[go: up one dir, main page]

JPH0394670A - Yeast strain having high productivity of beta-phenetyl alcohol and beta-phenetyl acetate, its breeding method, and production of liquors using the same yeast - Google Patents

Yeast strain having high productivity of beta-phenetyl alcohol and beta-phenetyl acetate, its breeding method, and production of liquors using the same yeast

Info

Publication number
JPH0394670A
JPH0394670A JP1230382A JP23038289A JPH0394670A JP H0394670 A JPH0394670 A JP H0394670A JP 1230382 A JP1230382 A JP 1230382A JP 23038289 A JP23038289 A JP 23038289A JP H0394670 A JPH0394670 A JP H0394670A
Authority
JP
Japan
Prior art keywords
yeast
phenethyl
acetate
strain
alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1230382A
Other languages
Japanese (ja)
Other versions
JPH0653065B2 (en
Inventor
Osamu Akita
修 秋田
Takayuki Obata
孝之 小幡
Masamichi Hara
原 昌道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TAX ADM AGENCY
National Tax Administration Agency
Original Assignee
TAX ADM AGENCY
National Tax Administration Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAX ADM AGENCY, National Tax Administration Agency filed Critical TAX ADM AGENCY
Priority to JP23038289A priority Critical patent/JPH0653065B2/en
Publication of JPH0394670A publication Critical patent/JPH0394670A/en
Publication of JPH0653065B2 publication Critical patent/JPH0653065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Alcoholic Beverages (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To efficiently separate the title yeast useful for producing liquors having excellent sweet smell from a specific analog resistant strain by separating the analog resistant strain from a yeast belonging to Saccharomyces cerevisiae. CONSTITUTION:A yeast belonging to Saccharomyces cerevisiae is, as necessary, treated with a variant-inducing treatment and then an analog resistant variant which became proliferative even in a culture medium containing an analog of phenylalanine of a high concentration incapable of normally growing is separated from the yeast. Then a strain capable of producing beta-phenetyl alcohol and beta-phenetyl acetate at remarkable amounts is separated from the resist variant to provide the objective yeast [e.g. Saccharomyces cerevisiae Kyokai 7-FPAR 18 (FERM P-10868)].

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、β−フェネチルアルコールと酢酸β−フェネ
チルを同時に高生産する酵母菌の育種法のである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is a method for breeding yeast that simultaneously produces high amounts of β-phenethyl alcohol and β-phenethyl acetate.

香気成分は酒類の品質を決定する重要な要因の一つであ
る。香気成分は酒類醸造に使用される酵母菌サッカロマ
イセス( Saccharomyces )属セレビシ
エ(cerevisiae)により発酵期間中に主に生
或される。
Aroma components are one of the important factors that determine the quality of alcoholic beverages. The aroma components are mainly produced during the fermentation period by yeasts of the genus Saccharomyces cerevisiae used in alcoholic beverage brewing.

酒類の需要開発にあたっては特徴ある品質の製品の開発
が望まれており、香気に特徴ある製品もその一つである
。バラ様の甘い香りを有すβ−フェネチルアルコールと
酢酸β−フェネチルの弁別閾値はビールにおいてそれぞ
れ125ppmおよび3ppmとされている(橋本:香
料 No. 112. I)23(1975))。
When developing demand for alcoholic beverages, it is desirable to develop products with distinctive quality, and products with distinctive aromas are one example of this. The discrimination thresholds for β-phenethyl alcohol and β-phenethyl acetate, which have a sweet rose-like aroma, are said to be 125 ppm and 3 ppm, respectively, in beer (Hashimoto: Fragrance No. 112. I) 23 (1975)).

一方酒類中のβ−フェネチルアルコールと酢酸β−フェ
ネチル含量は、ビールでlO〜100ppmと3〜5p
pm,清酒で20〜70ppmと5〜8ppm.ワイン
でlO〜75ppmと1〜2ppm,焼酎で9〜27p
pmと2〜28ppm,ウイスキー類で15〜30pp
mと1〜5ppmであり(新版醸造或分一覧 日本醸造
協会編(1977) ) 、弁別閾値母の生成能力をさ
らに高めた酵母菌を使用する必要がある。以上のことか
ら、β−フェネチルアルコールと酢酸β−フェネチルを
高生産する酵母菌の育種は、酒類の製造分野において新
製品の開発への寄与が期待されるものである。
On the other hand, the contents of β-phenethyl alcohol and β-phenethyl acetate in alcoholic beverages are 10 to 100 ppm and 3 to 5 p in beer.
pm, 20-70 ppm and 5-8 ppm for sake. 1O~75ppm and 1~2ppm for wine, 9~27ppm for shochu
pm and 2-28 ppm, whiskey 15-30 ppm
m and 1 to 5 ppm (New Edition of Jozo Orubun List, edited by Japan Brewing Association (1977)), and it is necessary to use yeast that has a further enhanced ability to produce discrimination threshold cells. Based on the above, breeding of yeast that can produce high amounts of β-phenethyl alcohol and β-phenethyl acetate is expected to contribute to the development of new products in the field of alcoholic beverage manufacturing.

(従来の技術) これまでに、β−フェネチルアルコールと酢酸β−フェ
ネチルを高生産する酵母菌の分離を目的とした育種例は
ない。
(Prior Art) Until now, there has been no example of breeding for the purpose of isolating a yeast strain that produces high amounts of β-phenethyl alcohol and β-phenethyl acetate.

(発明が解決しようとする問題点と解決するための手段
) 本発明は上記実情に鑑み、新たに醸造酵母からβ−フェ
ネチルアルコールと酢酸β−フェネチルを高生産する酵
母菌の分離育種をめざしたものであり、鋭意実験と研究
を重ねた結果従来の酵母に比べ著量のβ−フェネチルア
ルコールと酢酸β−フェネチルを生産する酵母菌の分離
方法を開発し、この方法により酵母サツ力ロマイセス(
 Saccharoる。さらに育種酵母の使用により香
気に優れた特徴を持つ酒類の製造に成功したものである
(Problems to be Solved by the Invention and Means for Solving the Problems) In view of the above-mentioned circumstances, the present invention aims to isolate and breed a yeast strain that can produce high amounts of β-phenethyl alcohol and β-phenethyl acetate from brewer's yeast. As a result of intensive experiments and research, we developed a method for isolating a yeast strain that produces significantly more β-phenethyl alcohol and β-phenethyl acetate than conventional yeast, and by using this method, we were able to isolate the yeast Satsuromyces (
Saccharo Ru. Furthermore, by using breeding yeast, they succeeded in producing alcoholic beverages with excellent aroma characteristics.

酵母によるβ−フェネチルアルコールを含む高級アルコ
ール類の生成はアミノ酸の代謝と密接な関係にあり、酵
母に取り込まれたアミノ酸が脱アミンさらに脱炭酸後還
元されて炭素数の一つ少ないアルコールとなる系と、ア
ミノ酸の合成系の中間代謝物であるケト酸から同様の反
応により生威される系の二つの系路がある。合成系から
の高級アルコールの生或はその系を通してできるアミノ
酸が多量にある場合、そのアミノ酸が合成系の酵素をフ
ィードバック阻害することにより抑制される。このフィ
ードバック阻害が不完全になった変異株jではアミノ酸
の存在の有無にかかわらず常に高級アルコールが生産さ
れることとなる。フィードバック阻害が不完全になった
変異株を取得する方法の一つに、それ自身もフィードバ
ック阻害する性質を持つアミノ酸のアナログを用い、こ
のアチルアルコールを高生産する変異株の分離のために
、フェニルアラニンのアナログであるp−フルオロフェ
ニルアラニンを主に用いたが、その他のフェニルアラニ
ンのアナログであるm−フルオロフェニルアラニン、0
−フルオロフェニルアラニン、グリシルフェニルアラニ
ン、β−2−チェニルアラニンの使用も可能である。こ
れはフェニルアラニンがフィードバック阻害をする酵素
の一つである3−デオキシーD−アラビノーへプッロン
酸7−リン酸シンターゼに対して上記のアナログがいず
れも阻害効果を有することに基づいている(TAKAH
ASI  et  al.:Can.J.Bioche
m.,49.1016(1971)。
The production of higher alcohols, including β-phenethyl alcohol, by yeast is closely related to the metabolism of amino acids, and the amino acids taken into the yeast are deaminated, decarboxylated, and reduced to alcohols with one fewer carbon number. There are two pathways: the first and the other produced by a similar reaction from keto acids, which are intermediate metabolites in the amino acid synthesis system. When higher alcohols are produced from a synthetic system or a large amount of amino acids are produced through that system, the amino acids are suppressed by feedback inhibition of enzymes in the synthetic system. In mutant strain j in which this feedback inhibition is incomplete, higher alcohols are always produced regardless of the presence or absence of amino acids. One way to obtain mutant strains with incomplete feedback inhibition is to use amino acid analogs that themselves have the property of feedback inhibition, and to isolate mutant strains that produce high levels of acyl alcohol. Although p-fluorophenylalanine, an analog of phenylalanine, was mainly used, other analogues of phenylalanine, m-fluorophenylalanine,
- It is also possible to use fluorophenylalanine, glycylphenylalanine, β-2-chenylalanine. This is based on the fact that all of the above analogs have an inhibitory effect on 3-deoxy-D-arabinohepuronate 7-phosphate synthase, which is one of the enzymes that feedback inhibition is caused by phenylalanine (TAKAH
ASI et al. :Can. J. Bioche
m. , 49.1016 (1971).

酢酸β−フェネチルの高生産はβ−フェネチルアルコー
ル高生産にともなって期待できる。これは酵母のアルコ
ールアセチルトランスフェラーゼによりアセチルCoA
とβ−フェネチルアルコールの縮合反応により生成され
るため、基質の一つで田ら:醸協、82、369 (1
987))。本育種法において親株として用いる酵母は
変異処理をせずに使用しても目的のアナログ耐性酵母は
分離可能であるが、通常の変異処理をした後に分離を行
ってもなんら支障はない。
High production of β-phenethyl acetate can be expected along with high production of β-phenethyl alcohol. This is converted into acetyl-CoA by yeast alcohol acetyltransferase.
Since it is produced by the condensation reaction of β-phenethyl alcohol and β-phenethyl alcohol, it is one of the substrates.
987)). Although it is possible to isolate the target analog-resistant yeast even if the yeast used as the parent strain in this breeding method is used without mutation treatment, there is no problem even if isolation is performed after the usual mutation treatment.

分離したアナログ耐性変異株を用い発酵試験を行い、発
酵液中のβ−フェネチルアルコールと酢酸β−フェネチ
ルを定量しこれらを著量生産し、発酵も親株と変わりな
いものを目的の酵母菌株として分離する。さらに分離酵
母により酒類の製造を行い、香気に優れた特徴を有し香
味の調和のとれた酒類を製造できる酵母を選択する。
We conducted fermentation tests using the isolated analog-resistant mutant strain, quantified β-phenethyl alcohol and β-phenethyl acetate in the fermentation liquid, produced these in significant amounts, and isolated those that fermented similarly to the parent strain as the target yeast strain. do. Furthermore, alcoholic beverages are produced using isolated yeast, and a yeast that has excellent aroma characteristics and can produce alcoholic beverages with a harmonious flavor is selected.

(発明の効果) 実用酵母からその優れた醸造特性を損なうことなく新し
い性質を獲得した変異株を分離するのは一般に多くの労
力を要する極めて困難な作業である。
(Effects of the Invention) Isolating a mutant strain that has acquired new properties without impairing its excellent brewing properties from a practical yeast is generally an extremely difficult task that requires a lot of effort.

本発明はアナログ耐性株を分離するポジティブ実用酵母
の育種において極めて有効である。さらに育種したβ−
フェネチルアルコール、酢酸β一フエネチルを高生産す
る酵母は香気に特徴を有す酒類の製造に好適である。
The present invention is extremely effective in breeding positive practical yeasts to isolate analog-resistant strains. Further bred β-
Yeasts that produce high amounts of phenethyl alcohol and β-phenethyl acetate are suitable for producing alcoholic beverages with distinctive aromas.

(実施例) 実施例l (p−フル才ロフェニルアラニン耐性酵母の
分離例l) サツカロマイセス( Saccharomyces)属
セレビシ工(cerevisiae)に属する協会7号
清酒酵母を、YCB培地(イーストカーボンベースl.
17%、カザミノ酸0.5%)に接種し増殖させた後、
無菌的に集菌洗浄し、2%グルコースを含む0.1M,
I)H7.0のリン酸バッファ−10mlに懸濁した。
(Example) Example 1 (Example 1 of isolation of p-full lophenylalanine resistant yeast) Sake yeast No. 7 belonging to the genus Saccharomyces cerevisiae was cultured in YCB medium (yeast carbon base l.
17%, casamino acid 0.5%) and grown,
Aseptically washed to collect bacteria, 0.1M containing 2% glucose,
I) Suspended in 10 ml of H7.0 phosphate buffer.

これに0.3mlのエチルメタンスルフォン酸を添加シ
30°Cでゆっくり振とうし変異処理を行った。変異処
理後の生存率は57%であった。変異処理後の菌体を1
0mlのチオ硫酸ナトリウムで1回、lOmlの減菌水
で2回洗浄後10mlの減菌水に懸濁しその400μl
ナイトロジェンベース0.67%、グルコース5%、寒
天2%)数枚に塗布した。25℃で培養すると約1週間
でコロニーが認められた。このコロニーをさらに同様の
培地で数回植継いだものをp−フル才ロフェニルアラニ
ン耐性酵母として分離した。
To this, 0.3 ml of ethyl methanesulfonic acid was added and the mixture was slowly shaken at 30°C to carry out mutation treatment. The survival rate after mutation treatment was 57%. 1 bacterial cell after mutation treatment
After washing once with 0 ml of sodium thiosulfate and twice with 10 ml of sterile water, suspend in 10 ml of sterile water and 400 μl of the same.
(nitrogen base 0.67%, glucose 5%, agar 2%) was applied to several sheets. When cultured at 25°C, colonies were observed in about one week. This colony was further subcultured several times in the same medium and was isolated as a p-fluorophenylalanine-resistant yeast.

実施例2 (p−フルオロフェニルアラニン耐性酵母か
らのβ−フェネチルアルコール、酢酸βーフエネチル高
生産株の分離) 実施例lで分離したp−フルオロフェニルアラニン耐性
変異株80株について、YCB培地(イーストカーボン
ベース1.17%、カザミノ酸0.5%、グルコースl
5%)を用いて25℃、静置で発酵試験を行った。発酵
液中のβ−フェネチルアルコールと酢酸β−フェネチル
含量をキャピラリーガスクロマトグラフィーにより定量
した。カラムはPEG20M15mx0.53mm(i
.d.)  (ガスクロ工業)を使用した。
Example 2 (Isolation of β-phenethyl alcohol and β-phenethyl acetate high-producing strains from p-fluorophenylalanine-resistant yeast) Regarding the 80 p-fluorophenylalanine-resistant mutant strains isolated in Example 1, YCB medium (Yeast Carbon Base 1 .17%, casamino acids 0.5%, glucose l
A fermentation test was conducted using 5%) at 25°C and left standing. The contents of β-phenethyl alcohol and β-phenethyl acetate in the fermentation broth were determined by capillary gas chromatography. The column is PEG20M15mx0.53mm (i
.. d. ) (Gas Kuro Kogyo) was used.

第1図に示したように親株の協会7号が100ppmオ
ロフェニルアラニン耐性変異株の約30%が300pp
m以上のβ−フェネチルアルコールと10ppm以上の
酢酸β−フェネチルを生成した。以上のようにp−フル
オロフェニルアラニン耐性変異株ヲ分離することにより
、そのなかから高頻度でβ−フェネチルアルコールと酢
酸β−フェネチルを多量生戊する株が得られた。またこ
れらの株のうち代表的な9株でのエタノールおよび香気
或分生成量を第1表に示した。エタノールの生成は親株
と変わりなく、イソアミルアルコール、酢酸イソアミル
は親株より多い傾向にあったが、特異的にβフエネチル
アルコールを高生産する変異株であることが判る。また
β−フェネチルアルコールの生威とフェニルアラニンの
消費量との間には相関がなくβ−フェネチルアルコール
は脱抑制されたフ工二ルアラニン合成系から生成された
ものと考えられる。
As shown in Figure 1, the parent strain Kyokai No. 7 is 100 ppm, and about 30% of the orophenylalanine resistant mutants are 300 ppm.
m or more of β-phenethyl alcohol and 10 ppm or more of β-phenethyl acetate were produced. By isolating p-fluorophenylalanine-resistant mutant strains as described above, strains that frequently produce large amounts of β-phenethyl alcohol and β-phenethyl acetate were obtained. Furthermore, the amounts of ethanol and aroma produced by nine representative strains among these strains are shown in Table 1. Ethanol production was the same as the parent strain, and isoamyl alcohol and isoamyl acetate tended to be higher than the parent strain, but it is clear that this mutant strain specifically produces high levels of β-phenethyl alcohol. Furthermore, there is no correlation between the yield of β-phenethyl alcohol and the consumption amount of phenylalanine, and it is considered that β-phenethyl alcohol is produced from the deinhibited phenylalanine synthesis system.

協会7号(親株) 8.8 139 協会7号(親株) 4.9 協会7号(親株) 7エニルアラニン消費量 (mM) 0.2 9 実施例3 (β−フェネチルアルコール、 0.34 酢酸β 酢酸β−フェネチル高生産変異株を用い我々の開発した
糖化後発酵(秋田ら:醸協誌、8l、537(1986
))を行った。糖化液は精白歩合75%の白米と麹を6
=1の比率で、水は白米の3倍量使用し、耐熱性液化酵
素と糖化酵素により液化糖化して調整した(大場、秋田
、中村:特公昭61−51864)。
Kyokai No. 7 (parent strain) 8.8 139 Kyokai No. 7 (parent strain) 4.9 Kyokai No. 7 (parent strain) 7enylalanine consumption (mM) 0.2 9 Example 3 (β-phenethyl alcohol, 0.34 Acetic acid Post-saccharification fermentation that we developed using a β-phenethyl acetate high-producing mutant strain (Akita et al.: Joukyo Journal, 8l, 537 (1986)
)) was done. The saccharification liquid is made of white rice with a polishing ratio of 75% and koji.
= 1, water was used in an amount three times that of polished rice, and was liquefied and saccharified using a heat-resistant liquefying enzyme and a saccharifying enzyme (Oba, Akita, Nakamura: Special Publication No. 61-51864).

糖化液の組成をグルコースl8.2%、アミノ酸17.
7mM (アミノ態窒素327m g / 1  とし
た。発酵は発酵栓をつけた500−の三角フラスコに3
00−の糖化液を入れ、スターラーで攪拌しなからl5
℃一定条件で行った。初発の酵母数は5X 10’/一
とした。
The composition of the saccharified solution was 8.2% glucose and 17% amino acids.
7mM (amino nitrogen 327mg/1) Fermentation was carried out in a 500-mm Erlenmeyer flask equipped with a fermentation stopper.
Add the 00- saccharified liquid and stir with a stirrer.
The experiment was carried out at a constant temperature of ℃. The initial number of yeast was 5×10′/1.

グルコースが1%以下になった時点で発酵終了とした。Fermentation was terminated when glucose became 1% or less.

発酵酒の威分組成を第2表に示した。合戊培地を発酵さ
せた場合と同様変異株で特異的にβ−フェネチルアルコ
ールと酢酸β−フェネチルの含有量が親株に比べ著しく
多くなった。変異株によるエタノール、酸度の生戊とも
親株と顕著な差がなく実用上問題がなかった。
Table 2 shows the chemical composition of fermented sake. As in the case of fermentation using a mixed medium, the contents of β-phenethyl alcohol and β-phenethyl acetate were significantly higher in the mutant strain than in the parent strain. There was no noticeable difference in ethanol and acidity produced by the mutant strain from that of the parent strain, and there were no practical problems.

協会7号(親株) 協会7号(R抹) 協会7号(親株) エクl−ル イ゛lアミルアルコール 酢酸イ゛l7ミル lO.3 1.4 β−フェネチルアルコール 酢酸β−7エネチル 0.8 フエ二k7ラニン消費量 0.45 3.0 ーフエネチル高生産変異株:による清酒醸造試験)難波
らの方法(醸協誌、U、295(1978) ’Iにょ
り総米150gの清酒醸造試験を実施し結果を第3表に
示した。22日目に発酵終了とし遠心分離により上槽し
た。
Association No. 7 (Parent Stock) Association No. 7 (R) Association No. 7 (Parent Stock) Ecl. 3 1.4 β-phenethyl alcohol β-7 enethyl acetate 0.8 Phenethyl-K7 ranin consumption 0.45 3.0 - Sake brewing test with high phenethyl-producing mutant strain) Method of Namba et al. (Jokyo Journal, U, 295) (1978) 'I conducted a sake brewing test using 150 g of total rice, and the results are shown in Table 3. Fermentation was completed on the 22nd day, and the sake was poured into a tank by centrifugation.

耐性株のエタノール生成は親株と変わりなく香気成分で
はβ−フェネチルアルコール、酢酸β一フエネチルが顕
著に多く、イソアミルアルコール、酢酸イソアミルも親
株より多い傾向にあった。酸度、アミノ酸度は親株と大
きな差はなかった。なおアミノ酸度がすべてに低いのは
α化米を使用したためである。以上のことから分離耐性
株が実際の清酒仕込みにおいても十分な実用性を有し、
さらに本株の特性であるβ−フェネチルアルコール、酢
酸β−フェネチル高生産性が発揮され香気にこれまでに
ない特徴を有する清酒を製造することができた。
The ethanol production of the resistant strain was no different from that of the parent strain, and among the aroma components, β-phenethyl alcohol and β-phenethyl acetate were significantly more abundant, and isoamyl alcohol and isoamyl acetate were also more abundant than the parent strain. There was no significant difference in acidity and amino acid content from the parent strain. The reason why the amino acid content is low in all of them is because pregelatinized rice is used. From the above, the isolated resistant strain has sufficient practicality in actual sake brewing.
Furthermore, the high productivity of β-phenethyl alcohol and β-phenethyl acetate, which is a characteristic of this strain, was exhibited, and it was possible to produce sake with unprecedented aromatic characteristics.

実施例4 (β−フェネチルアルコール、 酢酸β 日本酒度 酸度 アミノ酸度 協会7号<yi株) −13 3.2 官能検査* 香 り 総合品質 協会7号(親株)2,00   1.862.4 エタノール   イソアミルアルコール(%)    
 μ g/m/ 18.1      169 酢酸イソアミル β〜7エネチルアルコール 酢酸β−7エネチル 協会7号(親株) 3.2 135 3.6 実施例5 (p−フルオロ゜ネ堀ニルアラニン耐性酵母
の分離例2) サッカ07イセス( Saccharomyces )
属セレビシエ(cerevisiae)に属するl倍体
酵母A5−8−1(aleul)から実施例lと同様の
方広にてp−フル才ロフェニルアラニン耐性株の分離を
行った。本酵母は実験室酵母でありサツ力口マイセス(
 Saccharomyces)属セレビシエ(cer
evisiae)の代表的な株である。分離した耐性株
はロイシン要求性を示し親株の変異株であることを確認
した。分離株によるYCB培地(イーストカーボンベー
スl.17%、カザミノ酸0.5%、グルコース15%
)を用いた発酵試験でのβ−フェネチルアルコール、酢
酸β−フェネチルの生産量を第4表に示した。
Example 4 (β-phenethyl alcohol, β acetic acid Japan Sake Acidity and Amino Acidity Association No. 7 <yi strain) -13 3.2 Sensory test * Aroma Total Quality Association No. 7 (parent strain) 2,00 1.862.4 Ethanol Isoamyl alcohol (%)
μ g/m/ 18.1 169 Isoamyl acetate β-7 enethyl alcohol β-7 enethyl acetate Association No. 7 (parent strain) 3.2 135 3.6 Example 5 (Isolation of p-fluorodenylalanine resistant yeast Example 2) Saccharomyces
A p-fluorophenylalanine resistant strain was isolated from the lploid yeast A5-8-1 (Aleul) belonging to the genus Cerevisiae using the same technique as in Example 1. This yeast is a laboratory yeast, Satsurikuchi Myces (
Saccharomyces genus cerevisiae
evisiae). The isolated resistant strain showed leucine auxotrophy and was confirmed to be a mutant of the parent strain. YCB medium by isolate (yeast carbon base l. 17%, casamino acids 0.5%, glucose 15%
Table 4 shows the production amounts of β-phenethyl alcohol and β-phenethyl acetate in the fermentation test using ().

耐性株から親株に比べ著量のβ−フェネチルアルコール
、酢酸β−フェネチルを生成する株が分離できた。
A strain that produced significantly more β-phenethyl alcohol and β-phenethyl acetate than the parent strain was isolated from the resistant strain.

*3a法(1.良い、2:普通、3.悪い)で審査し、
パネル7名の平均値第4表 p−フル才ロフェニルアラ≧乙耐性酵母の香気生戊β−
7エネチルアルコール       酢酸/3 −7エ
ネチル第5表p−フルオロフェニルアラニン耐性酵母の
香気生或β−7エネチルアルコール       酢酸
β−フL不チル43         309    
         248         312 
            254         3
58             2実施例6(p−フル
才ロフェニルアラニン耐性酵母の分離例3) サツ力口マイセス( Saccharomyces )
属セレビシエ(cerevisiae)に属する1倍体
酵母C4488−IA (α leu2 (KIL−k
〕)から実施例lと同様の方法にてp−フルオロフェニ
ルアラニン耐性株の分離を行った。本酵母は実験室酵母
でありサツ力ロマイセス( Saccharomyce
s )属セレビシエ(cerev is iae )の
代表的な株である。耐性株はロイシン要求性を示し親株
の変異株であることを確認した。分離株によるYCB培
地(イーストカーボンベース1.17%、カザミノ酸0
.5%、グルコース15%)を用いた発酵試験を行いそ
の時のβ−フェネチルアルコール、酢酸β−フェネチル
の生成量を第5表に示した。
*Judging using 3a method (1. Good, 2: Average, 3. Bad)
Average values of 7 panel members Table 4 p-Full-sized lophenyara ≧ Otsu-resistant yeast aromatic β-
7 enethyl alcohol Acetic acid/3 -7 enethyl Table 5 Aroma of p-fluorophenylalanine resistant yeast or β-7 enethyl alcohol β-F L-unthyl acetate 43 309
248 312
254 3
58 2 Example 6 (Example 3 of isolation of p-ferrophenylalanine resistant yeast) Saccharomyces
The haploid yeast C4488-IA (α leu2 (KIL-k
]) in the same manner as in Example 1 to isolate p-fluorophenylalanine-resistant strains. This yeast is a laboratory yeast, Saccharomyces (Saccharomyces).
s) is a representative strain of the genus Cerevisiae. The resistant strain showed leucine auxotrophy and was confirmed to be a mutant of the parent strain. isolate in YCB medium (yeast carbon base 1.17%, casamino acids 0
.. Table 5 shows the amounts of β-phenethyl alcohol and β-phenethyl acetate produced.

25          287          
  3耐性株から親株に比べ著量のβ−フェネチルアル
コール、酢酸β−フェネチルを生或する株を分離できた
25 287
From the 3-resistant strains, we were able to isolate a strain that produced significantly more β-phenethyl alcohol and β-phenethyl acetate than the parent strain.

実施例5、6から本発明のβ−フェネチルアルコール、
酢酸β−フェネチル高生産酵母菌株の分離法はサッカロ
マイセス( Saccharomyces )属セレビ
シエ(cerevisiae)に広く活用できることが
示された。
β-phenethyl alcohol of the present invention from Examples 5 and 6,
It has been shown that the method for isolating a yeast strain that produces high β-phenethyl acetate can be widely used for the genus Saccharomyces cerevisiae.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例2における、親株の協会7号清酒酵母と
親株から分離したp−フルオロフェニルアラニン耐性株
によるβ−フェネチルアルコールと酢酸β−フェネチル
の生産を示す図。
FIG. 1 is a diagram showing the production of β-phenethyl alcohol and β-phenethyl acetate by the parent strain Kyokai No. 7 sake yeast and the p-fluorophenylalanine-resistant strain isolated from the parent strain in Example 2.

Claims (4)

【特許請求の範囲】[Claims] (1)サッカロマイセス(Saccharomyces
)属セレビシエ(cerevisiae)に属する酵母
を変異処理または変異処理することなく、 通常では生育できない濃度のフェニルア ラニンのアナログを含む培地で生育でき るようになったアナログ耐性変異株を分 離し、さらに耐性変異株からβ−フェネ チルアルコールと酢酸β−フェネチル高 生産性酵母を分離育種する方法。
(1) Saccharomyces
We isolated analog-resistant mutant strains of yeast belonging to the genus cerevisiae that can grow in a medium containing a phenylalanine analog at a concentration that would normally make it impossible to grow without mutagenic treatment or mutagenic treatment, and further developed resistant mutant strains. A method for isolating and breeding yeast with high productivity of β-phenethyl alcohol and β-phenethyl acetate.
(2)サッカロマイセス(Saccharomyces
)属セレビシエ(cerevisiae)に属する清酒
酵母を変異処理または変異処理すること なく、通常では生育できない濃度のp− フルオロフェニルアラニンを含む培地で 生育できるようになった耐性変異株を分 離し、さらに、耐性変異株からβ−フェネ チルアルコールと酢酸β−フェネチル高 生産性酵母を分離育種する方法。
(2) Saccharomyces
) A resistant mutant strain of sake yeast belonging to the genus cerevisiae that can grow in a medium containing p-fluorophenylalanine at a concentration that would normally be impossible to grow was isolated without mutation treatment or mutagenic treatment. A method for isolating and breeding yeast with high productivity of β-phenethyl alcohol and β-phenethyl acetate from mutant strains.
(3)上記(2)の方法により分離されたサツカロマイ
セス(Saccharomyces)属セレビシエ(c
erevisiae)Kyokai7−FPAR18(
微工研菌寄第10868号)で表示されるβ−フェネチ
ルアルコールと酢酸β−フェ ネチル高生産性酵母。
(3) The genus Saccharomyces cerevisiae (c
erevisiae) Kyokai7-FPAR18 (
A yeast that is highly productive of β-phenethyl alcohol and β-phenethyl acetate, which is displayed in the Microtechnical Research Institute No. 10868).
(4)上記(1)の方法により分離されたサッカロマイ
セス(Saccharomyces)属セレビシエ(c
erevisiae)に属するβ−フェネチルアルコー
ルと酢酸β−フェネチル 高生産性酵母を用いることを特徴とする 酒類の製造法。
(4) The genus Saccharomyces cerevisiae (c
1. A method for producing alcoholic beverages, characterized by using a yeast that is highly productive of β-phenethyl alcohol and β-phenethyl acetate belonging to the family A. erevisiae.
JP23038289A 1989-09-07 1989-09-07 β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same Expired - Lifetime JPH0653065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23038289A JPH0653065B2 (en) 1989-09-07 1989-09-07 β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23038289A JPH0653065B2 (en) 1989-09-07 1989-09-07 β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same

Publications (2)

Publication Number Publication Date
JPH0394670A true JPH0394670A (en) 1991-04-19
JPH0653065B2 JPH0653065B2 (en) 1994-07-20

Family

ID=16906993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23038289A Expired - Lifetime JPH0653065B2 (en) 1989-09-07 1989-09-07 β-phenethyl alcohol, β-phenethyl acetate high-producing yeast strain, breeding method thereof, and liquor production method using the same

Country Status (1)

Country Link
JP (1) JPH0653065B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224650A (en) * 1996-02-23 1997-09-02 Kagome Co Ltd Production of fermented foodstuff
JP2015091265A (en) * 2008-10-29 2015-05-14 株式会社カネカ Method for producing l-amino acid
KR20190017049A (en) * 2017-05-25 2019-02-19 지앙난대학교 Brewing yeast strains of high yield of? -Phenylethanol and uses thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102411443B1 (en) * 2020-11-26 2022-06-22 한국식품연구원 Yeast saccharomyces cerevisiae gnpea4, manufacturing method of distilled spirit with phehylethyl alcohol and phenethyl acetate flavour compounds using it, and distilled spirit manufactured therefrom

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292265A (en) * 1988-09-27 1990-04-03 Kyowa Hakko Kogyo Co Ltd Production of alcohol drink or fermented seasoning

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0292265A (en) * 1988-09-27 1990-04-03 Kyowa Hakko Kogyo Co Ltd Production of alcohol drink or fermented seasoning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224650A (en) * 1996-02-23 1997-09-02 Kagome Co Ltd Production of fermented foodstuff
JP2015091265A (en) * 2008-10-29 2015-05-14 株式会社カネカ Method for producing l-amino acid
US9464306B2 (en) 2008-10-29 2016-10-11 Kaneka Corporation Method for producing L-amino acid
KR20190017049A (en) * 2017-05-25 2019-02-19 지앙난대학교 Brewing yeast strains of high yield of? -Phenylethanol and uses thereof

Also Published As

Publication number Publication date
JPH0653065B2 (en) 1994-07-20

Similar Documents

Publication Publication Date Title
Zironi et al. Volatile metabolites produced in wine by mixed and sequential cultures of Hanseniaspora guilliermondii or Kloeckera apiculata and Saccharomyces cerevisiae
Mauricio et al. The effects of grape must fermentation conditions on volatile alcohols and esters formed by Saccharomyces cerevisiae
Plata et al. Formation of ethyl acetate and isoamyl acetate by various species of wine yeasts
Rous et al. Reduction of higher alcohols by fermentation with a leucine‐auxotrophic mutant of wine yeast
Huuskonen et al. Selection from industrial lager yeast strains of variants with improved fermentation performance in very-high-gravity worts
JP2530650B2 (en) Method for producing low alcohol or no alcohol beer
Negoro et al. Development of sake yeast breeding and analysis of genes related to its various phenotypes
Asano et al. Isolation of high-malate-producing sake yeasts from low-maltose-assimilating mutants
JPH0394670A (en) Yeast strain having high productivity of beta-phenetyl alcohol and beta-phenetyl acetate, its breeding method, and production of liquors using the same yeast
JP3898652B2 (en) Tyrosol high-productivity yeast mutant and method for producing fermented alcoholic beverage using the yeast
US20030162272A1 (en) Method for culturing micro-organisms in reducing conditions obtained by a gas stream
JPS626669A (en) Method of cultivating variant yeast
JPH0746982B2 (en) Mutant yeast culture method
US6455301B1 (en) Erythritol—producing Moniliella strains
JPH0292265A (en) Production of alcohol drink or fermented seasoning
JP4402207B2 (en) Alcohol-resistant yeast
JP4570702B2 (en) Process for producing alcoholic beverages with a modified ratio of flavor content
JP7457987B2 (en) A new beer yeast that produces high Ginjo aroma
JP3835564B2 (en) New yeast and its use
Higuchi et al. Esterase activity in soy sauce Moromi as a factor hydrolyzing flavor esters
JP4008539B2 (en) New yeast with high organic acid production and its use
Yamauchi et al. Rapid fermentation of beer using an immobilized yeast multistage bioreactor system: Control of minor products of carbohydrate metabolism
Nakatani et al. Characterization and application of Lachancea thermotolerans isolates for sake brewing
JPH03112479A (en) Production of alcoholic beverage or the like
JPH06169747A (en) Method for breeding yeast having low decomposition of isoamyl acetate, its yeast strain and production of refined sake using the same