[go: up one dir, main page]

JPH0394761A - Artificial supply and prosthesis material - Google Patents

Artificial supply and prosthesis material

Info

Publication number
JPH0394761A
JPH0394761A JP1230393A JP23039389A JPH0394761A JP H0394761 A JPH0394761 A JP H0394761A JP 1230393 A JP1230393 A JP 1230393A JP 23039389 A JP23039389 A JP 23039389A JP H0394761 A JPH0394761 A JP H0394761A
Authority
JP
Japan
Prior art keywords
hap
tcp
sintered body
hydroxyapatite
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1230393A
Other languages
Japanese (ja)
Inventor
Kazuo Kondo
和夫 近藤
Yasushi Matsuo
康史 松尾
Retsu Ishikawa
烈 石川
Masahiko Isogai
磯貝 昌彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP1230393A priority Critical patent/JPH0394761A/en
Publication of JPH0394761A publication Critical patent/JPH0394761A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To provide excellent bioaffinity and osteoplasty by mixing hydroxyapatite(HAP) and tricalcium phosphate(TCP) at a specific ratio and forming a sintered body. CONSTITUTION:The sintered body of the calcium phosphate consisting of the phase constitution in which the weight ratio of the hydroxyapatite(HAP) and the tricalcium phosphate(TCP) is 8/2 to 2/8 and the total content of both is >=90wt.% has excellent elutability and the extremely good bioaffinity. The elution quantity and elution rate of the calcium ions and phosphorus ions are changed by the ratio of the HAP/TCP in this case. The eluted calcium ions and phosphorus ions significantly influence the formation of bones. The substitution with the bones is highly accelerated if the HAP/TCP is 8/2 to 2/8 by weight.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、人畜における骨や歯の欠損部分を補填補綴す
る材料に関し、特にリン酸カルシウム焼結体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a material for prosthetizing missing bones and teeth in humans and animals, and particularly to a calcium phosphate sintered body.

く従来の技術〉〈発明が解決しようとする課題〉従来、
人畜骨、歯等が欠損したときにこの補填にはステンレス
鋼や、アル旦ナ磁器等の高強度部材が用いられてきたが
、生体との親和性が乏しく生体との接合が難しいために
、近時はアルミナ、アパタイト、結晶化ガラス等が検討
され、一部は実用化されている。
Conventional technology〉〈Problem to be solved by the invention〉
High-strength materials such as stainless steel and Aldanna porcelain have been used to replace lost human bones, teeth, etc., but they have poor affinity with living organisms and are difficult to bond with living organisms. Recently, alumina, apatite, crystallized glass, etc. have been studied, and some of them have been put into practical use.

中でもアパタイト系のものは骨との親和性がよく、新生
骨の生成し易い材料として知られているが、市販のアパ
タイト系材料は、水酸アパタイト単味もしくは第3リン
酸カルシウム車味であって生体親和性はよいが、骨形成
が不十分であって、その点の改良が望まれていた。
Among them, apatite-based materials have good affinity with bones and are known to be easy to generate new bone. However, commercially available apatite-based materials are single hydroxyapatite or tertiary calcium phosphate, and are biocompatible. Although the affinity is good, bone formation is insufficient, and improvement in this point has been desired.

我々はアパタイト焼結体について種々検討したところ、
特公昭和60−50744号に示すようにカルシウム/
リンの原子比が1.4〜1.75である水酸アパタイト
もしくは第3リン酸カルシウムからなるリン酸塩を主体
とする粉末と、特定量のアルカリ金属等の酸化物−リン
酸系フリットを添加混合し、焼結したリン酸カルシウム
焼結体が強度の改良されたものとして得られることを見
出した。また特公昭60−25383号に示すようにカ
ルシウム/リンの原子比が1.4〜1.75であるカル
シウムのリン酸塩を主体とする粉末に特定量のリン酸を
添加混合焼結したリン酸カルシウム焼結体が強度の改良
されたものとして得られることを見出した。
We conducted various studies on apatite sintered bodies and found that
As shown in Special Publication No. 60-50744, calcium/
Powder mainly composed of hydroxyapatite or tertiary calcium phosphate with a phosphorus atomic ratio of 1.4 to 1.75, and a specific amount of oxide-phosphoric acid frit such as alkali metal are added and mixed. It was also discovered that a sintered calcium phosphate sintered body with improved strength can be obtained. In addition, as shown in Japanese Patent Publication No. 60-25383, calcium phosphate is prepared by adding a specific amount of phosphoric acid to powder mainly composed of calcium phosphate with a calcium/phosphorus atomic ratio of 1.4 to 1.75, and sintering the mixture. It has been found that a sintered body can be obtained with improved strength.

く発明が解決しようとする課題〉 しかし上記の公報に示されたものは、いずれも焼結体を
得る前の配合と焼結体の強度との関係に着目したもので
、焼結体の相自体の構或については、生体親和性及び骨
形或上最も優れた構戒は何かという命題について何も示
唆されていない。
Problems to be Solved by the Invention> However, all of the above-mentioned publications focus on the relationship between the composition before obtaining the sintered body and the strength of the sintered body; Regarding the structure itself, there is no suggestion as to what is the best structure in terms of biocompatibility and bone shape.

く課題を解決するための手段〉 本発明はこの点を解決すべく種々検討の結果なされたも
ので、その概要は水酸アパタイト(HAP)、第3リン
酸カルシウム(TCP)をそれぞれ単味としてではなく
、特定の比率の混合相の焼結体として形或することによ
って優れた効果を発揮できることを見出した。
Means for Solving the Problems> The present invention was made as a result of various studies to solve this problem, and its outline is that hydroxyapatite (HAP) and tertiary calcium phosphate (TCP) are not used alone, but are It has been found that excellent effects can be exhibited by forming the material into a sintered body containing a mixed phase having a specific ratio.

すなわちその概要は、水酸アパタイト(HAP)と第3
リン酸カルシウム(TCP)とをHAP/TCPが8/
2〜278とし、両者の合計量が90重量%以上である
相構或のリン酸カルシウム焼結体が溶出性に優れるうえ
、極めて生体親和性がよい焼結体であることを見出した
In other words, the outline is that hydroxyapatite (HAP) and
Calcium phosphate (TCP) and HAP/TCP are 8/
It has been found that a calcium phosphate sintered body having a phase structure in which the total amount of both is 90% by weight or more has excellent dissolution properties and is extremely biocompatible.

上記の如き相構戒において、水酸アパタイト(HAP)
、第3リン酸カルシウム(TCP)を混合相として構威
しているので、HAP/TCPの比率により、カルシウ
ムイオンやリンイオンの溶出量や溶出比率が変化する。
In the above-mentioned phase structure, hydroxyapatite (HAP)
Since tertiary calcium phosphate (TCP) is used as a mixed phase, the elution amount and elution ratio of calcium ions and phosphorus ions change depending on the HAP/TCP ratio.

この溶出したカルシウムイオンやリンイオンは骨の形或
に大きく影響し、HAP/TCPが重量比で8/2〜2
/8の場合が骨との置換を大きく促すとの知見を得た。
These eluted calcium ions and phosphorus ions greatly affect the shape of bones, and the weight ratio of HAP/TCP is 8/2 to 2.
It was found that the case of /8 greatly promotes bone replacement.

く作用〉 本発明における焼結体の相構威において、HAP/TC
Pが8/2〜2/8が好ましいが、この比率を外れ、H
AP/TCPが8/2より大なる場合およびHAP/T
CPが2/8より小なる場合はいずれも骨形威に適合し
た流出をせず、骨置換も余り活発ではない。
Effect> In the phase structure of the sintered body in the present invention, HAP/TC
P is preferably 8/2 to 2/8, but outside this ratio, H
If AP/TCP is greater than 8/2 and HAP/T
When CP is less than 2/8, no outflow occurs that matches the bone shape, and bone replacement is not very active.

またHAPとTCPの合計量が90重量%以上存在する
ことにより生体親和性を増大し、骨との置換作用が活発
となるが、この範囲を外れ、90重量%未満では骨との
置換作用が不十分である。
In addition, when the total amount of HAP and TCP is 90% by weight or more, the biocompatibility increases and the bone replacement effect becomes active, but if it is outside this range and is less than 90% by weight, the bone replacement effect will be impaired. Not enough.

〈実施例〉 実施例1 水酸アパタイト粉末(湿式剛性粉末Ca/P=1.64
)にCa/Pの低いリン酸カルシウムガラスフリット(
Ca/P=0.5)を種々の量で加え、第3カルシウム
を析出させ、HAP/TCPが10/0、9/1、8/
2、5/5、2/8、1/9、0/10である焼結粒(
粒径400ないし600μm)を得た。
<Example> Example 1 Hydroxyapatite powder (wet rigid powder Ca/P=1.64
) with low Ca/P calcium phosphate glass frit (
Ca/P=0.5) was added in various amounts to precipitate tertiary calcium, and HAP/TCP was 10/0, 9/1, 8/
2, 5/5, 2/8, 1/9, 0/10 sintered grains (
A particle size of 400 to 600 μm) was obtained.

これを猿の顎骨に埋入し6カ月後に屠殺、顆粒周囲の新
生骨の形成状態を観察したところ、本発明の範囲内のも
のは顆粒の周囲より多くの新生骨が観察されたが、本発
明の範囲を外れたものはいずれも不十分であった。これ
らの結果は第1表に示すとおりである。
This was implanted into the jawbone of a monkey, sacrificed 6 months later, and the state of new bone formation around the granules was observed. In the case of the monkey, more new bone was observed than around the granule, but in this case, more new bone was observed than around the granule. Anything outside the scope of the invention was unsatisfactory. These results are shown in Table 1.

第l表 実施例2 実施例1と同様にして作ったHAP/TCPを種々に変
化させた顆粒(600ないし1000μm)をラット大
腿骨に埋入し、8、32週後に屠殺し、実施例1と同様
に骨形成を観察したところ、8週では本発明の範囲内の
ものも、比較例のものも余り差は認められなかったが、
32週後にはやはり本発明の範囲内のものとした顆粒を
用いたものに新生骨が多く観察された。
Table 1 Example 2 Granules (600 to 1000 μm) of variously modified HAP/TCP prepared in the same manner as in Example 1 were implanted into rat femurs, and sacrificed after 8 and 32 weeks. When bone formation was observed in the same manner as above, no significant difference was observed between those within the scope of the present invention and those of the comparative example at 8 weeks;
After 32 weeks, many new bones were observed in those using granules within the scope of the present invention.

その結果は第2表に示すとおりである。The results are shown in Table 2.

第2表 その結果は第3表に示すとおりである。Table 2 The results are shown in Table 3.

第3表 実施例3 メカノケミカル法にて合威したHAP及びTCPを各種
の比率で混合し、焼或して焼結粒を得、上記の実施例2
と同様にしてラット大腿骨に埋人し、8、32週後に屠
殺し、骨形威を観察したところ、8週では余り差がなか
ったが、32週後では本発明によるものが、著しく新生
骨の生或のよいことが認められた。
Table 3 Example 3 HAP and TCP combined by mechanochemical method were mixed in various ratios and sintered to obtain sintered grains, as described in Example 2 above.
When implanted in rat femurs in the same manner as above, sacrificed after 8 and 32 weeks, and observed the bone shape, there was not much difference at 8 weeks, but after 32 weeks, the bone shape of the present invention was significantly different. Good bone growth was observed.

く発明の効果〉 本発明によるときは、HAP/TCPを8/2〜2/4
としたものを構成相の90重量%以上形威したものとす
ることによって、それぞれが単味で用いられた場合より
も生体親和性、骨形成により優れ、骨置換を促す効果を
発揮することが出来る。
According to the present invention, HAP/TCP is controlled from 8/2 to 2/4.
By containing 90% by weight or more of the constituent phases, it is possible to have better biocompatibility and bone formation than when each is used alone, and to exhibit the effect of promoting bone replacement. I can do it.

Claims (1)

【特許請求の範囲】[Claims] 1.水酸アパタイトと第3リン酸カルシウムとの構成比
が、重量比で8/2〜2/8からなり、両者の合計量が
90重量%以上である人工補填補綴材料。
1. An artificial prosthetic material in which the composition ratio of hydroxyapatite and tertiary calcium phosphate is 8/2 to 2/8 by weight, and the total amount of both is 90% by weight or more.
JP1230393A 1989-09-07 1989-09-07 Artificial supply and prosthesis material Pending JPH0394761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1230393A JPH0394761A (en) 1989-09-07 1989-09-07 Artificial supply and prosthesis material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1230393A JPH0394761A (en) 1989-09-07 1989-09-07 Artificial supply and prosthesis material

Publications (1)

Publication Number Publication Date
JPH0394761A true JPH0394761A (en) 1991-04-19

Family

ID=16907175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1230393A Pending JPH0394761A (en) 1989-09-07 1989-09-07 Artificial supply and prosthesis material

Country Status (1)

Country Link
JP (1) JPH0394761A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849128B2 (en) * 2006-09-21 2012-01-11 株式会社島津製作所 Mass spectrometry method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106166A (en) * 1984-10-31 1986-05-24 東燃料株式会社 Apatite fluffy material
JPS6389164A (en) * 1986-10-02 1988-04-20 ティーディーケイ株式会社 Block-shaped artificial bone
JPS63240870A (en) * 1987-03-27 1988-10-06 京セラ株式会社 Apatite-method for producing tricalcium phosphate-based bone filling material
JPS6445795A (en) * 1987-08-11 1989-02-20 Kuraray Co Calcium phosphate compact and production thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61106166A (en) * 1984-10-31 1986-05-24 東燃料株式会社 Apatite fluffy material
JPS6389164A (en) * 1986-10-02 1988-04-20 ティーディーケイ株式会社 Block-shaped artificial bone
JPS63240870A (en) * 1987-03-27 1988-10-06 京セラ株式会社 Apatite-method for producing tricalcium phosphate-based bone filling material
JPS6445795A (en) * 1987-08-11 1989-02-20 Kuraray Co Calcium phosphate compact and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4849128B2 (en) * 2006-09-21 2012-01-11 株式会社島津製作所 Mass spectrometry method

Similar Documents

Publication Publication Date Title
US4778471A (en) Zcap ceramics
Tay et al. Calcium phosphate phase transformation produced by the interaction of the Portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid
Wise Encyclopedic handbook of biomaterials and bioengineering: v. 1-2. Applications
US4917702A (en) Bone replacement material on the basis of carbonate and alkali containing calciumphosphate apatites
LeGeros et al. Calcium phosphate bioceramics: past, present and future
Kim et al. Autogenous teeth used for bone grafting: a comparison with traditional grafting materials
US5149368A (en) Resorbable bioactive calcium phosphate cement
CA1332495C (en) In situ calcium phosphate minerals -- method and composition
JP2773752B2 (en) Storage stable formulations for calcium phosphate minerals prepared in situ
US5047031A (en) In situ calcium phosphate minerals method
US5262166A (en) Resorbable bioactive phosphate containing cements
LeGeros et al. Biphasic calcium phosphate bioceramics: preparation, properties and applications
Daculsi Biphasic calcium phosphate concept applied to artificial bone, implant coating and injectable bone substitute
Ishikawa et al. Fabrication of Zn containing apatite cement and its initial evaluation using human osteoblastic cells
US6425949B1 (en) Hydraulic surgical cement
US5580623A (en) Storage stable partially neutralized acid compositions and uses
Kim et al. Setting properties, mechanical strength and in vivo evaluation of calcium phosphate-based bone cements
JPH07206489A (en) Calcium phosphate cement composition, its preparation and its method of application
LeGeros et al. Introduction to synthetic and biologic apatites
JP2002012468A (en) Biocement with enhanced compression strength
Oshida Hydroxyapatite: synthesis and applications
Bavya Devi et al. Magnesium phosphate bioceramics for bone tissue engineering
LeGeros et al. Bioactive bioceramics
Dorozhkin et al. Biphasic, triphasic and multiphasic calcium orthophosphates.
Drouet et al. Calcium phosphate surface tailoring technologies for drug delivering and tissue engineering