると共に吸収式冷凍機の熱源を得る所
謂蓄熱式ガスエンジンコージェネレーションシステムに
関するものである。
Detailed Description of the Invention [Industrial Field of Application] The present invention uses a gas engine to drive a generator to generate electric power, and also utilizes the exhaust heat of the gas engine to supply hot water and
The present invention relates to a so-called regenerative gas engine cogeneration system that obtains a heat source for heating as well as a heat source for an absorption refrigerator.

[従来の技術] 第2図に従来のガスエンジンコージェネレーションシス
テムを示す。
[Prior Art] Fig. 2 shows a conventional gas engine cogeneration system.

この図において、符号の1はガスエンジン、2はガスエ
ンジンlにより駆動されて電力を発生する発電機、3は
燃料ガスライン、4は空気ライン、5はガスエンジンl
の水冷式冷却ライン、6は冷却ライン5に取り付けられ
た冷却水熱交換器、7は給湯熱交換系路にして、この給
湯熱交換系路7内を循環する熱媒は前記冷却水熱交換器
6で冷却水の熱を吸収する。8は給湯熱交換系路7内を
循環する熱媒の熱で暖房系路9内の熱媒(及び給湯用の
水)を加熱する貯湯槽である。
In this figure, numeral 1 is a gas engine, 2 is a generator that is driven by the gas engine l to generate electricity, 3 is a fuel gas line, 4 is an air line, and 5 is a gas engine l.
6 is a cooling water heat exchanger attached to the cooling line 5, 7 is a hot water heat exchange line, and the heat medium circulating in this hot water heat exchange line 7 is the cooling water heat exchanger. The heat of the cooling water is absorbed by the vessel 6. 8 is a hot water storage tank that heats the heat medium (and water for hot water supply) in the heating system path 9 with the heat of the heat medium circulating in the hot water supply heat exchange system path 7.

10はガスエンジンlの排ガスライン、11は排ガス熱
交換器、l2は排ガス交換器11により排ガスから熱を
回収するための排熱回収系路にして、l3はクッション
タンクである。
10 is an exhaust gas line of the gas engine 1, 11 is an exhaust gas heat exchanger, 12 is an exhaust heat recovery line for recovering heat from the exhaust gas by the exhaust gas exchanger 11, and 13 is a cushion tank.

l4は吸収式冷凍機、l5は吸収式冷凍[14の熱源系
路にして、この熱源系路l5内の熱媒は排熱回収系路l
2に取り付けられた熱交換器l6により加熱されて吸収
式冷凍機l4の駆動用熱源となる。
14 is an absorption refrigerator, and 15 is an absorption refrigerator.
It is heated by the heat exchanger l6 attached to the refrigerating machine 2 and becomes a heat source for driving the absorption refrigerator l4.

[従来技術の課題] 上記従来のシステムにおいて、ガスエンジン1の冷却水
の保有する熱は暖房(及び給湯)用熱源に利用され、排
ガスの保有する熱は吸収式冷凍機の熱源に利用されるこ
とにより、熱エネルギーを無駄なく利用して省エネ化を
図ることができるものである。
[Problems with the Prior Art] In the conventional system described above, the heat held in the cooling water of the gas engine 1 is used as a heat source for space heating (and hot water supply), and the heat held in the exhaust gas is used as a heat source for the absorption chiller. This makes it possible to use thermal energy without wasting it and save energy.

しかし、上記システムの欠点は、冷暖房及び電力の負荷
が設計値でバランスしている場合は問題ないが、これら
がバランスしない場合に問題である。
However, the drawback of the above system is that there is no problem when the loads of air conditioning, heating, and electric power are balanced at the designed values, but there is a problem when these are not balanced.

例えば、冷房の場合、冷房負荷が大きいのは日中であり
、夜間は小さい。一方、電力の負荷は、電燈やテレビ等
の電気器具が多く使用されるのは夜間であり、よって夜
間に電力負荷は大きいが日中は小さい。このような傾向
は、一般家庭や商店の場合に顕著である。
For example, in the case of air conditioning, the cooling load is large during the day and small at night. On the other hand, electric appliances such as electric lights and televisions are often used at night, so the electric power load is large at night, but small during the day. This tendency is noticeable in ordinary households and shops.

そこで,従来のシステムにおいて、暖房及び給湯におい
ては、貯湯槽8を介在させることにより、この貯湯槽8
内に余剰の熱エネルギーを貯えておき,負荷が大きくな
って熱エネルギーが不足する場合にはこの貯湯槽8内の
蓄熱を利用する工夫かなされている。
Therefore, in conventional systems, the hot water storage tank 8 is used for heating and hot water supply.
Surplus thermal energy is stored inside the tank 8, and when the load becomes large and there is a shortage of thermal energy, the heat stored in the hot water storage tank 8 is utilized.

しかし、吸収式冷凍機の場合、このM源温度は百度以上
必要であり、現実にはこのような高温を蓄熱する実用的
な手段はない。
However, in the case of an absorption refrigerator, the M source temperature needs to be 100 degrees or higher, and in reality there is no practical means to store heat at such a high temperature.

この結果、吸収式冷凍機については、負荷に応じてガス
エンジンlを運転しなければならないと共にガスエンジ
ンlの運転状況により出力が変動し,安定した冷房がで
きないばかりでなく、運転効率が悪いという欠点がある
As a result, for absorption chillers, the gas engine l must be operated according to the load, and the output fluctuates depending on the operating status of the gas engine l, making it not only impossible to provide stable cooling, but also poor operational efficiency. There are drawbacks.

又、上記した欠点を補うために、従来のシステムにおい
ては補助熱源を備えているが、このように補助熱源を持
つことは設備費の上昇を招く。
Further, in order to compensate for the above-mentioned drawbacks, conventional systems are equipped with an auxiliary heat source, but having such an auxiliary heat source causes an increase in equipment costs.

本発明はガスエンジンからの廃ガスの熱に余剰がある場
合には、この余剰な熱を吸収式冷凍機の運転に利用可能
な高温度で蓄熱しておき、ガスエンジンに対して冷房負
荷が大きくなったときには、この蓄熱を放出して冷凍機
の運転を確保したり、安定させるようにした点に特徴が
ある。
In the present invention, when there is surplus heat in the waste gas from the gas engine, this surplus heat is stored at a high temperature that can be used to operate the absorption chiller, thereby reducing the cooling load on the gas engine. The unique feature is that when the size increases, this stored heat is released to ensure and stabilize the operation of the refrigerator.

[課題を解決するための千段] 本発明は、上記課題を解決する手段として、次の如き構
成の蓄熱式ガスエンジンコージェネレーションシステム
を提案する。
[A Thousand Steps to Solve the Problems] As a means for solving the above problems, the present invention proposes a heat storage type gas engine cogeneration system having the following configuration.

ガスエンジンの排熱を高分子材料を架橋して得た蓄熱材
に蓄熱してこの蓄熱材からの放熱を吸収式冷凍機の運転
用熱源に利用するように構成した蓄熱式ガスエンジンコ
ージェネレーションシステム。
A regenerative gas engine cogeneration system configured to store exhaust heat from a gas engine in a heat storage material obtained by crosslinking polymeric materials, and use the heat released from this heat storage material as a heat source for operating an absorption chiller. .

上記構成において、高分子材料を架橘して得た蓄熱材を
しては、ポリエチレンを有機シラン変成ポリエチレンで
被覆して複合威形体を形成し、かつその複合成形体の有
機シラン変成ポリエチレンから或る被覆層を架橘したも
の、或いは結晶性ポリオレフィンの表面を水で架橋した
もの等があり、これらの蓄熱材は、実用において伝熱媒
体が流通する蓄熱槽内に多数充填し、これらの蓄熱材と
直接熱媒体が接触して熱交換するように構成される。
In the above structure, the heat storage material obtained by cross-linking a polymeric material is formed by coating polyethylene with organosilane-modified polyethylene to form a composite shaped body, and from the organosilane-modified polyethylene of the composite molded body. In practice, these heat storage materials are filled in large numbers in a heat storage tank through which a heat transfer medium flows, and these heat storage materials are It is configured so that the material and the heat medium come into direct contact and exchange heat.

[作用] ガスエンジンの排ガスが保有する数百度の熱は、蓄熱材
に一旦吸収されて蓄熱される。そして、吸収式冷凍機の
負荷が太き<.SS源不足の傾向が生じると、直ちに蓄
熱材からの熱放出が行なわれて不足分をカバーする。
[Operation] The heat of several hundred degrees held by the exhaust gas of the gas engine is once absorbed and stored in the heat storage material. Also, the load on the absorption chiller is large. When a tendency toward a shortage of SS sources occurs, heat is immediately released from the heat storage material to cover the shortage.

[実施例] 第1図はL記本発明の実施例を示すものである。符号の
1はガスエンジン、2はガスエンジンlにより駆動され
て電力を発生する発電機,3は燃料ガスライン、4は空
気ライン、5はガスエンジンlの水冷式冷却ライン、6
は冷却ライン5に取り付けられた冷却水熱交換器、7は
給湯熱交換系路にして、この給湯熱交換系路7内を循環
する熱媒は前記冷却水熱交換器6で冷却水の熱を吸収す
る。8は給湯熱交換系路7内を循環する熱媒の熱で暖房
系路9内の熱媒(及び給湯用の水)を加熱する貯湯槽で
ある。
[Example] FIG. 1 shows an example of the present invention. 1 is a gas engine, 2 is a generator that is driven by the gas engine 1 to generate electric power, 3 is a fuel gas line, 4 is an air line, 5 is a water-cooled cooling line for the gas engine 1, 6
is a cooling water heat exchanger attached to the cooling line 5, and 7 is a hot water supply heat exchange system line. absorb. 8 is a hot water storage tank that heats the heat medium (and water for hot water supply) in the heating system path 9 with the heat of the heat medium circulating in the hot water supply heat exchange system path 7.

10はガスエンジンlの排ガスライン、11は排ガス熱
交換器、l2は排ガス交換器11により排ガスから熱を
回収するための排熱回収系路にして、l3はクッション
タンクである。
10 is an exhaust gas line of the gas engine 1, 11 is an exhaust gas heat exchanger, 12 is an exhaust heat recovery line for recovering heat from the exhaust gas by the exhaust gas exchanger 11, and 13 is a cushion tank.

エ4は吸収式冷凍機、l5は吸収式冷凍al4の熱源系
路にして、この熱源系路l5内の熱媒は排熱回収系路l
2に取り付けられた熱交換器l6により加熱されて吸収
式冷凍機l4の駆動用熱源となる。
D4 is an absorption chiller, l5 is a heat source line for the absorption chiller al4, and the heat medium in this heat source line l5 is an exhaust heat recovery system l.
It is heated by the heat exchanger l6 attached to the refrigerating machine 2 and becomes a heat source for driving the absorption refrigerator l4.

l7が本発明に係る蓄熱槽にして、この蓄熱槽l7内に
は架橋高分子蓄熱材が充填されている。
17 is a heat storage tank according to the present invention, and this heat storage tank 17 is filled with a crosslinked polymer heat storage material.

そして、この蓄熱槽l7はガスエンジン1の排ガスと熱
交換する排熱回収系路l2に対してクッションタンクl
3と並列になるように蓄熱系路l8を用いて組み込まれ
ている。
This heat storage tank l7 is connected to a cushion tank l7 with respect to an exhaust heat recovery system l2 that exchanges heat with the exhaust gas of the gas engine 1.
3 and is installed using a heat storage system line l8.

上記蓄熱槽l7に対する蓄熱は、冷房負荷が排熱系路l
2で回収される熱エネルギーを下廻っているとき、つま
り余剰エネルギーがあるときに行なわれ、反対に負荷が
大きいときに放出するように自動制御される。
The heat storage in the heat storage tank l7 is carried out when the cooling load is
This is done when the thermal energy recovered in step 2 is below, that is, when there is surplus energy, and on the other hand, it is automatically controlled to be released when the load is large.

[本発明の効果] 本発明は以上のように排熱回収系路内に架橋高分子蓄熱
材を充填した蓄熱槽を組み込み、余剰の熱エネルギーを
一旦この蓄熱槽に蓄熱し、必要に応じて放出しながら吸
収式冷凍機の運転を行うようにした。
[Effects of the present invention] As described above, the present invention incorporates a heat storage tank filled with a cross-linked polymer heat storage material in the exhaust heat recovery system, temporarily stores surplus thermal energy in this heat storage tank, and stores it as needed. The absorption chiller is now operated while releasing water.

この結果、次の如き効果を期待できる。As a result, the following effects can be expected.

a.排ガスか所有する高熱エネルギーを無駄なく利用で
きるので、蓄熱式ガスエンジンコージェネレーションシ
ステムにおいて、更に高効率化が図れる。
a. Since the high heat energy possessed by the exhaust gas can be used without waste, even higher efficiency can be achieved in the heat storage type gas engine cogeneration system.

b,高分子架橋蓄熱材は100゜C以上の蓄熱が可能で
あると共に一定の温度での熱放出が可能てあり、よって
吸収式冷凍機の熱源として理悲的であると共に高効率で
この吸収式冷凍機を運転することができ、かつ制御がし
やすい。
b. Polymer cross-linked heat storage materials are capable of storing heat of 100°C or more and releasing heat at a constant temperature. Therefore, they are ideal as a heat source for absorption chillers and can absorb this heat with high efficiency. It is possible to operate a type refrigerator and is easy to control.

C.吸収式冷凍機において補助熱源が不要又は極めて小
規模でよくなり、補助熱源の設備費を軽減できる。
C. In an absorption refrigerator, an auxiliary heat source is not required or can be made on a very small scale, and the equipment cost for the auxiliary heat source can be reduced.

d.吸収式冷凍機の熱源として蓄熱材に直接接触させて
熱源を得ることができるので,放熱時の温度応答性が極
めてよい。
d. Since the heat source of the absorption chiller can be obtained by directly contacting the heat storage material, the temperature response during heat radiation is extremely good.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る蓄熱式ガスエンジンコージェネレ
ーションシステムの実施例図、第2図は従来例の説明図
である。 l ・・・ ガスエンジン 2 ・・・ 発電機 3 ・・・ 燃料ガスライン 4 ・・・ 空気ライン 5 ・・・ 冷却ライン 6 ・・・ 冷却水熱交換器 7 ・・・ 給湯熱交換系路 8 ・・・ 貯湯槽 9 ・・・ 暖房系路 10  ・・・ 排ガスライン 11  ・・・ 排ガス交換器 12 ・・・ 排熱回収系路 l3 ・・・ クッションタンク l4 ・・・ 吸収式冷凍機 l5 ・・・ 熱源系路 l6 ・・・ 熱交換器 l7 ・・・ 蓄熱槽 l8 ・・・ 蓄熱系路
FIG. 1 is a diagram showing an embodiment of a regenerative gas engine cogeneration system according to the present invention, and FIG. 2 is an explanatory diagram of a conventional example. l ... Gas engine 2 ... Generator 3 ... Fuel gas line 4 ... Air line 5 ... Cooling line 6 ... Cooling water heat exchanger 7 ... Hot water heat exchange line 8 ... Hot water tank 9 ... Heating system line 10 ... Exhaust gas line 11 ... Exhaust gas exchanger 12 ... Exhaust heat recovery line L3 ... Cushion tank L4 ... Absorption refrigerator L5 - ... Heat source system path l6 ... Heat exchanger l7 ... Heat storage tank l8 ... Heat storage system path

Claims (1)

【特許請求の範囲】[Claims] ガスエンジンの排熱を高分子材料を架橋して得た蓄熱材
に蓄熱してこの蓄熱材からの放熱を吸収式冷凍機の運転
用熱源に利用するように構成した蓄熱式ガスエンジンコ
ージェネレーションシステム。
A regenerative gas engine cogeneration system configured to store exhaust heat from a gas engine in a heat storage material obtained by crosslinking polymeric materials, and use the heat released from this heat storage material as a heat source for operating an absorption chiller. .
JP23668889A 1989-09-11 1989-09-11 Regenerative gas engine cogeneration system Pending JPH0399142A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23668889A JPH0399142A (en) 1989-09-11 1989-09-11 Regenerative gas engine cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23668889A JPH0399142A (en) 1989-09-11 1989-09-11 Regenerative gas engine cogeneration system

Publications (1)

Publication Number Publication Date
JPH0399142A true JPH0399142A (en) 1991-04-24

Family

ID=17004300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23668889A Pending JPH0399142A (en) 1989-09-11 1989-09-11 Regenerative gas engine cogeneration system

Country Status (1)

Country Link
JP (1) JPH0399142A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012025A (en) * 2002-06-06 2004-01-15 Sapio Kk Hybrid energy system
JP2007291740A (en) * 2006-04-25 2007-11-08 Omori Kensetsu Kk Oa floor panel

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169297A (en) * 1987-12-25 1989-07-04 Mitsui Petrochem Ind Ltd High density polyethylene heat storage device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169297A (en) * 1987-12-25 1989-07-04 Mitsui Petrochem Ind Ltd High density polyethylene heat storage device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004012025A (en) * 2002-06-06 2004-01-15 Sapio Kk Hybrid energy system
JP2007291740A (en) * 2006-04-25 2007-11-08 Omori Kensetsu Kk Oa floor panel

Similar Documents

Publication Publication Date Title
KR0149466B1 (en) Cogeneration system
JP2015524907A (en) Solar energy system
AU2009266152A1 (en) Photovoltaic system
KR102614152B1 (en) Heat pump system
JPH08148166A (en) On-site solid electrolyte fuel cell system
JPH0399142A (en) Regenerative gas engine cogeneration system
JP4128054B2 (en) Fuel cell system and operating method thereof
JP2996333B2 (en) Combined heat and power system
CN113644337B (en) Thermal management system and thermal management method of hybrid power supply shelter
KR20190133809A (en) A cooling system for the Photovoltaic module
JPH0117010Y2 (en)
CN104832387A (en) Liquid-nitrogen assisted energy storage tower type solar power plant
CN104747315A (en) Liquefied air auxiliary energy accumulation power generation device
CN222317801U (en) Energy storage system and power generation system
JPS58138213A (en) Power generation device
JPH11336610A (en) Cogeneration system
CN221058044U (en) Distributed combined energy supply system
JPH02146208A (en) Compound heat utilizing plant
WO2018147065A1 (en) Cold-generating apparatus
JPH06193998A (en) Regenerative gas engine cogeneration system
JP2018054229A (en) Small-sized heat merger power generation system
JPH068414Y2 (en) Energy supply system for heat exchange equipment
Hegner et al. Climatization Unit Based on Metal Hydrides for Electric Vehicles with Battery or Fuel Cell
JPH0474531B2 (en)
CN105221194A (en) Liquid nitrogen assists waste heat recovery energy-storing and power-generating system