JPH0391215A - Manufacture of anisotropic magnet - Google Patents
Manufacture of anisotropic magnetInfo
- Publication number
- JPH0391215A JPH0391215A JP22746789A JP22746789A JPH0391215A JP H0391215 A JPH0391215 A JP H0391215A JP 22746789 A JP22746789 A JP 22746789A JP 22746789 A JP22746789 A JP 22746789A JP H0391215 A JPH0391215 A JP H0391215A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- magnetic
- cavity
- yoke
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 21
- 230000005291 magnetic effect Effects 0.000 claims abstract description 40
- 239000000203 mixture Substances 0.000 claims abstract description 11
- 230000004907 flux Effects 0.000 claims abstract description 7
- 239000007924 injection Substances 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 18
- 230000005294 ferromagnetic effect Effects 0.000 claims description 8
- 150000001875 compounds Chemical class 0.000 claims description 7
- 229920000642 polymer Polymers 0.000 claims description 7
- 238000001746 injection moulding Methods 0.000 claims description 6
- 238000000465 moulding Methods 0.000 claims description 6
- 239000000843 powder Substances 0.000 claims description 6
- 238000000748 compression moulding Methods 0.000 claims description 3
- 239000012778 molding material Substances 0.000 abstract description 5
- 238000002347 injection Methods 0.000 abstract description 4
- 239000006247 magnetic powder Substances 0.000 abstract description 3
- 229910052712 strontium Inorganic materials 0.000 abstract description 3
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 abstract description 3
- 229910000859 α-Fe Inorganic materials 0.000 abstract description 3
- 239000004677 Nylon Substances 0.000 abstract description 2
- 239000003302 ferromagnetic material Substances 0.000 abstract description 2
- 229920001778 nylon Polymers 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract 3
- 230000001939 inductive effect Effects 0.000 abstract 2
- FZHAPNGMFPVSLP-UHFFFAOYSA-N silanamine Chemical compound [SiH3]N FZHAPNGMFPVSLP-UHFFFAOYSA-N 0.000 abstract 1
- -1 polyethylene Polymers 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000005347 demagnetization Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QJVKUMXDEUEQLH-UHFFFAOYSA-N [B].[Fe].[Nd] Chemical compound [B].[Fe].[Nd] QJVKUMXDEUEQLH-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- KPLQYGBQNPPQGA-UHFFFAOYSA-N cobalt samarium Chemical compound [Co].[Sm] KPLQYGBQNPPQGA-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
Landscapes
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用範囲〕
本発明はOA機器、家電製品、自動車などのステッピン
グモータ、プリンターおよびコピー機現像用ロールやク
リーニングロールなどに使用される永久磁石に関するも
ので、永久磁石を強磁性粉末と高分子化合物を主体とす
る、混合物から射出または圧縮成形によって形成した異
方性磁石を製造する方法に関するものである。[Detailed Description of the Invention] [Scope of Industrial Application] The present invention relates to permanent magnets used in stepping motors of office automation equipment, home appliances, automobiles, etc., developing rolls and cleaning rolls of printers and copiers, etc. The present invention relates to a method for producing an anisotropic magnet in which a permanent magnet is formed by injection or compression molding from a mixture mainly composed of ferromagnetic powder and a polymer compound.
従来からの異方性磁石の製造方法には特公昭56504
5号公報に代表される製造方法があるが、この方法では
金型内にコイルを設置しているため金型構造が複雑で価
格、製作日数、補修、さらにはコイルの電気絶縁不良に
起因する成形品製造中の安全性の面で問題があった。別
の方式として特開昭56−69805号公報、特開昭6
0−10610号公報に代表される製造方法があるが、
この方法では金型内に挿入する永久磁石が高価でしかも
非常に脆い性質があり磁石の加工および着磁、金型内へ
の設置、成形圧力などで割れ、欠けを生じ易く金型の補
修が困難であった。さらに特開昭60−10277号公
報のように前記の方式を併用した永久磁石とコイルを設
置した方式があるがこの場合も前述した同じ問題を持っ
ている。The conventional manufacturing method of anisotropic magnets is described in Japanese Patent Publication No. 56504.
There is a manufacturing method typified by Publication No. 5, but in this method, the coil is installed in the mold, so the mold structure is complicated, resulting in problems in terms of cost, production time, repairs, and poor electrical insulation of the coil. There were safety issues during molded product manufacturing. As another method, JP-A-56-69805 and JP-A-6
There is a manufacturing method typified by Publication No. 0-10610,
In this method, the permanent magnet inserted into the mold is expensive and extremely brittle, so it is easy to crack and chip due to processing and magnetization of the magnet, installation in the mold, molding pressure, etc., and repair of the mold is difficult. It was difficult. Furthermore, there is a method as disclosed in Japanese Patent Application Laid-Open No. 60-10277 in which a permanent magnet and a coil are installed, but this method also has the same problem as described above.
これらの方法では磁石の外径、極数によっては必要な磁
気特性を満足することができない場合がある。すなわち
l極の着磁幅が2.5クリメートル以下の場合には上記
の方法では金型の製作が極端に困難であった。These methods may not be able to satisfy the required magnetic properties depending on the outer diameter and number of poles of the magnet. That is, when the magnetization width of the l pole is 2.5 cm or less, it is extremely difficult to manufacture a mold using the above method.
本発明の目的とするところは上述した問題点を解消し、
安全に、経済的に磁気特性に優れ、安定した品質の異方
性磁石の製造方法を提供するものである。The object of the present invention is to solve the above-mentioned problems,
The present invention provides a safe, economical method for producing anisotropic magnets with excellent magnetic properties and stable quality.
本発明は、異方性磁石の配向方法について種々検討した
結果、磁石の極幅の大きさに関係なく、金型内に磁界発
生用のコイルや永久磁石を配置することなく、金型開閉
方向にのみ相反発する磁界発生用の電磁石を設置するこ
とで同−金型内に複数のキャビティーを配置してもキャ
ビティ間で安定した磁気特性の磁石を得ることを見いだ
し本発明に至ったものである。As a result of various studies on the orientation method of anisotropic magnets, the present invention has been developed to achieve an alignment method that can be used in the mold opening/closing direction without arranging magnetic field generating coils or permanent magnets in the mold, regardless of the pole width of the magnet. We discovered that by installing electromagnets to generate magnetic fields that reciprocate only in the same mold, it is possible to obtain a magnet with stable magnetic properties between the cavities even if multiple cavities are placed in the same mold, which led to the present invention. be.
本発明は強磁性粉末と高分子化合物を主体とする混合物
を磁場の存在下、円柱状あるいは円筒状の複数個の成形
空間を有する金型内で射出または圧縮成形し得られた成
形棒の外周面に異方性方向と同方向に着磁してなる異方
性磁石の製造方法において、前記成形空間の周囲に前記
磁極部分に対応する位置に各々ヨークを設置し、前記磁
場を金型開閉方向の金型取り付け部に設置された2個の
電磁石用コイルから発生させ金型開閉方向に向けられた
ヨークに磁束を誘導し各々成形品を形作るキャビティー
部で反発させ金型開閉方向にないヨークに誘導する磁気
回路を構成する金型を用いたことを特徴とする異方性磁
石の製造方法に関するものであり、さらに前記成形棒を
形作る各々のキャビティーの中心間の距離が成形品外径
の2.5倍以上20倍以下離れている金型を用いたこと
を特徴とする異方性磁石の製造方法に関するものである
。The present invention relates to the outer periphery of a molded rod obtained by injection or compression molding a mixture mainly composed of ferromagnetic powder and a polymer compound in a mold having a cylindrical shape or a plurality of cylindrical molding spaces in the presence of a magnetic field. In a method for manufacturing an anisotropic magnet in which a surface is magnetized in the same direction as the anisotropic direction, yokes are installed around the molding space at positions corresponding to the magnetic pole portions, and the magnetic field is applied to the opening and closing of the mold. Magnetic flux is generated from two electromagnetic coils installed in the mold mounting part in the direction, and is guided to the yoke oriented in the mold opening/closing direction, and is repelled by the cavity part that forms each molded product, which is not in the mold opening/closing direction. The present invention relates to a method for manufacturing an anisotropic magnet characterized by using a mold that constitutes a magnetic circuit to be guided to a yoke, and furthermore, the distance between the centers of each cavity forming the molded rod is within the range of the outside of the molded product. The present invention relates to a method for manufacturing an anisotropic magnet characterized by using molds that are separated by 2.5 times or more and 20 times or less the diameter.
本発明に用いられる強磁性粉末とは平均の粒径が500
ミクロン以下1ミクロン以上のストロンチュウム、バリ
ュウムに代表されるフェライト、サマリウム−コバルト
、ネオジウム−鉄−ボロンに代表される希土類などを指
す。The ferromagnetic powder used in the present invention has an average particle size of 500
It refers to ferrites represented by strontium and barium, rare earths represented by samarium-cobalt, neodymium-iron-boron, etc. with a size of 1 micron or more.
高分子化合物とはエポキシ、フェノールなどの熱硬化性
樹脂、ナイロン−6、−12、−66、−46、−11
、ポリエチレン、ポリプロピレンなどのオレフィン系、
塩化ビニール、ポリウレタン、ポリエステル、或はこれ
らの共重合体などの熱可塑性樹脂である。Polymer compounds include thermosetting resins such as epoxy and phenol, nylon-6, -12, -66, -46, -11
, olefins such as polyethylene and polypropylene,
Thermoplastic resins such as vinyl chloride, polyurethane, polyester, or copolymers thereof.
さらに強磁性体と高分子化合物の混合物に第三の物質と
して磁性粉末の表面処理シランあるいはチタネート化合
物、ステアリン酸、低分子量ポリエチレンなどの滑剤、
ガラス繊維、クルク、炭酸カルシウムなどの無機充填剤
などを含むことが可能である。Furthermore, as a third substance in the mixture of the ferromagnetic material and the polymer compound, a lubricant such as surface treatment silane of magnetic powder, titanate compound, stearic acid, or low molecular weight polyethylene, etc.
It is possible to include glass fibers, curcum, inorganic fillers such as calcium carbonate, and the like.
混合物とは強磁性粉末、高分子化合物、および必要に合
わせて前述した第三の物質を含む混合物、あるいは高分
子化合物の融点以上の温度で溶融、混練し顆粒状に加工
したものを含む。The mixture includes a mixture containing a ferromagnetic powder, a polymer compound, and, if necessary, the aforementioned third substance, or a mixture that is melted and kneaded at a temperature higher than the melting point of the polymer compound and processed into granules.
混合物中の強磁性粉末の重量含有率は15パ一セント以
上98パーセント以下が望ましく、特に射出成形の場合
は金型内の流動性を勘案し95パーセント以下が最適で
ある。The weight content of the ferromagnetic powder in the mixture is desirably 15 percent or more and 98 percent or less, and particularly in the case of injection molding, 95 percent or less is optimal in consideration of fluidity within the mold.
本発明の技術的内容を図にしたがって説明する。 The technical contents of the present invention will be explained according to the drawings.
成形材料は第1図の射出シリンダー1で可塑化熔融しノ
ズル2より金型3のキャビティー4.4”に充填される
。材料中の磁性粉は金型取り付け用盤5に設置されたコ
イル6.6゛から発生する外部印可磁界より金型内ヨー
ク7.7”を通りキャビティーに誘導される磁束によっ
て、この磁束とおおよそ直角方向に配列される。The molding material is plasticized and melted in the injection cylinder 1 shown in Fig. 1, and filled into the cavity 4.4'' of the mold 3 through the nozzle 2. Due to the magnetic flux induced into the cavity through the yoke 7.7'' in the mold by an externally applied magnetic field generated from 6.6'', the magnetic flux is aligned approximately perpendicular to this magnetic flux.
この際、本製造法での磁気回路はコイル6.6′の内部
に設置された強磁性体のポールピース9、9”、金型内
のヨーク7.7゛、金型内のヨーク8.8”、金型の外
部に設置されたヨーク10.10′、及びコイルの内部
に設置されたポールピース9.9”に連結された射出成
形機のタイバー1111°で形成されている。At this time, the magnetic circuit in this manufacturing method consists of a ferromagnetic pole piece 9, 9'' installed inside the coil 6.6', a yoke 7.7'' in the mold, and a yoke 8.7'' in the mold. 8", a yoke 10.10' installed outside the mold, and a tie bar 1111° of the injection molding machine connected to a pole piece 9.9" installed inside the coil.
さらに発生する磁界が金型キャビティー部で反発するよ
うにコイルの結線がなされている。Furthermore, the coils are wired so that the generated magnetic field is repelled by the mold cavity.
金型内キャビティー部は第2図に示すような構造をして
いる。キャビティー部の成形品接触面は非磁性体12で
構成され、成形品外周部の磁極の位置13.14.15
.16に強磁性体のヨークを設置する。さらに、ヨーク
先端部17とキャビティー内面の間の非磁性部の肉厚は
その位置での磁極の強さによって調整し決定する。The cavity inside the mold has a structure as shown in FIG. The contact surface of the molded product in the cavity part is made of a non-magnetic material 12, and the position of the magnetic pole on the outer periphery of the molded product is 13.14.15.
.. A ferromagnetic yoke is installed at 16. Furthermore, the thickness of the non-magnetic portion between the yoke tip 17 and the inner surface of the cavity is adjusted and determined depending on the strength of the magnetic pole at that position.
成形品の軸と直角方向に複数のキャビティー部が設置さ
れている第3図の金型構造では、キャビティー間に設置
されるヨーク18には相対して同極の磁束が相対し誘導
されるため、キャビティーの中心間の距離が小さいとき
はヨーク内で反発力が強く、このヨーク位置にある磁極
の位置がヨーク位置からずれを生じ磁力も低下し所望の
磁気特性を持つ成形品が得られない。In the mold structure shown in Fig. 3, in which a plurality of cavities are installed in a direction perpendicular to the axis of the molded product, magnetic fluxes of the same polarity are induced to face each other in the yoke 18 installed between the cavities. Therefore, when the distance between the centers of the cavities is small, the repulsive force within the yoke is strong, and the position of the magnetic pole at this yoke position deviates from the yoke position, and the magnetic force decreases, making it impossible to produce a molded product with desired magnetic properties. I can't get it.
本発明による磁石の特性を第4図の(A)に、キャビテ
ィー間の距離が不適な場合を(B)に示した。The characteristics of the magnet according to the present invention are shown in FIG. 4 (A), and the case where the distance between the cavities is inappropriate is shown in FIG. 4 (B).
ここで各々のキャビティーの中心間の距離は成形品の外
径の2.5倍以上20倍以下が適切である。Here, the distance between the centers of each cavity is suitably 2.5 times or more and 20 times or less the outer diameter of the molded product.
2.5倍以下ではキャビティー間の磁極の磁気特性が不
良であり、20倍以上では金型外形が大型になり経済性
の面で問題がある。If it is less than 2.5 times, the magnetic properties of the magnetic poles between the cavities will be poor, and if it is more than 20 times, the outer shape of the mold will become large, causing problems in terms of economic efficiency.
磁性粉100に対し1重量部のアもフシランで表面処理
された平均粒径が1ξクロンのストロンチュウムフェラ
イト100重量部、平均分子量10000の6−ナイロ
ン14重量部からなる混合物を二軸押出機を用い260
°Cの温度で混練、造粒し射出底形用の成形材料とした
。A mixture consisting of 100 parts by weight of strontium ferrite with an average particle size of 1ξ croms and 14 parts by weight of 6-nylon with an average molecular weight of 10,000, which was surface-treated with 1 part by weight of Amofusilan per 100 parts by weight of magnetic powder, was passed through a twin-screw extruder. using 260
The mixture was kneaded and granulated at a temperature of °C to obtain a molding material for injection bottom molding.
この成形用材料を第3図に示した金型をもちいて、第5
図の成形品仕様の磁石がえられる直径14ξリメートル
、長さ230ミリメートル、外周面に4極に配向着磁す
るキャビティー中に射出成形する。この際、射出された
成形材料が金型キャビティーに充填される以前に外部磁
界をコイルに通電し発生させておく。成形品をさらにパ
リ取り、切削などの二次加工を必要とする場合など状況
に応じて冷却後脱磁し、あるいは脱磁しない状態で取り
出し、脱磁後二次加工したものについてはさらに配向の
位置に再度着磁をおこなうことによって所定の磁石とす
る。得られた磁石は第6図に示すように長さ方向にも極
めて均一な磁気特性を持つ磁石である。従来の前述した
方法に比較して構造の簡単な量産性の高い経済的な方法
であることが認められた。Using this molding material in the mold shown in Figure 3,
A magnet having the specifications of the molded product shown in the figure is obtained by injection molding into a cavity with a diameter of 14ξ mm, a length of 230 mm, and magnetized with four poles on the outer circumferential surface. At this time, an external magnetic field is generated by energizing the coil before the injected molding material is filled into the mold cavity. If the molded product requires further deburring or secondary processing such as cutting, it may be demagnetized after cooling, or it may be taken out without demagnetization, and if it is subjected to secondary processing after demagnetization, it may be further oriented. A predetermined magnet is created by magnetizing the magnet again at that position. The obtained magnet has extremely uniform magnetic properties also in the length direction, as shown in FIG. It has been recognized that this is an economical method with a simple structure and high productivity in mass production compared to the conventional methods described above.
本発明方法に従うと極めて構造の単純な金型から長さ方
向に磁気特性の均一な異方性磁石が得ることができるう
えに、従来の欠陥である配向用コイルや永久磁石を内蔵
することによる構造の複雑性に起因する製造コスト、維
持と管理の困難さ、安全性に対する不安、金型修正の困
難さ、磁極幅の小さいものに対応が容易でない、などの
困難が除かれるので、工業的な異方性磁石の製造方法と
して好適である。According to the method of the present invention, it is possible to obtain an anisotropic magnet with uniform magnetic properties in the length direction from a mold with an extremely simple structure, and it is also possible to obtain an anisotropic magnet with uniform magnetic properties in the length direction. This eliminates difficulties such as manufacturing costs caused by structural complexity, difficulty in maintenance and management, concerns about safety, difficulty in modifying molds, and difficulty in adapting to small magnetic pole widths, making it possible to improve industrial performance. This is suitable as a method for manufacturing anisotropic magnets.
本発明の方法による磁石はOA機器、家電製品、自動車
などのステッピングモータ、プリンターおよびコピー機
現像用ロールやクリーニングロールなどに使用されるも
のである。The magnet produced by the method of the present invention is used in OA equipment, home appliances, stepping motors of automobiles, etc., developing rolls and cleaning rolls of printers and copiers, and the like.
第1図は本発明の異方性磁石の製造方法の代表的な全体
構造図、第2図は第1図の主要な部分であるキャビティ
ー部の拡大図で図中の矢線はコイルから発生する磁力線
の誘導方向を示す。第3図は本発明による装置の一実施
例を示す金型構造図、第4図は従来実施例での成形品外
周の磁気特性を示す。第5図、第6図はコピー機のマグ
ロールに使用される磁石の一実施例の特性を示すグラフ
である。Figure 1 is a typical overall structural diagram of the method for manufacturing an anisotropic magnet of the present invention, and Figure 2 is an enlarged view of the cavity part, which is the main part of Figure 1, and the arrow in the figure is from the coil. Indicates the guiding direction of the generated lines of magnetic force. FIG. 3 is a structural diagram of a mold showing one embodiment of the apparatus according to the present invention, and FIG. 4 shows the magnetic characteristics of the outer periphery of a molded product in a conventional embodiment. FIGS. 5 and 6 are graphs showing the characteristics of an embodiment of a magnet used in a mag roll of a copying machine.
Claims (2)
磁場の存在下、円柱状あるいは円筒状の複数個の成形空
間を有する金型内で射出または圧縮成形し得られた成形
体の外周面に異方性方向と同方向に着磁してなる異方性
磁石の製造方法において、前記成形空間の周囲に前記磁
極部分に対応する位置に各々ヨークを設置し、前記磁場
を金型開閉方向の金型取り付け部に設置された2個の電
磁石用コイルから発生させ金型開閉方向に向けられたヨ
ークに磁束を誘導し各々成形品を形作るキャビティー部
で反発させ金型開閉方向にないヨークに誘導する磁気回
路を構成する金型を用いたことを特徴とする異方性磁石
の製造方法。(1) The outer periphery of a molded body obtained by injection or compression molding of a mixture mainly composed of ferromagnetic powder and a polymer compound in a mold having a cylindrical shape or multiple cylindrical molding spaces in the presence of a magnetic field. In a method for manufacturing an anisotropic magnet in which a surface is magnetized in the same direction as the anisotropic direction, yokes are installed around the molding space at positions corresponding to the magnetic pole portions, and the magnetic field is applied to the opening and closing of the mold. Magnetic flux is generated from two electromagnetic coils installed in the mold mounting part in the direction, and is guided to the yoke oriented in the mold opening/closing direction, and is repelled by the cavity part that forms each molded product, which is not in the mold opening/closing direction. A method for producing an anisotropic magnet, characterized by using a mold that constitutes a magnetic circuit that guides the yoke.
の距離が、成形品外径の2.5倍以上20倍以下離れて
いる金型を用いたことを特徴とする異方性磁石の製造方
法。(2) An anisotropic magnet characterized in that a mold is used in which the distance between the centers of the cavities forming the molded body is 2.5 times or more and 20 times or less the outer diameter of the molded product. Production method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22746789A JPH0391215A (en) | 1989-09-04 | 1989-09-04 | Manufacture of anisotropic magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22746789A JPH0391215A (en) | 1989-09-04 | 1989-09-04 | Manufacture of anisotropic magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0391215A true JPH0391215A (en) | 1991-04-16 |
Family
ID=16861336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22746789A Pending JPH0391215A (en) | 1989-09-04 | 1989-09-04 | Manufacture of anisotropic magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0391215A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003086443A (en) * | 2001-09-11 | 2003-03-20 | Sumitomo Special Metals Co Ltd | Magnetic-field forming system and powder-forming method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5669805A (en) * | 1979-11-10 | 1981-06-11 | Tdk Corp | Manufacture of anisotropic plastic magnet |
JPS63130315A (en) * | 1986-11-20 | 1988-06-02 | Sumitomo Heavy Ind Ltd | Injection molding machine for plastic magnet |
-
1989
- 1989-09-04 JP JP22746789A patent/JPH0391215A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5669805A (en) * | 1979-11-10 | 1981-06-11 | Tdk Corp | Manufacture of anisotropic plastic magnet |
JPS63130315A (en) * | 1986-11-20 | 1988-06-02 | Sumitomo Heavy Ind Ltd | Injection molding machine for plastic magnet |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003086443A (en) * | 2001-09-11 | 2003-03-20 | Sumitomo Special Metals Co Ltd | Magnetic-field forming system and powder-forming method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4327346A (en) | Anisotropic polymeric magnet in the tubular form and process for producing the same | |
US5181971A (en) | Magnet and method of manufacturing the same | |
US5416457A (en) | Lateral orientation anisotropic magnet | |
US4954800A (en) | Magnet and method of manufacturing the same | |
JP4605317B2 (en) | Rare earth anisotropic bonded magnet manufacturing method, magnet molded body orientation processing method, and magnetic field molding apparatus | |
JPH0391215A (en) | Manufacture of anisotropic magnet | |
EP0092440A2 (en) | Magnet roller | |
JPS59226367A (en) | Production of anisotropic magnet roll | |
JPS6252913A (en) | Method and device for manufacture of multipolar anisotropic cylindrical magnet | |
Gardocki et al. | Improvement of the filler orientability during injection molding of multi-polar SmCo-magnets by premagnetization | |
JPH07250460A (en) | Manufacture of dice for orienting magnetic field and flexible magnet | |
JPS6213015A (en) | Manufacture of magnet | |
JPH0376764B2 (en) | ||
JPS55162204A (en) | Manufacture of anisotropic cylindrical polymer magnet | |
JPS62130813A (en) | Manufacture of cylindrical multipolar anisotropic magnet and device therefor | |
JPS63153806A (en) | Manufacture of anisotropic plastic magnet | |
JP2563436B2 (en) | Magnet roll manufacturing method | |
JPS62229817A (en) | Manufacture of polar anisotropic long molded product | |
JPS61125010A (en) | Method and device for manufacturing multipolar anisotropic cylindrical magnet | |
JPS61286110A (en) | Molding die with magnetic field | |
JPS6211212A (en) | Injection molding die for manufacturing plastic magnet | |
JPH04157712A (en) | Apparatus for orientation and shaping of magnetic field of bonded magnet; method for orientation and shaping of bonded magnet using same apparatus | |
JPS62232107A (en) | Anisotropic resin magnet | |
JPS6037112A (en) | Manufacture of anisotropic composite magnet | |
JPS6010610A (en) | Manufacture of anisotropic magnet roll |