[go: up one dir, main page]

JPH0393608A - Production of thin film of oxide superconductor - Google Patents

Production of thin film of oxide superconductor

Info

Publication number
JPH0393608A
JPH0393608A JP1231193A JP23119389A JPH0393608A JP H0393608 A JPH0393608 A JP H0393608A JP 1231193 A JP1231193 A JP 1231193A JP 23119389 A JP23119389 A JP 23119389A JP H0393608 A JPH0393608 A JP H0393608A
Authority
JP
Japan
Prior art keywords
substrate
oxide superconductor
container
oxygen
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1231193A
Other languages
Japanese (ja)
Other versions
JP2854623B2 (en
Inventor
Mutsuki Yamazaki
六月 山崎
Hisashi Yoshino
芳野 久士
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Original Assignee
CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI, Chodendo Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai filed Critical CHIYOUDENDOU HATSUDEN KANREN KIKI ZAIRYO GIJUTSU KENKYU KUMIAI
Priority to JP1231193A priority Critical patent/JP2854623B2/en
Publication of JPH0393608A publication Critical patent/JPH0393608A/en
Application granted granted Critical
Publication of JP2854623B2 publication Critical patent/JP2854623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Vapour Deposition (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To form a thin film of oxide superconductor showing excellent superconducting characteristics on a substrate without carrying out heat treatment after film formation by feeding active oxygen seed made into plasma from an active oxygen seed generator arranged in a vacuum container to a substrate. CONSTITUTION:An active oxygen seed generator 9 opening a nozzle 9a with given diameter is arranged in a vacuum container 1 in a reduced pressure state of <=1X10<-3>Torr. Then pressure in the container 9 is made into a reduced pressure state of >=1X10<-3>Torr higher than the pressure in the container 1 and gas molecules containing O atom in the container 9 are made into plasma by high-frequency power 11. Simultaneously, as active oxygen seed formed by the plasma is fed to the vicinity of a substrate 3, a thin film of oxide superconductor is formed on the substrate 3. By the above-mentioned method, as constituent elements of the oxide superconductor are sufficiently evaporated (evaporation sources 4, 5 and 6), the active oxygen seed such as oxygen radical and oxygen ion having high density and low kinetic energy can be fed to the vicinity of the substrate 3 and a deposited material is sufficiently oxidized in the film formation.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の目的〕 (産業上の利用分野) 本発明は、酸化物超電導体薄膜の製造方法に関する。 (従来の技術) 1988年にHa−La−Cu−0系の層状ペロブス力
イト型の酸化物が40K以上の高い臨界温度を有するこ
とが発表されて以来、酸化物系の超電導体が注目を集め
、新材料探索の研究が活発に行われている。 その中でも、液体窒素温度以上の高い臨界温度を有する
Y−Ba−Cu−0系で代表される欠陥ペロプスカイト
型の酸化物超電導体や、Bl−Sr−Ca−Cu−0系
およびTI−Ba−Ca−Cu−0系の酸化物超電導体
は、冷媒として高価な液体ヘリウムに代えて、安価な液
体窒素を利用できるため、工業的にも重要な価値を有し
ている。そして、それらの応用の研究も盛んに行われて
おり、超高速の超電導デバイス、SQLIIDセンサ、
超電導配線、超電導コイル、送電線など、多数の応用が
考えられている。 たとえば超電導体を各種電子デバイスの配線として使用
すれば、配線による信号の遅延が低減されるため、信号
処理あるいは演算の高速化を可能にする。酸化物超電導
体をこのような超電導配線に応用することを考えた場合
、バルク材に比べて臨界電流密度が一桁以上高い薄膜を
利用することが有利である。 このような超電導特性に優れた酸化物超電導体薄膜は、
多くの場合真空プロセスを利用して作製されており、た
とえばスパッタ法、レーザースパッタ法、真空蒸着法、
MBE法、MOCVD法、 JCB蒸着法などの薄膜形
成法が適用されている。 ところで、上記各種薄膜形成法のうち、真空蒸着法、M
BE法、ICB蒸着法などは、通常IXIO−’Tar
t以下の高真空下で行われるため、薄膜への酸素導入量
を充分に高めることができず、良好な超電導特性を示す
薄膜を直接得ることができないという難点があった。 このような問題に対して、酸素をプラズマ化して活性化
したものを供給することにより、酸素導入量を増加させ
て超電導特性を向上させる試みがなされている。具体的
には、電子サイクロトロン共鳴(ECR)により電子を
高エネルギー状態に加速し、これを酸素に衝突されてプ
ラズマ化する方法であり、この方法によればIXIO’
丁orr以下の真空下、I X 10−’ Torr以
下の高真空下においてもプラズマを発生させることが可
能である。 しかし、ECRは反応室内に磁場を形成しなければなら
ず、反応室をコイルや永久磁石で外包する必要があり、
装置が大がかりとなるなど、装置上の制約が大きいとい
う問題があった。また、プラズマを発生させる反応室は
、基板からある程度離れたところに設けなくてはならず
、基板に到達する活性種はECR反応室からの漏れ磁界
により引出され、かつ加速されたものであるため、運動
エネルギーは大きいものの密度は低いという欠点があっ
た。つまり、密度の低い酸素の活性種を高い運動エネル
ギーによって薄膜内に導入する方法であるため、高エネ
ルギー粒子によって得られる薄膜にダメージが発生して
しまう。 一方、真空容器内に高周波導入用のコイルを設け、そこ
でグロー放電を起こさせて酸素をプラズマ化させる方法
が提案されているが、実際にはlX 104Torr以
下の高真空下ではグロー放電は起こらず、したがって真
空蒸着法、MBE法、IcB蒸着法などに必要とされる
 l X 10−’ Torr以下の高真空下で酸素の
プラズマを発生させつつ蒸着を実施することは現実的な
方法とは言えない。 (発明が解決しようとする課11!) 酸化物超電導体薄膜にダメージを与えることなく特性を
向上させるためには、運動エネルギーが低くかつ密度の
高い酸素の活性種を成膜面に供給することが必要である
が、現在提案されている方法では真空蒸着法、MBE法
、ICB蒸着法などに必要とされる真空容器内圧力、す
なわちtxto−’丁orr以下の高真空を維持しつつ
、上述したような酸素の活性種を成膜面に供給すること
は非常に困難を伴うものである。 本発明は、このようなyAIfiに対処するためになさ
れたもので、真空蒸着法、MBE法、ICB蒸着法など
に必要とされる少なくともIX 10” Torr以下
の真空容器内圧力を満足しつつ、高密度でかつ運動エネ
ルギーの低い酸素の活性種を被着基体の近傍に供給する
ことを可能にすることによって、超電導特性に優れた酸
化物超電導体薄膜を比較的簡易な装置構成で形成するこ
とを可能にした酸化物超電導体薄膜の製造方法を提供す
ることを目的としている。
[Object of the Invention] (Industrial Application Field) The present invention relates to a method for producing an oxide superconductor thin film. (Prior art) Since it was announced in 1988 that Ha-La-Cu-0-based layered perovskite oxides have a high critical temperature of 40K or more, oxide-based superconductors have attracted attention. Research is being actively conducted to collect and search for new materials. Among them, defective perovskite-type oxide superconductors represented by the Y-Ba-Cu-0 system, which have a high critical temperature higher than the liquid nitrogen temperature, the Bl-Sr-Ca-Cu-0 system and the TI-Ba -Ca-Cu-0-based oxide superconductors have important industrial value because inexpensive liquid nitrogen can be used as a coolant instead of expensive liquid helium. Research into these applications is also actively being conducted, including ultra-high-speed superconducting devices, SQLIID sensors,
Many applications are being considered, including superconducting wiring, superconducting coils, and power transmission lines. For example, if superconductors are used as wiring for various electronic devices, signal delays caused by the wiring will be reduced, making it possible to speed up signal processing or calculations. When considering the application of oxide superconductors to such superconducting wiring, it is advantageous to use a thin film whose critical current density is one order of magnitude higher than that of a bulk material. Oxide superconductor thin films with such excellent superconducting properties are
In many cases, it is manufactured using a vacuum process, such as sputtering, laser sputtering, vacuum evaporation,
Thin film forming methods such as the MBE method, MOCVD method, and JCB deposition method are applied. By the way, among the various thin film forming methods mentioned above, vacuum evaporation method, M
BE method, ICB vapor deposition method, etc. are usually IXIO-'Tar
Since the process is carried out under a high vacuum of less than t, the amount of oxygen introduced into the thin film cannot be sufficiently increased, and a thin film exhibiting good superconducting properties cannot be directly obtained. In order to solve these problems, attempts have been made to increase the amount of oxygen introduced and improve the superconducting properties by supplying activated oxygen by converting it into plasma. Specifically, this is a method of accelerating electrons to a high energy state using electron cyclotron resonance (ECR) and colliding them with oxygen to turn them into plasma. According to this method, IXIO'
Plasma can be generated even under a vacuum of less than 1 Torr or under a high vacuum of less than I x 10-' Torr. However, ECR requires a magnetic field to be created within the reaction chamber, which requires surrounding the reaction chamber with a coil or permanent magnet.
There was a problem in that there were significant restrictions on the equipment, such as the equipment being large-scale. In addition, the reaction chamber that generates plasma must be installed at a certain distance from the substrate, and the active species that reach the substrate are drawn out and accelerated by the leakage magnetic field from the ECR reaction chamber. Although the kinetic energy was large, the density was low. In other words, since this is a method in which oxygen active species with low density are introduced into the thin film using high kinetic energy, the resulting thin film is damaged by high-energy particles. On the other hand, a method has been proposed in which a coil for introducing high frequency waves is installed in a vacuum container and a glow discharge is caused there to turn oxygen into plasma, but in reality, glow discharge does not occur under a high vacuum of less than 104 Torr. Therefore, although it is not a practical method to carry out vapor deposition while generating oxygen plasma under a high vacuum of less than l x 10-' Torr, which is required for vacuum evaporation, MBE, IcB evaporation, etc. do not have. (Question 11 to be solved by the invention!) In order to improve the properties of an oxide superconductor thin film without damaging it, it is necessary to supply oxygen active species with low kinetic energy and high density to the film forming surface. However, the currently proposed method maintains the pressure inside the vacuum container required for vacuum evaporation, MBE, ICB evaporation, etc., i.e., the high vacuum below txto-'minorr, while achieving the above-mentioned It is extremely difficult to supply such active species of oxygen to the film-forming surface. The present invention was made to deal with such yAIfi, and satisfies the internal pressure of a vacuum container of at least IX 10" Torr or less required for vacuum evaporation, MBE, ICB evaporation, etc. To form an oxide superconductor thin film with excellent superconducting properties with a relatively simple equipment configuration by making it possible to supply active oxygen species with high density and low kinetic energy near the adherend substrate. The purpose of this invention is to provide a method for manufacturing an oxide superconductor thin film that makes it possible to achieve the following.

【発明の構成】[Structure of the invention]

(課題を解決するための手段) すなわち本発明の酸化物超電導体薄膜の製造方法は、I
X 10’ Torr以下の減圧状態とされた真空容器
内で、酸化物超電導体を構成する各金属元素を蒸発させ
て基体表面に堆積させ、前記酸化物超電導体の薄膜を作
製するにあたり、罰記真空容器内で開口させた所定口径
のノズルを有する酸素活性種発生容器を前記真空容器内
に配置し、l×1o″” Torr以上の前記真空容器
内圧力より高い圧力の減圧状態とした前記酸素活性種発
生容器内で酸素原子を含む気体分子を高周波電力による
グロー放電によってプラズマ化すると共に、このプラズ
マにより形成された酸素の活性種を前記基体近傍に供給
しつつ、前記酸化物超電導体薄膜を成膜することを特徴
としている。 (作 用) 真空容器内に所定口径のノズルを開口させた酸素活性種
発生容器を真空容器内に配置することによって、真空容
器内を1× 10’ Torr以下の高真空状態に排気
しても、上記酸素活性種発生容器内はノズル部分によっ
てコンダクタンスが低く設定されているため、真空容器
内圧力より高い圧力の減圧状態とすることができる。こ
れにより、真空容器内は酸化物超電導体の構成元素を充
分に蒸発されるのに必要なIX 10’ Torr以下
の高真空状態を実現しつつ、酸素活性種発生容器内で高
周波電力によるグロー放電を起こし、プラズマを発生さ
せることが可能となる。したがって、充分に酸化物超電
導体の構成元素を蒸発させつつ、密度が高くかつ運動エ
ネルギーの低い酸素ラジカルや酸素イオンなどの酸素の
活性種を基体近傍に充分に供給でき、成膜時に蒸着物を
充分に酸化することが可能となる。 (実施例) 次に、本発明の実施例について図面を参照して説明する
。 第1図は本発明の一実施例の酸化物超電導体薄膜の製造
方法を適用した或膜装置である。 同図において、1は排気系2に接続された真空容器であ
り、この真空容器1内には、被着基板3と目的とする酸
化物超電導体薄膜を構威する各金属元素の単体あるいは
化合物からなる蒸発源4、5、6が対向して配置されて
いる。 上記彼着基板3は、たとえばMgO SSrT1(h、
Al203、Y安定化Zr02 (YSZ) 、Sl,
 Ag, ノzステロイ、インコネルなどからなるもの
であり、その形状は板状体に限らず、ロッド状、ワイヤ
状、テープ状など形状は任意である。さらに、金属基板
上にSrT103などの薄膜をバッファ層として設けた
ものを使用してもよく、このような披着基体を用いると
、得られた膜のC軸配向性がより高くなる。なお、被着
基板3を保持するホルダ7内には基体加熱用のヒータ8
が設置されており、成膜時には披着基板3を400℃以
上、好ましくは850℃以上に加熱する。これによって
結晶性のよい薄膜が得られる。 また、蒸発源4、5、6は形成しようとする酸化物超電
導体薄膜に応じて選択されるものであり、この実施例で
はY−Ba−Cu−0系酸化物超電導体の金属構或元素
である、金属Y4、金属Ba5、金属Cu6がそれぞれ
配置されている。これら蒸発源4、5、6の加熱方式は
いくつか存在するが、たとえば金属Y4や金属Cu6な
どの高融点物質は電子ビーム加熱により蒸発させ、比較
的融点の低い金属Ba5などは抵抗加熱により蒸発させ
る。そして、これらの方法によって加熱された各蒸発源
4、5、6からの蒸発物質は、被着基板3方向に向かっ
て同時に飛翔する。 なお、本発明に適用される酸化物超電導体としては、Y
−Ba−Cu−0系酸化物超電導体に限らず、各種希土
類元素含有のべロブス力イト型の酸化物超電導体や、B
1−Sr−Ca−Cu−0系酸化物超電導体、TI−B
a−Ca−Cu−0系酸化物超電導体などが適用される
。 希土類元素を含有しベロブス力イト型構造を有する酸化
物超電導体は、超電導状態を実現できるものであればよ
く、たとえばREMCuO   系2 8 7−δ (REは、Y . La1ScSNds Ss, Eu
, Gds Dys 110%Ers Tm、Wb, 
Luなどの希土類元素から選ばれた少なくとも1種の元
素を、HはHas Sr, Caから選ばれた少なくと
も1種の元素を、δは酸素欠陥を表し通常l以下の数、
Cuの一部はTiSV 1Crs MnsFes CO
SN1% Znなどで置換可能。)の酸化物などが例示
される。なお、希土類元素は広義の定義とし、Sc, 
YおよびLa系を含むものとする。 また、Bi−Sr−Ca−Cu−0系の酸化物超電導体
は、化学式: B12 Sr2Caz Cux OX 
   −−−−−−− ( 1 ):B1z<Sr.C
a>3cu20x   −・・・・・・・(II)(式
中、Blの一部はpbなどで置換可能。)などで表され
るものであり、TI−Ba−Ca−Cu−0系酸化物超
電導体は、 化学式: TI2 Baz Caz Cu30!1  
  − (I[[): TI2 (Ba.Ca) 3 
Cuz Ox   −・・・−− − (IV)などで
表されるものである。 そして、Y−Ba−Cu−0系以外の酸化物超電導体の
薄膜を形成する際には、それぞれに応じた蒸発源を選択
して使川する。 また、真空容器1内の被着基板3の近傍には、一端部の
口径を絞ってノズル9aが形成された石英管からなる酸
素活性種発生容器9が配置されており、このノズル9a
は被着基板3方向に向けられている。この酸素活性種発
生容器9の外周には、マッチングボックス10を介して
高周波電源11に接続されたコイル12が巻装されてい
る。また、酸素活性極発生容器9の他端部には図示を省
略した酸素原子を含むガス、たとえばo2、o3、co
、CO2、N20などの供給源に図示しないバルプを介
して接続された酸素原子含有ガス供給パイプ13が接続
されている。 そして、酸素活性種発生容器9先端のノズル98部分は
、口径を細く絞ってあるためにコンダクタンスが低く設
定されており、たとえば真空容器1内を排気速度aoo
o,g /秒程度で排気しつつ、酸素原子含有ガス供給
パイブ13から20SCCM程度のガスを供給すると、
真空容器1内圧力がIXIO゜4〜1× 1G’ To
rrの時に、酸素活性種発生容器9内はIX 10−2
Torr程度の減圧状態を実現することができ、この状
態でコイル12にたとえばNllzオーダーの高周波電
力を印加することによってグロー放電を起こすことがで
き、プラズマが発生する。 ノズル9aの径は、真空容器1内との圧力差を大きく設
定したい場合には小さくし、あまり差圧がいらない場合
には比較的大きくする。たとえば排気速度3000,g
 /秒、流速208CCHの条件で酸素活性種発生容器
9内がI X 1G’ Torr以上の圧力になってプ
ラズマが発生する時、ノズル9a径をlamとすると、
真空容器1内の圧力はI X 10−sTorr以下と
なり、またノズル9a径を2一一とすると真空容器1内
の圧力はl X 10−’ Torr以下となる。 したがって、高真空下で成膜を行う場合にはノズル9a
の径を小さくすればよく、一方、できるだけプラズマを
広く発生させるためにはノズル9aの径を大きくすれば
よい。このように、ノズル9aの径は、真空の条件、被
着基板3の大きさなどを考慮して任意に選ぶことができ
る。 また、酸素活性種発生容器9を構成する石英管の径によ
りプラズマの発生状態を変化させることもできる。すな
わち石英管の径を大きくすると管内の流速は低下すると
共に、コイル12の径も大きくなるため、高周波電源1
1からの出力は同じでも、放電領域に印加される電力は
大きくなり、酸素の分解率は高くなる。通常ノズル9a
の径をlvi〜2一一程度に設定した場合は、石英管の
径は10sm〜50g+n程度とすることが適当である
。ただし、これらの径は排気速度、流速などにより異な
るものであり、絶対的な値ではない。 通常、ノズル9aの径はlO一一以下が好ましく、さら
に好ましくは51一以下であり、また管径はlo一回以
下が好ましい。さらに一般的に言うならば、ノズル9a
の径は管径のl/4以下が好ましく、さらに好ましくは
1/10以下である。 一方、酸素活性種発生容器9のノズル9aと被S基板3
との距離も、成膜時の酸化力に大きく影響を及ぼし重要
な要因となる。本発明の特徴は、被着基板3に近いとこ
ろでプラズマを発生させることができる点にあり、被着
基板3と各蒸発源4、5、6との距離の1/2以下の距
離とすることが好ましく、さらに好ましくは1/10以
下とすることである。 そして、成膜時の真空容器1内の圧力は、成膜方法によ
っても多少異なるが、各蒸発i[4、5、6からの蒸発
を妨げないようにIX 10’ Torr以下に設定し
、好ましくは5X 1G’ Torr以下である。 また、酸素活性種発生容器9内の圧力は、真空容器1内
の圧力より高い圧力で、グロー放電を起こし得る IX
 to’ Torr以上に設定する。 また、酸化物超電導体中の酸素は、真空中で高温に加熱
すると特に顕著に脱離が起こり、よって冷却時にも酸素
の脱離が起こり得る。そこで、成膜終了後も酸素プラズ
マにさらしながら徐冷することが好ましい。この冷却時
の酸素プラズマ発生条件は、酸素活性種発生容器9内の
圧力を成膜時よりも高くすることが好ましく、 IX 
1G’ Torr〜lTorr程度とする。また、冷却
速度は400℃程度まで1−10℃/分とし、さらに2
00℃程度まで1〜20℃/分とするように、400℃
までの冷却速度を200℃までの冷却速度より大きく設
定することが好ましい。 ところで、グロー放電を起こさせる方法としては、上述
したように酸素活性種発生容器9の周囲にコイル12を
巻装する方法に限らず、たとえば第2図ないし第5図に
示すような方法を採用してもよい。 第2図は、石英管21をステンレス鋼管からなる電極2
2で外包し、石英管21内に接地電極23を設けたもの
である。なお、接地電極23は酸素原子含有ガス供給パ
イプ13を兼ねてもよい。 また、第3図に示すように、2つ割り形状とした電極2
4a,24bを用いてもよく、その場合、これら電極2
4a,24bは同電位であってもよいし、同図に示すよ
うに、一方の電極24aを高周波電位、他方の電極24
bを接地電位としてもよい。 また、第4図に示すように、ステンレス管などの導電性
物質からなる管状体25の一方を絞ってノズル25aを
作製し、酸素活性種発生容器9と高周波電極とを兼ねさ
せることもでき、この場合には、内部に絶縁物26によ
って管状体25と絶縁された接地電極27を挿入する。 このように酸素活性種発生容rA9を構成することによ
って、石英管の誘電率が低いことに起因するバワーロス
がなく効率がよい。また、第5図は、内側の電極28を
高周波電位とし、外側の容器を兼ねる電極2つを接地電
極としたものである。 ところで、第1図乃至第4図に示した各酸素活性種発生
容器9は、真空容器1内の圧力が高くなり IX 1G
’ Torr台になると、真空容器1が接地されている
ために、外側の高周波電極12、22、24、25と真
空容器1内壁との間で放電が起こり、真空容器1内でプ
ラズマが発生すると共に、負荷インピーダンスが大きく
変動し、マッチングの調整が必要となり、安定したプラ
ズマが得られにくい。このため、真空チャンバ内の圧力
はlx10’ Torr以下とすることが好ましい。 これに対して第5図に示した酸素活性種発生容器は、常
に真空容器1と外側の電極29とが同電位であるため、
真空容器1内の圧力にかかわらず、外側では放電は起こ
らない。したがって、管状体2つ内の圧力にのみ負荷イ
ンピーダンスは依存し、マッチングの調整が容易で常に
安定したプラズマを発生させることができる。よって、
真空容器内の圧力はlTorr台まで上げることが可能
である。 ここで、第1図乃至第5図に示した各酸素活性種発生容
器のグロー放電発生機構を等価回路によって説明する。 第1図に示したコイル12を用いた機構では、コイル1
2によるL成分以外に、コイル12と接地電位の真空容
器内部治具との間のC成分(コンデンサー容量)が存在
する。したがって、第6図に示すような等価回路となり
、コイル12とコンデンサー31とが直列接続された形
をとる。このコンデンサー31によるインピーダンスは
、真空容器1内圧力およびプラズマが発生しているか否
かによっても異なる。なお、図中32はマツチング回路
である。 また、第2図乃至第5図に示した機構は、容量結合型と
呼ばれ、負荷はコンデンサーだけであるが、第2図乃至
第4図に示した機構の場合、電極と真空容器とのC成分
があり、等価回路は第7図に示すようにコンデンサー3
3、34が並列接続された形をとる。この場合も真空容
器1内の圧力により、合或インピーダンスは変化する。 第5図に示した機構は、負荷がコンデンサー1つのみと
なり、第8図に示す等価回路となる。 この場合、コンデンサー35の容量は容器の大きさと管
内の圧力のみで決まり、真空容器1内の圧力に依存しな
い。したがって、マッチングもとりやすく、最も安定し
てプラズマを発生させることができる方法である。 なお、以上いずれの方法においても、成膜時に充分な酸
化力を得ることができる。 次に、上記構成の成膜装置を用いて、実際にY系酸化物
超電導体薄膜を作製した例について説明する。 まず、被看基板3として直径100a+一のSrTI(
h基板をホルダー7にセットすると共に、酸素活性種発
生容器9として、管径20■園、ノズル径21一の第1
図に示した機構のものを採用し、それを真空容器1内に
ノズル9aが被着基板3から3011のところに位置す
るよう配置した。また、蒸発源として金属Y4、金属B
a5、金属Cu6をそれぞれ被着基板3から300■の
ところに配置した。なお、被着基板3は800℃に加熱
した。 そして、真空容器1内を3000,e /秒で排気して
、真空容器1内を2X 10’ Torrに設定した。 またこれによって、酸素活性種発生容器9内をtxto
’Torrとすると共に酸素を208CCMで供給し、
13.58Mllzの高周波電力を印加してプラズマを
発生させて酸素の活性種を被着基板3近傍に供給しつつ
、各蒸発源4、5、6を蒸発させて三元同時蒸着を行っ
た。この後、2℃/分の条件で400℃まで冷却して4
00℃で1時間保持し、次いで5℃/分の条件で200
℃まで冷却した後、1気圧の酸素中で50℃以下まで冷
却して、酸化物超電導体薄膜を作製した。なお、冷却時
の真空容器1内の圧力は、2X 1G−″Torrとし
た。 得られた酸化物超電導体薄膜は、膜厚が5000入で、
徐冷後の状態でYl ”1.950u3.050B.8
の組成を有し、臨界温度は85K以上、臨界電流密度は
IX 1G’ A/cjと良好な値を示した。また、X
線回折の結果からC軸配向していることを確認した。 なお、被着基板3として上述した各種基体を用いて、同
様に酸化物超電導体薄膜を作製したところ、特性の基板
依存性はあるものの、いずれの基体においても超電導特
性を示す薄膜が得られた。 次に、各蒸発物質をイオン化クラスタービームとする以
外は、前述の蒸着法と同一条件で酸化物超電導体薄膜を
作製したところ、さらに良好な結果が得られた。その一
つの理由は、ICBではエミッションによる電子あるい
はイオン化されたクラスターなどの荷電粒子が飛んでく
ることにより、酸素プラズマがより安定していることに
あり、本発明ではICB蒸着法が最も好ましい。 X線回折の結果では、同一条件下での成膜でありながら
、回折パターンのピーク強度は前述した蒸着法によるも
のに比べてl桁大きく、結晶性が向上していることが分
った。したがって、臨界電流密度は1× 10’ To
rr台まで向上した。 さらに、この方法では、金属基板上での配向性がよ<、
Ag基板では多結晶でありながら、C軸強配向した膜が
得られた。これは、イオン化されたクラスターが電場で
加速され、基板に衝突した時に起こるマイグレーション
効果が、通常の蒸着法と比較して大きいことに起因する
ものと考えられる。 次に、このICB蒸着法を用いると金属基板上に配向し
た膜が得られやすいことを利用し、Ag,・^Uのテー
プまたはワイヤ、Agメッキを施したSUS ,N1,
ニクロム、インコネルのテープまたはワイヤ、メッキを
施していない上記各金属のテープまたはワイヤを用い、
l c−/分の速度で移動させつつ連続的に酸化物超電
導体薄膜を形成すると共に、或膜後にそれを巻き取って
コイルを作製した。 成膜装置は、第9図に示すように、被着線材41がIC
Bイオン源42、43、44と対向する位置を通過する
よう、線材供給ローラ45と巻き取りローラ46とを配
置すると共に、線材通過部の後方に加熱用ヒータ47を
配置する以外は、第1図と同一構成とした。ただし、威
膜位置は絞り48によって均一な膜が得られる領域だけ
とし、またシャッタ49を成膜領域前方に設けた。 このようにして得られた超電導コイルは、臨界電流密度
が77KでIX 10’ kidと良好な値を示した。 このように、この実施例においては、先端開口部を絞っ
てインダクタンスを小さく設定した管を酸素活性種発生
容器として真空容器内に設置しているため、真空容器内
を所定の真空度まで排気した際に、酸素活性種発生容器
内の圧力を高く設定することが可能となる。したがって
、この酸素活性種発生容器内でグロー放電を起こしてプ
ラズマを発生させることができ、密度が高くかつ運動エ
ネルギーの小さい酸素の活性種を被@基体近傍に供給し
つつ、酸化物超電導体を成膜することが可能となる。よ
って、超電導特性に優れた酸化物超電導体薄膜が安定し
て得られる。 なお、上記実施例では、V系酸化物超電導体の成膜につ
いて説明したが、B1系酸化物超電導体、TI系酸化物
超電導体、pbを添加したBl系酸化物超電導体など、
各種酸化物超電導体に適用でき、同様に良好な結果を得
ることができる。 また、酸素活性種の原料としては、02ガス以外に03
、N2 0 、NO2 、CO、co2などによっても
同様な効果が得られ、特に03、N20は02ガスより
酸素ラジカルや酸素イオンになる率が高く好ましい。 【発明の効果] 以上説明したように本発明の酸化物超電導体薄膜の製造
方法によれば、成膜を行う真空容器内の真空度を低下さ
せることなく、運動エネルギーは低いが活性度が高い酸
素ラジカルや酸素イオンなどの酸素の活性種を高密度で
被着基体近傍に供給することが可能となる。したがって
、成膜後の熱処理を施すことなく、良好な超電導特性を
示す酸化物超電導体薄膜を形或することが可能になる。
(Means for solving the problem) That is, the method for producing an oxide superconductor thin film of the present invention
When producing a thin film of the oxide superconductor by evaporating each metal element constituting the oxide superconductor and depositing it on the surface of the substrate in a vacuum container with a reduced pressure of X 10' Torr or less, there are no penalties. An oxygen active species generation container having a nozzle of a predetermined diameter opened in the vacuum container is disposed in the vacuum container, and the oxygen is brought into a reduced pressure state at a pressure higher than the internal pressure of the vacuum container of 1×10'' Torr or more. Gas molecules containing oxygen atoms are turned into plasma by glow discharge using high-frequency power in an active species generation container, and the oxide superconductor thin film is grown while supplying the oxygen active species formed by the plasma to the vicinity of the substrate. It is characterized by forming a film. (Function) By arranging an oxygen active species generation container in which a nozzle with a predetermined diameter is opened inside the vacuum container, the inside of the vacuum container can be evacuated to a high vacuum state of 1 x 10' Torr or less. Since the conductance inside the oxygen active species generating container is set to be low by the nozzle portion, it is possible to create a reduced pressure state higher than the internal pressure of the vacuum container. As a result, a high vacuum state of less than IX 10' Torr, which is necessary to sufficiently evaporate the constituent elements of the oxide superconductor, is achieved inside the vacuum vessel, while glow discharge using high-frequency power is generated within the oxygen active species generation vessel. This makes it possible to generate plasma. Therefore, while sufficiently vaporizing the constituent elements of the oxide superconductor, active species of oxygen such as oxygen radicals and oxygen ions with high density and low kinetic energy can be sufficiently supplied to the vicinity of the substrate, and deposits can be removed during film formation. It becomes possible to oxidize sufficiently. (Example) Next, an example of the present invention will be described with reference to the drawings. FIG. 1 shows a film apparatus to which a method for producing an oxide superconductor thin film according to an embodiment of the present invention is applied. In the figure, 1 is a vacuum vessel connected to an exhaust system 2, and inside this vacuum vessel 1, a substrate 3 and a single substance or compound of each metal element constituting the target oxide superconductor thin film are contained. Evaporation sources 4, 5, and 6 consisting of are arranged facing each other. The above-described substrate 3 is made of, for example, MgO SSrT1 (h,
Al203, Y stabilized Zr02 (YSZ), Sl,
It is made of Ag, Nozosteroy, Inconel, etc., and its shape is not limited to a plate-like shape, but can be any shape such as a rod-like shape, a wire-like shape, or a tape-like shape. Furthermore, a thin film of SrT103 or the like provided as a buffer layer on a metal substrate may be used, and when such a deposited substrate is used, the resulting film has higher C-axis orientation. Note that a heater 8 for heating the substrate is provided in the holder 7 that holds the adherend substrate 3.
is installed, and the deposited substrate 3 is heated to 400° C. or higher, preferably 850° C. or higher during film formation. As a result, a thin film with good crystallinity can be obtained. In addition, the evaporation sources 4, 5, and 6 are selected depending on the oxide superconductor thin film to be formed, and in this example, the metal structure or elements of the Y-Ba-Cu-0 based oxide superconductor are selected. Metal Y4, metal Ba5, and metal Cu6 are arranged, respectively. There are several heating methods for these evaporation sources 4, 5, and 6. For example, high melting point substances such as metal Y4 and metal Cu6 are evaporated by electron beam heating, and metals with relatively low melting points such as Ba5 are evaporated by resistance heating. let The evaporated substances from the evaporation sources 4, 5, and 6 heated by these methods simultaneously fly toward the deposition substrate 3. In addition, as the oxide superconductor applied to the present invention, Y
-Not limited to Ba-Cu-0-based oxide superconductors, but also belobite-type oxide superconductors containing various rare earth elements, B
1-Sr-Ca-Cu-0 based oxide superconductor, TI-B
An a-Ca-Cu-0 based oxide superconductor or the like is applied. The oxide superconductor containing a rare earth element and having a belobusite structure may be one that can realize a superconducting state, for example, REMCuO system 287-δ (RE is Y. La1ScSNds Ss, Eu
, Gds Dys 110%Ers Tm, Wb,
At least one element selected from rare earth elements such as Lu, H is at least one element selected from Has Sr, Ca, δ represents an oxygen defect, and is usually a number equal to or less than 1,
Part of Cu is TiSV 1Crs MnsFes CO
Can be replaced with SN1% Zn, etc. ) are exemplified. In addition, rare earth elements are defined in a broad sense, and are defined as Sc,
It shall include Y and La systems. In addition, the Bi-Sr-Ca-Cu-0 based oxide superconductor has the chemical formula: B12 Sr2Caz Cux OX
------- (1): B1z<Sr. C
a>3cu20x - (II) (in the formula, a part of Bl can be replaced with pb etc.), and is a TI-Ba-Ca-Cu-0 system oxidation. The physical superconductor has the chemical formula: TI2 Baz Caz Cu30!1
- (I[[): TI2 (Ba.Ca) 3
It is represented by Cuz Ox -...-- (IV) and the like. When forming a thin film of an oxide superconductor other than Y-Ba-Cu-0, an appropriate evaporation source is selected and used. Further, in the vicinity of the adherend substrate 3 in the vacuum container 1, an oxygen active species generating container 9 made of a quartz tube with a nozzle 9a formed by narrowing the aperture at one end is arranged.
is directed toward the 3 directions of the adherend substrate. A coil 12 connected to a high frequency power source 11 via a matching box 10 is wound around the outer periphery of the oxygen active species generation container 9 . Further, at the other end of the oxygen active electrode generation container 9, a gas containing oxygen atoms (not shown), such as o2, o3, co
An oxygen atom-containing gas supply pipe 13 is connected to a supply source of , CO2, N20, etc. via a valve (not shown). The nozzle 98 at the tip of the oxygen active species generation container 9 has a narrow diameter and is therefore set to have a low conductance.
When a gas of about 20 SCCM is supplied from the oxygen atom-containing gas supply pipe 13 while exhausting the gas at a rate of about 0,000 g/sec,
The pressure inside the vacuum container 1 is IXIO゜4~1×1G' To
At the time of rr, the inside of the oxygen active species generation container 9 is IX 10-2
A reduced pressure state of approximately Torr can be achieved, and in this state, glow discharge can be caused by applying high frequency power of, for example, Nllz order to the coil 12, and plasma is generated. The diameter of the nozzle 9a is made small when it is desired to set a large pressure difference with the inside of the vacuum container 1, and made relatively large when a large pressure difference is not required. For example, pumping speed 3000g
/sec, flow rate 208 CCH, when the pressure inside the oxygen active species generation container 9 reaches I x 1 G' Torr or more and plasma is generated, if the diameter of the nozzle 9a is lam, then
The pressure within the vacuum vessel 1 is below I x 10-s Torr, and if the diameter of the nozzle 9a is 211, the pressure within the vacuum vessel 1 is below l x 10-' Torr. Therefore, when forming a film under high vacuum, the nozzle 9a
On the other hand, in order to generate plasma as widely as possible, the diameter of the nozzle 9a may be increased. In this way, the diameter of the nozzle 9a can be arbitrarily selected in consideration of the vacuum conditions, the size of the adherend substrate 3, and the like. Further, the plasma generation state can also be changed by changing the diameter of the quartz tube constituting the oxygen active species generation container 9. In other words, when the diameter of the quartz tube is increased, the flow velocity inside the tube decreases, and the diameter of the coil 12 also increases.
Even if the output from 1 is the same, the power applied to the discharge region increases and the rate of oxygen decomposition increases. Normal nozzle 9a
When the diameter of the quartz tube is set to approximately 1vi to 211, it is appropriate that the diameter of the quartz tube is approximately 10sm to 50g+n. However, these diameters vary depending on the pumping speed, flow rate, etc., and are not absolute values. Normally, the diameter of the nozzle 9a is preferably lO11 or less, more preferably 511 or less, and the tube diameter is preferably lO1 or less. More generally speaking, the nozzle 9a
The diameter of the tube is preferably 1/4 or less of the pipe diameter, more preferably 1/10 or less. On the other hand, the nozzle 9a of the oxygen active species generation container 9 and the S target substrate 3
The distance from the substrate is also an important factor that greatly affects the oxidizing power during film formation. A feature of the present invention is that plasma can be generated close to the adherend substrate 3, and the distance between the adherend substrate 3 and each of the evaporation sources 4, 5, and 6 is 1/2 or less. is preferable, and more preferably 1/10 or less. The pressure inside the vacuum container 1 during film formation varies somewhat depending on the film formation method, but is preferably set to IX 10' Torr or less so as not to hinder the evaporation from each evaporation i[4, 5, 6]. is less than 5×1G' Torr. In addition, the pressure inside the oxygen active species generation container 9 is higher than the pressure inside the vacuum container 1, and glow discharge can occur. IX
Set to more than Torr. Further, oxygen in the oxide superconductor is particularly markedly desorbed when heated to a high temperature in a vacuum, and therefore desorption of oxygen may also occur during cooling. Therefore, it is preferable to slowly cool the film while exposing it to oxygen plasma even after the film formation is completed. The oxygen plasma generation conditions during this cooling are preferably such that the pressure inside the oxygen active species generation container 9 is higher than that during film formation.
It is approximately 1G' Torr to 1 Torr. In addition, the cooling rate is 1-10℃/min up to about 400℃, and then 2
400℃ at a rate of 1 to 20℃/min until about 00℃.
It is preferable to set the cooling rate up to 200°C higher than the cooling rate up to 200°C. By the way, the method of causing glow discharge is not limited to the method of wrapping the coil 12 around the oxygen active species generation container 9 as described above, but also the methods shown in FIGS. 2 to 5, for example, can be adopted. You may. FIG. 2 shows a quartz tube 21 connected to an electrode 2 made of a stainless steel tube.
2, and a ground electrode 23 is provided inside the quartz tube 21. Note that the ground electrode 23 may also serve as the oxygen atom-containing gas supply pipe 13. In addition, as shown in FIG. 3, the electrode 2 is divided into two parts.
4a, 24b may be used, in which case these electrodes 2
4a and 24b may be at the same potential, or as shown in the figure, one electrode 24a may be at a high frequency potential and the other electrode 24a may be at the same potential.
b may be set to the ground potential. Furthermore, as shown in FIG. 4, a nozzle 25a can be created by squeezing one side of a tubular body 25 made of a conductive material such as a stainless steel tube, so that the nozzle 25a can serve both as the oxygen active species generation container 9 and a high-frequency electrode. In this case, a ground electrode 27 insulated from the tubular body 25 by an insulator 26 is inserted inside. By configuring the oxygen active species generation capacity rA9 in this manner, there is no power loss due to the low dielectric constant of the quartz tube, resulting in good efficiency. Further, in FIG. 5, the inner electrode 28 is set to a high frequency potential, and the two outer electrodes that also serve as the container are set to ground electrodes. By the way, in each of the oxygen active species generation containers 9 shown in FIGS. 1 to 4, the pressure inside the vacuum container 1 increases.
' When the Torr stage is reached, since the vacuum vessel 1 is grounded, discharge occurs between the outer high-frequency electrodes 12, 22, 24, 25 and the inner wall of the vacuum vessel 1, and plasma is generated within the vacuum vessel 1. At the same time, the load impedance fluctuates greatly, making it necessary to adjust the matching, making it difficult to obtain stable plasma. For this reason, it is preferable that the pressure within the vacuum chamber be 1x10' Torr or less. On the other hand, in the oxygen active species generation container shown in FIG. 5, the vacuum container 1 and the outer electrode 29 are always at the same potential;
Regardless of the pressure inside the vacuum vessel 1, no discharge occurs outside. Therefore, the load impedance depends only on the pressure within the two tubular bodies, matching can be easily adjusted, and stable plasma can be generated at all times. Therefore,
The pressure inside the vacuum vessel can be raised to the order of 1 Torr. Here, the glow discharge generation mechanism of each oxygen active species generating container shown in FIGS. 1 to 5 will be explained using an equivalent circuit. In the mechanism using the coil 12 shown in FIG.
In addition to the L component due to 2, there is a C component (capacitor capacitance) between the coil 12 and the vacuum container internal jig at ground potential. Therefore, an equivalent circuit as shown in FIG. 6 is formed, in which the coil 12 and the capacitor 31 are connected in series. The impedance caused by this capacitor 31 also differs depending on the pressure inside the vacuum container 1 and whether or not plasma is generated. Note that 32 in the figure is a matching circuit. Furthermore, the mechanisms shown in Figures 2 to 5 are called capacitively coupled types, and the only load is the capacitor, but in the case of the mechanisms shown in Figures 2 to 4, the electrodes and the vacuum vessel are connected. There is a C component, and the equivalent circuit is capacitor 3 as shown in Figure 7.
3 and 34 are connected in parallel. In this case as well, the total impedance changes depending on the pressure inside the vacuum vessel 1. The mechanism shown in FIG. 5 has only one capacitor as a load, resulting in an equivalent circuit shown in FIG. 8. In this case, the capacity of the condenser 35 is determined only by the size of the container and the pressure inside the tube, and is not dependent on the pressure inside the vacuum container 1. Therefore, it is a method that is easy to match and can generate plasma most stably. Note that in any of the above methods, sufficient oxidizing power can be obtained during film formation. Next, an example in which a Y-based oxide superconductor thin film was actually produced using the film forming apparatus having the above configuration will be described. First, as the substrate 3 to be inspected, SrTI (
Set the substrate in the holder 7, and as the oxygen active species generation container 9, use
The mechanism shown in the figure was adopted and placed in the vacuum container 1 so that the nozzle 9a was located at a position 3011 from the adherend substrate 3. In addition, metal Y4 and metal B are used as evaporation sources.
A5 and metal Cu6 were placed at a distance of 300 cm from the adherend substrate 3, respectively. Note that the adherend substrate 3 was heated to 800°C. Then, the inside of the vacuum container 1 was evacuated at 3000 e/sec, and the inside of the vacuum container 1 was set to 2X 10' Torr. In addition, this allows the inside of the oxygen active species generation container 9 to be
'Torr and supply oxygen at 208CCM,
While applying a high frequency power of 13.58 Mllz to generate plasma and supply active species of oxygen to the vicinity of the deposition substrate 3, the evaporation sources 4, 5, and 6 were evaporated to perform ternary simultaneous evaporation. After that, it was cooled to 400°C at 2°C/min.
00°C for 1 hour, then 200°C at 5°C/min.
After cooling to 50° C. in oxygen at 1 atm, an oxide superconductor thin film was produced. The pressure inside the vacuum vessel 1 during cooling was set to 2X 1G-'' Torr. The obtained oxide superconductor thin film had a film thickness of 5000 mm,
After slow cooling, Yl ”1.950u3.050B.8
It had a critical temperature of 85K or higher and a critical current density of IX 1G' A/cj, which were good values. Also, X
It was confirmed from the results of line diffraction that the film was oriented along the C axis. When oxide superconductor thin films were similarly prepared using the various substrates described above as the adherend substrate 3, thin films exhibiting superconducting properties were obtained for all substrates, although the characteristics were dependent on the substrate. . Next, when an oxide superconductor thin film was produced under the same conditions as the above-described vapor deposition method except that each evaporated substance was used as an ionized cluster beam, even better results were obtained. One reason for this is that in ICB, charged particles such as electrons or ionized clusters fly by due to emission, making the oxygen plasma more stable, and the ICB vapor deposition method is most preferred in the present invention. The results of X-ray diffraction showed that although the film was formed under the same conditions, the peak intensity of the diffraction pattern was one order of magnitude larger than that of the film formed by the above-mentioned vapor deposition method, indicating that the crystallinity was improved. Therefore, the critical current density is 1 × 10' To
Improved to rr level. Furthermore, with this method, the orientation on the metal substrate is improved.
On the Ag substrate, a polycrystalline film with strong C-axis orientation was obtained. This is thought to be due to the fact that the migration effect that occurs when ionized clusters are accelerated by an electric field and collide with the substrate is greater than in normal vapor deposition methods. Next, we took advantage of the fact that an oriented film can be easily obtained on a metal substrate by using this ICB deposition method, and used Ag,・^U tape or wire, Ag-plated SUS, N1,
Using nichrome, inconel tape or wire, unplated tape or wire of each of the above metals,
An oxide superconductor thin film was continuously formed while moving at a speed of l c -/min, and after a certain amount of film was formed, the film was wound up to produce a coil. In the film forming apparatus, as shown in FIG.
Except for arranging the wire supply roller 45 and the winding roller 46 so as to pass through a position facing the B ion sources 42, 43, and 44, and arranging the heating heater 47 behind the wire passage section, the first The configuration is the same as in the figure. However, the film position was limited to the region where a uniform film could be obtained by the aperture 48, and a shutter 49 was provided in front of the film forming region. The thus obtained superconducting coil had a critical current density of 77K and a good value of IX 10' kid. As described above, in this example, since the tube with the tip opening narrowed and the inductance set small is installed in the vacuum container as the oxygen active species generation container, the inside of the vacuum container can be evacuated to a predetermined degree of vacuum. In this case, it becomes possible to set the pressure inside the oxygen active species generating container to be high. Therefore, plasma can be generated by causing a glow discharge in this oxygen active species generation container, and the oxide superconductor is It becomes possible to form a film. Therefore, an oxide superconductor thin film with excellent superconducting properties can be stably obtained. In the above example, the film formation of a V-based oxide superconductor was described, but B1-based oxide superconductors, TI-based oxide superconductors, Bl-based oxide superconductors added with PB, etc.
It can be applied to various oxide superconductors and similarly good results can be obtained. In addition to 02 gas, 03
, N2 0 , NO2, CO, co2, etc., can also produce similar effects, and in particular, 03 and N20 are preferable because they have a higher rate of becoming oxygen radicals and oxygen ions than 02 gas. [Effects of the Invention] As explained above, according to the method for producing an oxide superconductor thin film of the present invention, the kinetic energy is low but the activity is high without reducing the degree of vacuum in the vacuum vessel in which the film is formed. It becomes possible to supply oxygen active species such as oxygen radicals and oxygen ions to the vicinity of the adherend substrate at high density. Therefore, it becomes possible to form an oxide superconductor thin film exhibiting good superconducting properties without performing heat treatment after film formation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の酸化物超電導体薄膜の製造
方法を適用した成膜装置の構或を示す図、第2図乃至第
5図はその酸素プラズマ発生機構の変形例をそれぞれ示
す図、第6図乃至第8図は第1図乃至第5図の酸素プラ
ズマ発生機構を等価回路で示す図、第9図は本発明の他
の実施例を適用した成膜装置の構成を示す図である。 1・・・・・・真空容器、2・・・・・・排気系、3・
・・・・・被着基板、4、5、6・・・・・・蒸発源、
9・・・・・・酸素活性種発生容器、9a・・・・・・
ノズル、10・・・・・・マッチングボックス、11・
・・・・・高周波電源、12・・・・・・コイル。
FIG. 1 is a diagram showing the configuration of a film forming apparatus to which the method for producing an oxide superconductor thin film according to an embodiment of the present invention is applied, and FIGS. 2 to 5 show modified examples of the oxygen plasma generation mechanism. Figures 6 to 8 are equivalent circuit diagrams showing the oxygen plasma generation mechanism shown in Figures 1 to 5, and Figure 9 shows the configuration of a film forming apparatus to which another embodiment of the present invention is applied. FIG. 1... Vacuum container, 2... Exhaust system, 3.
...Adherent substrate, 4, 5, 6... Evaporation source,
9...Oxygen active species generation container, 9a...
Nozzle, 10...Matching box, 11.
...High frequency power supply, 12... Coil.

Claims (1)

【特許請求の範囲】[Claims] (1) 1×10^−^3Torr以下の減圧状態とさ
れた真空容器内で、酸化物超電導体を構成する各金属元
素を蒸発させて基体表面に堆積させ、前記酸化物超電導
体の薄膜を作製するにあたり、 前記真空容器内で開口させた所定口径のノズルを有する
酸素活性種発生容器を前記真空容器内に配置し、1×1
0^−^3Torr以上の前記真空容器内圧力より高い
圧力の減圧状態とした前記酸素活性種発生容器内で酸素
原子を含む気体分子を高周波電力によるグロー放電によ
ってプラズマ化すると共に、このプラズマにより形成さ
れた酸素の活性種を前記基体近傍に供給しつつ、前記酸
化物超電導体薄膜を成膜することを特徴とする酸化物超
電導体薄膜の製造方法。
(1) Each metal element constituting the oxide superconductor is evaporated and deposited on the surface of the substrate in a vacuum container with a reduced pressure of 1×10^-^3 Torr or less to form a thin film of the oxide superconductor. When manufacturing, an oxygen active species generation container having a nozzle of a predetermined diameter opened in the vacuum container is placed in the vacuum container, and a 1×1
Gas molecules containing oxygen atoms are turned into plasma by glow discharge using high-frequency power in the oxygen active species generation container which is in a reduced pressure state higher than the internal pressure of the vacuum container of 0^-^3 Torr, and formed by this plasma. A method for producing an oxide superconductor thin film, characterized in that the oxide superconductor thin film is formed while supplying active species of oxygen to the vicinity of the substrate.
JP1231193A 1989-09-05 1989-09-05 Method for producing oxide superconductor thin film Expired - Fee Related JP2854623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1231193A JP2854623B2 (en) 1989-09-05 1989-09-05 Method for producing oxide superconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1231193A JP2854623B2 (en) 1989-09-05 1989-09-05 Method for producing oxide superconductor thin film

Publications (2)

Publication Number Publication Date
JPH0393608A true JPH0393608A (en) 1991-04-18
JP2854623B2 JP2854623B2 (en) 1999-02-03

Family

ID=16919797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1231193A Expired - Fee Related JP2854623B2 (en) 1989-09-05 1989-09-05 Method for producing oxide superconductor thin film

Country Status (1)

Country Link
JP (1) JP2854623B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132604A (en) * 1990-09-25 1992-05-06 Rikagaku Kenkyusho Manufacturing method of oxide superconducting thin film
JPH04265206A (en) * 1991-02-18 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for producing high-temperature oxide superconductor thin film
JP2006526708A (en) * 2003-06-05 2006-11-24 スーパーパワー インコーポレイテッド Ultraviolet (UV) and plasma enhanced metal organic chemical vapor deposition (MOCVD) methods
US7713353B2 (en) 2003-02-24 2010-05-11 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
JP2010174378A (en) * 2010-03-19 2010-08-12 Shincron:Kk Method for depositing thin film
US10304979B2 (en) * 2015-01-30 2019-05-28 International Business Machines Corporation In situ nitrogen doping of co-evaporated copper-zinc-tin-sulfo-selenide by nitrogen plasma

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04132604A (en) * 1990-09-25 1992-05-06 Rikagaku Kenkyusho Manufacturing method of oxide superconducting thin film
JPH04265206A (en) * 1991-02-18 1992-09-21 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for producing high-temperature oxide superconductor thin film
US7713353B2 (en) 2003-02-24 2010-05-11 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
US8262796B2 (en) 2003-02-24 2012-09-11 Waseda University β-Ga2O3 single crystal growing method, thin-film single crystal growing method, Ga2O3 light-emitting device, and its manufacturing method
US8747553B2 (en) 2003-02-24 2014-06-10 Waseda University β-Ga2O3 single crystal growing method including crystal growth method
JP2006526708A (en) * 2003-06-05 2006-11-24 スーパーパワー インコーポレイテッド Ultraviolet (UV) and plasma enhanced metal organic chemical vapor deposition (MOCVD) methods
JP2010174378A (en) * 2010-03-19 2010-08-12 Shincron:Kk Method for depositing thin film
US10304979B2 (en) * 2015-01-30 2019-05-28 International Business Machines Corporation In situ nitrogen doping of co-evaporated copper-zinc-tin-sulfo-selenide by nitrogen plasma

Also Published As

Publication number Publication date
JP2854623B2 (en) 1999-02-03

Similar Documents

Publication Publication Date Title
Calatroni 20 Years of experience with the Nb/Cu technology for superconducting cavities and perspectives for future developments
RU2386732C1 (en) Method of obtaining two-sided superconductor of second generation
JPH06252059A (en) Method and apparatus for forming film
US20080015111A1 (en) Method and apparatus for fabricating high temperature superconducting film through auxiliary cluster beam spraying, and high temperature superconducting film fabricated using the method
JPH0393608A (en) Production of thin film of oxide superconductor
JPH04331795A (en) Production of polycrystalline thin film
JP2002097569A (en) Surface processing method in vacuum
Oya et al. Atomic oxygen effect on the in situ growth of stoichiometric YBa2Cu3O7− δ epitaxial films by facing targets 90° off‐axis radiofrequency magnetron sputtering
US5731270A (en) Oxide superconductor and method and apparatus for fabricating the same
JPH06291375A (en) Manufacture of thin film superconductor and its manufacture
Venkatesan et al. Recent advances in the deposition of multi-component oxide films by pulsed energy deposition
JP2549894B2 (en) Method for forming high temperature superconducting ceramic thin film
JPH03199107A (en) Superconducting member
JP2813257B2 (en) Superconducting member manufacturing method
JPH08106827A (en) Manufacture of superconductive wire
JP2889677B2 (en) Method for producing oxide superconducting thin film
JP3182048B2 (en) Superconducting wire manufacturing equipment
JPH02208207A (en) Production of superconducting thin film and apparatus therefor
JP3152689B2 (en) Superconducting material
JPH04311565A (en) Formation of multiple oxide superconducting thin film
JPH0319299B2 (en)
JPH03197306A (en) Apparatus and method for producing oxide superconducting thin film
JPH04218671A (en) High frequency sputtering device and film forming method
JPH0337104A (en) Production of oxide superconducting thin film and apparatus therefor
JPH03285804A (en) Production of oxide superconductor thin film

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees