[go: up one dir, main page]

JPH0399072A - Preparation of 5-hydroxymethyl-2-furan carboxyaldehyde - Google Patents

Preparation of 5-hydroxymethyl-2-furan carboxyaldehyde

Info

Publication number
JPH0399072A
JPH0399072A JP23536189A JP23536189A JPH0399072A JP H0399072 A JPH0399072 A JP H0399072A JP 23536189 A JP23536189 A JP 23536189A JP 23536189 A JP23536189 A JP 23536189A JP H0399072 A JPH0399072 A JP H0399072A
Authority
JP
Japan
Prior art keywords
imf
reaction
present
supercritical
hexose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23536189A
Other languages
Japanese (ja)
Inventor
Hiroshi Takada
高田 博史
Takashi Saito
尚 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP23536189A priority Critical patent/JPH0399072A/en
Publication of JPH0399072A publication Critical patent/JPH0399072A/en
Pending legal-status Critical Current

Links

Landscapes

  • Furan Compounds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野] 本発明は酸触媒共存下、ヘキソースを加熱脱水し、下記
一般式(I)で表される5−ヒドロキシメチル−2−フ
ランカルポキシアルデヒド(以下1{MFと記す)を製
造する方法に関する。
Detailed Description of the Invention [Industrial Field of Application] The present invention heats and dehydrates hexose in the presence of an acid catalyst to produce 5-hydroxymethyl-2-furancarpoxyaldehyde ( The present invention relates to a method for producing 1 (hereinafter referred to as MF).

11MFはヘキソースから得られる多官能フラン化合物
であり、高分子単量体、医農薬、香料等の出発物質とし
て注目されている. 〔従来の技術及び発明が解決しようとする課題〕ヘキソ
ースから酸触媒下でIMFを得る方法に関し、多くの方
法が提案されているが、容易な精製法により高純度の}
IMFが単離されている例はない。例えば、}IMFへ
の反応、及びIMFの精製を行っている例として、ジャ
ーナルオブケξカルテクノロジーアンドバイオテクノロ
ジー(Journal of Chemical Te
chnology and Biote−chnolo
gy) *第31巻,第135頁(1981)によれば
、三フッ化ホウ素触媒、DMSO溶媒の反応系で反応を
行い、その後、多段階の抽出操作などの複雑な精製操作
を経てIMFの単離、精製を行っている。
11MF is a polyfunctional furan compound obtained from hexose, and is attracting attention as a starting material for polymer monomers, medicines and agrochemicals, fragrances, etc. [Prior art and problems to be solved by the invention] Many methods have been proposed for obtaining IMF from hexose under acid catalyst.
There are no examples of IMF being isolated. For example, as an example of reactions to IMF and purification of IMF, the Journal of Chemical Technology and Biotechnology (Journal of Chemical Te
Chnology and Biote-chnolo
gy) *Volume 31, page 135 (1981), the reaction is carried out in a reaction system of boron trifluoride catalyst and DMSO solvent, and then IMF is purified through complex purification operations such as multi-stage extraction operations. Isolation and purification are underway.

この様に従来の技術では}IMFを製造する場合、1{
MPを単離精製するのに多大な労力を必要としなければ
ならない。
In this way, with the conventional technology, when manufacturing }IMF, 1{
It requires a lot of effort to isolate and purify MP.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者は、IMFの精製、単離に関するかかる問題点
について鋭意検討したところ、反応溶媒かつ抽出剤とし
て超臨界状態にある物質を用いて反応を行った場合に原
料であるヘキソースは反応系から殆ど抽出されず、且つ
、生戒するIMFが超臨界状態にある物質に効率良く抽
出されることを見出し、また、抽出されたIMFには不
純物としては水が含まれる程度であるため、単離精製が
容易であることが判明し、本発明を完威した。
The inventors of the present invention have intensively studied these problems regarding the purification and isolation of IMF, and have found that when a reaction is carried out using a substance in a supercritical state as a reaction solvent and an extractant, the raw material hexose is removed from the reaction system. It was discovered that IMF, which is hardly extracted and is a living substance, can be efficiently extracted into substances in a supercritical state, and since the extracted IMF only contains water as an impurity, it is possible to isolate it. It was found that purification was easy, and the present invention was completed.

即ち、本発明は、酸触媒存在下にヘキソースを脱水反応
するにあたり、超臨界状態にある物質を存在させること
を特徴とするIMFの製法を提供するものである。
That is, the present invention provides a method for producing IMF, which is characterized in that a substance in a supercritical state is present during the dehydration reaction of hexose in the presence of an acid catalyst.

本発明において超臨界状態とは臨界温度(Tc)及び臨
界圧(Pc)を越えた状態を言う。
In the present invention, a supercritical state refers to a state exceeding critical temperature (Tc) and critical pressure (Pc).

本発明者はIIMFの製造法に関し、鋭意検討を重ねた
結果、原料のヘキソース及び生成物であるIIMFに対
し化学反応的に不活性な超臨界状態にある物質(超臨界
流体)を反応系に存在させ、酸触媒存在下にヘキソース
を加熱したところ、脱水反応によりIIMFが生威し、
かつ、連続的に超臨界流体を導入することにより反応系
に生戒したIIMFを抽出したところ、超臨界流体によ
り11MPが反応系から抽出されることがわかった。
As a result of extensive studies regarding the method for producing IIMF, the present inventor added a substance in a supercritical state (supercritical fluid) that is chemically inert to the raw material hexose and the product IIMF to the reaction system. When hexose was heated in the presence of an acid catalyst, IIMF was produced by a dehydration reaction,
Furthermore, when the IIMF that was present in the reaction system was extracted by continuously introducing a supercritical fluid, it was found that 11 MP was extracted from the reaction system by the supercritical fluid.

このとき原料として用いたヘキソースは殆ど抽出されて
いなかった。超臨界流体は常圧にもどると低沸点の化合
物であるため、反応系から抽出したIMFと抽出に用い
た超臨界流体の分離は極めて容易であった。また、HM
Pとともに抽出される水についても減圧下に除去するこ
とによりIMFと容易に分離でき、高純度のIMFが得
られた。
At this time, almost no hexose used as a raw material was extracted. Since the supercritical fluid is a compound with a low boiling point when it returns to normal pressure, it was extremely easy to separate the IMF extracted from the reaction system and the supercritical fluid used for extraction. Also, H.M.
Water extracted together with P could also be easily separated from IMF by removing it under reduced pressure, resulting in highly pure IMF.

即ち、本発明は超臨界流体を反応系に用い、かつ、超臨
界流体を生或H?IFの抽出剤として用いることにより
、精製工程が容易で且つ高純度のIIMFを製造するこ
とができるのである。
That is, the present invention uses a supercritical fluid in a reaction system and produces supercritical fluid or H? By using it as an extractant for IF, the purification process is easy and highly pure IIMF can be produced.

本発明に用いる超臨界流体としては、超臨界状態におい
て反応溶媒となりうる物質であれば特に制限はないが、
例えば、二酸化炭素、エタン、エチレン、プロパン、ペ
ンタン、フロン等が使用できる。特に、二酸化炭素は安
定で無害な不活性ガスであり、且つ、比較的低温でも超
臨界状態を形威しやすく好適である(例えば二酸化炭素
はTc=31゜C, Pc=75.3kg/cm”G)
。また、本発明に用いる超Hip界流体は水、DMSO
、DMF ,アルコール類、ハロゲン化溶媒等の従来一
般の化学反応に用いられる溶媒と混合された状態で使用
されても良い。混合割合は、任意の割合で良い。
The supercritical fluid used in the present invention is not particularly limited as long as it can serve as a reaction solvent in a supercritical state;
For example, carbon dioxide, ethane, ethylene, propane, pentane, chlorofluorocarbon, etc. can be used. In particular, carbon dioxide is a stable and harmless inert gas, and is suitable because it easily forms a supercritical state even at relatively low temperatures (for example, carbon dioxide has Tc = 31°C, Pc = 75.3kg/cm ”G)
. Further, the ultra-Hip world fluid used in the present invention is water, DMSO
, DMF, alcohols, halogenated solvents, etc., may be used in a mixed state with solvents conventionally used in general chemical reactions. The mixing ratio may be any ratio.

本発明に用いられる反応触媒としては、酸性触媒であれ
ばよく、例えば、塩酸、硫酸或いはスルホン酸基を有す
る化合物、燐酸或いは燐酸基を有する化合物や、例えば
三フフ化ホウ素、塩化アルiニウム等のルイス酸が挙げ
られる。
The reaction catalyst used in the present invention may be any acidic catalyst, such as hydrochloric acid, sulfuric acid or a compound having a sulfonic acid group, phosphoric acid or a compound having a phosphoric acid group, boron trifluoride, aluminum chloride, etc. Lewis acid.

また、スルホン酸型イオン交換樹脂などのスルホン酸基
を持つ高分子化合物などが固定型触媒としてより好適に
選択される。触媒量は触媒の種類・反応条件により影響
されるが、通常反応系のヘキソースの量に対して、0.
01〜100重量%の範囲より選ばれる. 本発明において、反応温度はヘキソースから}IMFに
反応が進行する温度であれば良<、30〜200 ’C
、より好ましくは50〜180゜Cの範囲より選ばれる
。また、反応圧は超臨界流体の種類とその物性によるが
、基本的には、溶媒として用いる物質の臨界圧力以上の
反応圧から選ばれる。
Further, a polymer compound having a sulfonic acid group such as a sulfonic acid type ion exchange resin is more preferably selected as the fixed catalyst. The amount of catalyst is influenced by the type of catalyst and reaction conditions, but it is usually 0.00% relative to the amount of hexose in the reaction system.
Selected from the range of 01 to 100% by weight. In the present invention, the reaction temperature may be 30 to 200'C as long as the reaction proceeds from hexose to IMF.
, more preferably from the range of 50 to 180°C. Further, the reaction pressure depends on the type of supercritical fluid and its physical properties, but is basically selected from a reaction pressure higher than the critical pressure of the substance used as a solvent.

本発明の原料として用いるヘキソース類としては、アル
ドヘキソース、ケトヘキソースなど特に制限はないが、
ローフルクトース、L−ソルボース等のケトヘキソース
が好ましく、これらを含有している、スクロース、イヌ
リン、異性化糖液等も原料として用いることが出来る。
The hexoses used as raw materials in the present invention are not particularly limited, such as aldohexoses and ketohexoses, but
Ketohexoses such as low fructose and L-sorbose are preferred, and sucrose, inulin, isomerized sugar solution, etc. containing these can also be used as raw materials.

従って、本発明に用いる原料としては、異性化糖液もし
くはスクロース、もしくはこれらを加水分解等適宜な方
法により分離したフルク} 一スが好ましい。異性化#
!液又はスクロースの様にグルコースが共存する原料に
おいてはフルクトースが優先的に脱水されるので未反応
グルコースを分離し、更に、分離したグルコースを異性
化等の反応を行うことにより、グルコースの■肝への転
化が可能となる。また、ヘキソースは適当な濃度に希釈
した水?′?I液としても用いることができる。
Therefore, as the raw material used in the present invention, it is preferable to use isomerized sugar solution, sucrose, or fructose obtained by separating these by an appropriate method such as hydrolysis. Isomerization #
! In liquids or raw materials where glucose coexists, such as sucrose, fructose is preferentially dehydrated, so unreacted glucose is separated, and the separated glucose is subjected to reactions such as isomerization to transfer glucose to the liver. It becomes possible to convert Also, is hexose diluted with water to an appropriate concentration? ′? It can also be used as an I solution.

本発明の反応は、例えば超臨界クロマ} SUPER2
00(日本分光製)等の装置を用いて行うことができる
。この装置の概略を図−1に示す.本発明の反応を図一
lに基づいて説明する。まず、反応容器5に下記の実施
例に示すような原料などを入れ、密栓する。反応容器を
自由に温度調節可能な恒温槽に入れ、超臨界流体導入部
と流出部のラインを接続する。超臨界流体(通常COz
)は次のように導入される.まず、ボンベ1より冷却器
2を通すことにより−5゜C程度に冷却され、その後、
COXボンプ3により設定圧力に加圧される.次に、予
熱コイル4及び恒温槽を通すことにより、設定温度に保
たれた状態で、反応容器5に超臨界流体の状態で導入さ
れる。反応容器より流出する超臨界流体及び抽出物は、
分離槽部に入り、加圧状態から常圧状態に戻される。こ
の時、通常用いるCOtなどは気体となり、排気され、
気化しにくい抽出物が分離回収部6に集められる。
The reaction of the present invention can be carried out using, for example, supercritical chroma} SUPER2
This can be carried out using a device such as 00 (manufactured by JASCO Corporation). Figure 1 shows an outline of this device. The reaction of the present invention will be explained based on FIG. First, raw materials such as those shown in the following examples are placed in the reaction container 5, and the container is tightly stoppered. The reaction vessel is placed in a constant temperature bath whose temperature can be freely adjusted, and the supercritical fluid inlet and outlet lines are connected. Supercritical fluid (usually COz
) is introduced as follows. First, the cylinder 1 is cooled to about -5°C by passing through the cooler 2, and then,
It is pressurized to the set pressure by COX pump 3. Next, the supercritical fluid is introduced into the reaction vessel 5 while being maintained at a set temperature by passing through a preheating coil 4 and a constant temperature bath. The supercritical fluid and extract flowing out from the reaction vessel are
It enters the separation tank section and is returned from a pressurized state to a normal pressure state. At this time, normally used COt etc. becomes a gas and is exhausted.
Extracts that are difficult to vaporize are collected in the separation and collection section 6.

〔発明の効果〕〔Effect of the invention〕

本発明のIMPの製造法は、超臨界状態にある物質(超
臨界流体)を反応系に用い、酸触媒存在下にヘキソース
を加熱脱水し、IMPを生威させ、かつ、連続的に超臨
界流体を導入し、反応系に生或したIMFを超臨界流体
により抽出することにより、IINFが反応系から容易
に分離でき、更に、IMFとともに抽出される水につい
ても減圧下に除去することにより、高純度のIMFが得
られる.即ち、本発明は超臨界流体を反応系に用い、か
つ、生或HMFの抽出剤として用いることにより、精製
工程が容易で且つ高純度のIIMFを製造する方法を提
供することができる。
The method for producing IMP of the present invention uses a substance in a supercritical state (supercritical fluid) in the reaction system, heats and dehydrates hexose in the presence of an acid catalyst to produce IMP, and continuously produces supercritical fluid. IINF can be easily separated from the reaction system by introducing a fluid and extracting the IMF generated in the reaction system with a supercritical fluid, and furthermore, by removing water extracted together with IMF under reduced pressure, High purity IMF can be obtained. That is, the present invention uses a supercritical fluid in the reaction system and as an extractant for raw HMF, thereby providing a method for producing IIMF with an easy purification process and high purity.

〔実施例〕〔Example〕

以下に実施例を以て本発明を更に詳細に説明?るが、本
発明はこれらの実施例に限られるものではない。
The present invention will be explained in more detail with reference to Examples below. However, the present invention is not limited to these examples.

実施例1 超臨界クロマトSUPER 200(日本分光製)の装
置(装置概略を図−1に示す)を用い・IMFを製造し
た。即ち、10m7の超臨界反応容器5にフルクトース
の50%水溶液3.6g,酸型のスルホン酸系イオン交
換樹脂であるアンバーライトIR−118}1 (スル
ホン酸基として3meq/g) 0.8gをそれぞれ仕
込み、超因界Cogを200 kg/cm”G下で5m
1/IIIinの速度にて反応容器5に導入した。その
後、反応容器温度を室温より徐々に90℃迄上げたとこ
ろ、約80゜Cより超臨界CO■と共に生威したHMF
の流出が開始した,。反応容器より流出した超臨界CO
,と抽出物は分離回収部6にためられた。分離回収部6
の出口を常圧に戻したところCO2はガス化し、抽出物
のみを得ることが出来た.90゜Cで6時間超臨界CO
.の導入を続けたところ、分離回収部における超臨界C
O2による抽出物は1.3gであった.この物の紫外線
吸収スペクトルを測定し、284r++++における吸
光度を求め、標準となるIMFの吸光度より、IMF含
量を求めた(IMF含量22重量%).この抽出物を減
圧下に水を除去したところ、純度94重量%のHMFを
0.28g得た(収率2工%対フルクトース)。
Example 1 IMF was produced using a supercritical chromatograph SUPER 200 (manufactured by JASCO Corporation) (the outline of the device is shown in Figure 1). That is, 3.6 g of a 50% aqueous solution of fructose and 0.8 g of Amberlite IR-118}1 (3 meq/g as sulfonic acid group), which is an acid type sulfonic acid ion exchange resin, were placed in a 10 m7 supercritical reaction vessel 5. Prepared each and super-causal Cog under 200 kg/cm"G for 5m.
It was introduced into the reaction vessel 5 at a rate of 1/IIIin. Thereafter, when the temperature of the reaction vessel was gradually raised from room temperature to 90°C, HMF, which was alive with supercritical CO from about 80°C.
The outflow has started. Supercritical CO flowing out from the reaction vessel
, and the extract were stored in the separation and collection section 6. Separation and recovery section 6
When the outlet was returned to normal pressure, the CO2 was gasified and only the extract could be obtained. Supercritical CO at 90°C for 6 hours
.. As we continued to introduce supercritical C in the separation and recovery section,
The O2 extract was 1.3 g. The ultraviolet absorption spectrum of this product was measured, the absorbance at 284r++++ was determined, and the IMF content was determined from the absorbance of standard IMF (IMF content: 22% by weight). When water was removed from this extract under reduced pressure, 0.28 g of HMF with a purity of 94% by weight was obtained (yield 2% vs. fructose).

実施例2 フルクトースの50%水溶液3.6gの代わりにスクロ
ースの50%水溶液3.4gを用い、95゜Cで10時
間超臨界C(hの導入を続けたほかは、実施例1と同様
の操作を行い、純度9l重量%のHMFを0.20g得
た(収率14%対スクロース)。
Example 2 The same procedure as in Example 1 was carried out, except that 3.4 g of a 50% aqueous solution of sucrose was used instead of 3.6 g of a 50% aqueous solution of fructose, and the introduction of supercritical C (h) was continued at 95°C for 10 hours. The operation was carried out to obtain 0.20 g of HMF with a purity of 9l% by weight (yield 14% vs. sucrose).

実施例3 酸型のスルホン酸系イオン交換樹脂であるアンバーライ
トIR−118H (スルホン酸基として3meq/g
) 0.8gの代わりに濃硫酸0.2gを用いたほかは
実施例1と同様の操作を行い、純度93重量%のIMF
を0.13g得た(収率9.5%対フルクトース).
Example 3 Amberlite IR-118H, an acid type sulfonic acid ion exchange resin (3 meq/g as sulfonic acid group)
) The same operation as in Example 1 was performed except that 0.2 g of concentrated sulfuric acid was used instead of 0.8 g, and IMF with a purity of 93% by weight was obtained.
0.13g of (yield 9.5% vs. fructose) was obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図−1は本発明の方法に用いられる装置の略示図である
。 l :ボンベ 2 :冷却器 3:ボンプ 4 :予熱コイル 5 :反応容器 6 :分離回収部
FIG. 1 is a schematic diagram of the apparatus used in the method of the present invention. l: Cylinder 2: Cooler 3: Bump 4: Preheating coil 5: Reaction vessel 6: Separation and recovery section

Claims (1)

【特許請求の範囲】 1、酸触媒存在下にヘキソースを脱水反応するにあたり
、超臨界状態にある物質を存在させることを特徴とする
下記一般式( I )で表される5−ヒドロキシメチル−
2−フランカルボキシアルデヒドの製法。 ▲数式、化学式、表等があります▼( I ) 2、超臨界状態にある物質が二酸化炭素である請求項1
記載の製法。
[Claims] 1. 5-hydroxymethyl- represented by the following general formula (I), which is characterized in that a substance in a supercritical state is present in the dehydration reaction of hexose in the presence of an acid catalyst.
Method for producing 2-furancarboxaldehyde. ▲There are mathematical formulas, chemical formulas, tables, etc.▼(I) 2.Claim 1 that the substance in a supercritical state is carbon dioxide
Manufacturing method described.
JP23536189A 1989-09-11 1989-09-11 Preparation of 5-hydroxymethyl-2-furan carboxyaldehyde Pending JPH0399072A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23536189A JPH0399072A (en) 1989-09-11 1989-09-11 Preparation of 5-hydroxymethyl-2-furan carboxyaldehyde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23536189A JPH0399072A (en) 1989-09-11 1989-09-11 Preparation of 5-hydroxymethyl-2-furan carboxyaldehyde

Publications (1)

Publication Number Publication Date
JPH0399072A true JPH0399072A (en) 1991-04-24

Family

ID=16984949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23536189A Pending JPH0399072A (en) 1989-09-11 1989-09-11 Preparation of 5-hydroxymethyl-2-furan carboxyaldehyde

Country Status (1)

Country Link
JP (1) JPH0399072A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057345A (en) * 2007-09-03 2009-03-19 Canon Inc Method for producing 5-hydroxymethylfurfural
DE102008009933A1 (en) 2008-02-18 2009-08-20 Friedrich-Schiller-Universität Jena Preparing 5-hydroxymethylfurfural, useful e.g. to manufacture pharmaceutical products such as fungicides, comprises thermally reacting carbohydrates in ionic liquid and discharging formed 5-hydroxymethylfurfural using extracting agent
JP2016517407A (en) * 2013-03-14 2016-06-16 アーチャー−ダニエルズ−ミッドランド カンパニー Process for making HMF from sugars with reduced by-product formation and HMF composition with improved stability

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009057345A (en) * 2007-09-03 2009-03-19 Canon Inc Method for producing 5-hydroxymethylfurfural
DE102008009933A1 (en) 2008-02-18 2009-08-20 Friedrich-Schiller-Universität Jena Preparing 5-hydroxymethylfurfural, useful e.g. to manufacture pharmaceutical products such as fungicides, comprises thermally reacting carbohydrates in ionic liquid and discharging formed 5-hydroxymethylfurfural using extracting agent
JP2016517407A (en) * 2013-03-14 2016-06-16 アーチャー−ダニエルズ−ミッドランド カンパニー Process for making HMF from sugars with reduced by-product formation and HMF composition with improved stability

Similar Documents

Publication Publication Date Title
WO2009012445A1 (en) Method for production of 5-hydroxymethyl-2-furfural from fructose
US2929823A (en) Production of 5-hydroxymethylfurfural
EP2853524B1 (en) Reaction system and process for preparing polymethoxy dimethyl ether
JPH0635403B2 (en) Method for separating impurities in crude ethanol solution
US4250331A (en) Removal of organic acids from dilute aqueous solutions of salts of organic acids by supercritical fluids
CA2720458A1 (en) A process for the recovery of hcl from a dilute solution thereof and extractant composition for use therein
JPS6135190B2 (en)
US2536732A (en) Production of furfural
BR112019011367B1 (en) HMF PRODUCTION PROCESS
WO2018235012A1 (en) Process for producing levulinic acid
CN110511196A (en) A kind of purification method of furfural or 5-hydroxymethyl furfural
CN107459472A (en) Method for refining dimethyl sulfoxide solvent in carbon fiber precursor production process
JP2005525400A (en) High-yield by-product recycling process in anhydrosugar alcohols
AU2019276050B2 (en) Salt and acid mixture catalyzed hmf production
Mai et al. Liquid–liquid extraction of levulinic acid from aqueous solutions using hydrophobic tri-n-octylamine/alcohol-based deep eutectic solvent
JPH0399072A (en) Preparation of 5-hydroxymethyl-2-furan carboxyaldehyde
JPH02108682A (en) Production and concentration of furfural
US6579990B2 (en) Process for producing refined pyromellitic acid and refined pyromellitic anhydride
CN211645084U (en) Separation of isoamyl alcohol and isoamyl acetate purification device
JPS6225985A (en) Method of concentrating and purifying alcohol
JPS62240630A (en) Extraction of paraffin
JPS63303937A (en) Manufacture of propynol
BR112020024326B1 (en) HMF PRODUCTION CATALYZED BY SALT AND ACID MIXTURE
CN117924311A (en) Method for extracting and obtaining high-purity nimoctin from mycelium
JPH02184388A (en) Method and equipment for concentrating and purifying alcohol