JPH0390877A - Vector physical quantity distribution measuring device and its measuring method - Google Patents
Vector physical quantity distribution measuring device and its measuring methodInfo
- Publication number
- JPH0390877A JPH0390877A JP22736289A JP22736289A JPH0390877A JP H0390877 A JPH0390877 A JP H0390877A JP 22736289 A JP22736289 A JP 22736289A JP 22736289 A JP22736289 A JP 22736289A JP H0390877 A JPH0390877 A JP H0390877A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- axis
- distribution
- electron beam
- reconstructing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measuring Magnetic Variables (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、磁界分布の測定装置に関し、特に磁気ヘッド
の漏或磁界の如く1ミクロンオーダーの微小な領域で急
激に変化する磁界の3次元分布を測定するのに適した装
Vt、および測定の方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic field distribution measurement device, and particularly to a three-dimensional magnetic field measurement device that rapidly changes in a minute region of the order of 1 micron, such as the leakage magnetic field of a magnetic head. The present invention relates to a device Vt suitable for measuring distribution and a method of measurement.
計算機用磁気ディスク装置、磁気テープ装置およびVT
R等の磁気記録装暇の高密度化の進展は著しく、これら
の装置に用いられる磁気ヘッドの高性能化が要請されて
いる。高密度の磁気記録を達成するためには、急峻な記
録磁界分布を有する狭トラツクの磁気ヘッドが必要とな
る。トラック幅の減少に伴なって、磁気ヘッドのトラッ
ク幅方向への漏或磁界による隣接トラックへのにじみ書
きが問題となり、トラック幅方向への洩れ磁界の小さい
ヘッドの開発が必要となっている。このような高密度記
録に適したヘッドを開発するためには、ヘッドから発生
する記録磁界の分布を詳細に測定出来る装置の開発が重
要になっている。Magnetic disk devices for computers, magnetic tape devices and VT
There has been a remarkable progress in increasing the density of magnetic recording devices such as R, and there is a demand for higher performance magnetic heads used in these devices. In order to achieve high density magnetic recording, a narrow track magnetic head with a steep recording magnetic field distribution is required. As the track width decreases, writing on adjacent tracks due to leakage magnetic field in the track width direction of the magnetic head becomes a problem, and there is a need to develop a head with a small leakage magnetic field in the track width direction. In order to develop a head suitable for such high-density recording, it is important to develop an apparatus that can precisely measure the distribution of the recording magnetic field generated from the head.
磁気ヘッドの記録磁界の分布を測定する方法として、電
子ビームを磁気ヘッドのギャップの近傍に入射させ、電
子線が磁界によりローレンツ力を受けて曲げられること
を利用して、磁界分布を測定する方法が知られている。A method of measuring the distribution of the recording magnetic field of a magnetic head is to make an electron beam incident near the gap of the magnetic head, and to measure the magnetic field distribution by utilizing the fact that the electron beam is bent by the Lorentz force caused by the magnetic field. It has been known.
磁界の3次元分布を測定するためには、磁界を発生する
試料を回転しながら、電子線を走査し、磁界による電子
線の偏向量をデータとして計算機等に記憶し、このデー
タを計算してもとの磁界分布を再構成する方法が取られ
ている。このような3次元の磁界分布の測定を試みた例
が、第491!!l応用物理学会学術講演予稿集p55
9 (1988年10月)、およびアイ・イー・イー・
イー・トランザクション オンマグネチツクス、エム
ニー ジー21 、(1985年)第1593頁から1
595頁(It<OH,1°rans。In order to measure the three-dimensional distribution of a magnetic field, an electron beam is scanned while rotating a sample that generates a magnetic field, the amount of deflection of the electron beam by the magnetic field is stored in a computer, etc., and this data is calculated. A method is used to reconstruct the original magnetic field distribution. An example of attempting to measure such a three-dimensional magnetic field distribution is No. 491! ! l Japan Society of Applied Physics Academic Lecture Proceedings p55
9 (October 1988), and I.E.
E-Transaction On Magnetics, M
N.G. 21, (1985) pp. 1593-1
595 pages (It<OH, 1°rans.
Magnetiass、 MAG21. (1985)
pp1593〜1595)に述べられている。Magnetiass, MAG21. (1985)
pp 1593-1595).
しかし、上記の例には、測定したデータをもとにして磁
界分布を再構成する具体的な方法が述べられていない。However, the above example does not describe a specific method for reconstructing the magnetic field distribution based on measured data.
特に、上述の測定において、試料の回転軸に対して取直
方向の磁界成分を++f構成することは、従来の方法で
は困難であり、測定データから磁界の3次元分布を再構
成する方法の確立、およびこのような手段をそなえた磁
界分布81す実装置の開発が’tlまれでいた。In particular, in the above-mentioned measurements, it is difficult to configure the magnetic field component in the direction perpendicular to the rotational axis of the sample by ++f using conventional methods, and a method has been established to reconstruct the three-dimensional distribution of the magnetic field from the measurement data. , and the development of an actual device for magnetic field distribution 81 equipped with such means has been rare.
本発明では、 ill’l定データから3次元の磁界分
布を再構成するために、試料の回転棚に平行む磁界成分
と9回転軸に垂直な磁界成分に分け、回転軸に承直な磁
界成分の再構成には、測定データに回転角度の情報を付
加した斌を用いる。これにより回転軸に平行および乗置
のいずれの成分も3次元的な磁界分布の再構成がol能
となる。以ドに本発明に用いる磁界分布測定装置f’t
の具体的な構成および磁界分布再構成方法を述べる。In the present invention, in order to reconstruct a three-dimensional magnetic field distribution from ill'l constant data, the magnetic field component is divided into a magnetic field component parallel to the rotating shelf of the sample and a magnetic field component perpendicular to the rotating axis, and the magnetic field perpendicular to the rotating axis is To reconstruct the components, a pin with rotation angle information added to the measurement data is used. This makes it possible to three-dimensionally reconstruct the magnetic field distribution for both components parallel to and on the axis of rotation. The magnetic field distribution measuring device f't used in the present invention will be described below.
We will describe the specific configuration and magnetic field distribution reconstruction method.
第1回は、本発明に用いる磁界分布測定装置の構成を示
したものである。真空槽6内に設置?’jされた電子銃
2より電子ビーム1を発生させ、対物レンズ3により収
束した電子ビームを、試料ステージ4に搭載した試料5
の近傍に入射させる。試料の発生する磁界により偏向さ
れた電子ビームは、電子ビーム位置検出器に到達し、磁
界に応じた電子ビームの偏向量が測定される。1l11
1定データはデータ記憶部で記憶される。itl!I定
中に、電子ビームは電子ビーム走査$11御部の制御に
より、試料近傍を走査し5また、回転・移動機構をそな
えた試料ステージは試料移動回転制御部の制御により回
転する。′IJ4定を終了した後、再構成演算部により
測定データを計算し、再構成計算結果を再構成結果表示
部に表示する0以上の全体の測定・計算は全体制御部に
より制御する。全体制御部、データ記憶部、再構成演算
部、再構成結果表示部は一つまたはそれ以上の計算機に
より構成する。The first part shows the configuration of a magnetic field distribution measuring device used in the present invention. Installed in vacuum chamber 6? An electron beam 1 is generated from an electron gun 2 which is
Make it incident near . The electron beam deflected by the magnetic field generated by the sample reaches an electron beam position detector, and the amount of deflection of the electron beam according to the magnetic field is measured. 1l11
The constant data is stored in the data storage section. itl! During the I measurement, the electron beam scans the vicinity of the sample under the control of the electron beam scanning control section 5, and the sample stage equipped with a rotation/movement mechanism is rotated under the control of the sample movement and rotation control section. After completing the IJ4 determination, the reconstruction calculation section calculates the measurement data, and the reconstruction calculation results are displayed on the reconstruction result display section.The overall measurement and calculation of 0 or more is controlled by the overall control section. The overall control section, data storage section, reconstruction calculation section, and reconstruction result display section are constituted by one or more computers.
第2図に測定の原理を示した。試料となる磁気ヘッド7
の記録媒体対向面9の近傍に電子ビーt11を通過させ
る。ギャップ8の近傍に発生する鴻洩磁界10により電
子ビームは偏向され、電子ビ−ム位置検出器により電子
ビームの偏向ft d tおよびdlが測定される。磁
気ヘッドの記録媒体対向1「n9に対して垂直方向を2
軸に取り、記録媒体対向方++’IlをX軸、トラック
幅方向をy軸に取ったlI4¥、1lIII定中に試料
を2軸を回転軸としてl!!1転し。Figure 2 shows the principle of measurement. Magnetic head 7 as a sample
An electronic beat t11 is passed near the surface 9 facing the recording medium. The electron beam is deflected by a leakage magnetic field 10 generated near the gap 8, and the deflection ft d t and dl of the electron beam are measured by an electron beam position detector. Magnetic head facing recording medium 1 "2 perpendicular to n9"
The X axis is the direction facing the recording medium, and the y axis is the direction of the track width, and the sample is rotated around the two axes during lI4\, 1lIII. ! One turn.
また電子ビームをx−y面内方向に走査して、試料の1
111転角U、および試料の101転軸と電子ビームと
の距igに対する、偏向量dt、dzを測定する。In addition, the electron beam is scanned in the x-y plane direction to
Deflection amounts dt and dz are measured with respect to the 111 rotation angle U and the distance ig between the 101 rotation axis of the sample and the electron beam.
前記のように測定データはデータ記四部に記似し、再構
成演算部で再構成計算した後、再構成結果表示部に計算
結果を表示する。As described above, the measurement data is recorded in the data recorder, and after reconstruction calculation is performed in the reconstruction calculation section, the calculation result is displayed on the reconstruction result display section.
次に具体的な再構成の方法について述べる。潟洩磁外を
磁気ヘッドの記録媒体対向曲走行方間すなわちX方向の
磁界成分Bxと、トラック幅方向すなわちX方向の磁界
成分By、および記録媒体対向面に垂直方向すなわち2
方向の磁界成分Bzに分離して再構成を析う、電子ビー
ムはビームに垂直な磁界の成分によりローレンツ力を受
け、ビーム走行方向および、磁界方向のいずれにも直角
の方向に偏向されるため、電子ビーム偏向量のX−ym
方向の成分dtはB2のもの関数として次のように表わ
される。Next, a specific reconstruction method will be described. A magnetic field component Bx in the direction of the curve of the magnetic head facing the recording medium, that is, in the X direction, a magnetic field component By in the track width direction, that is, the
The electron beam is subjected to a Lorentz force by the magnetic field component perpendicular to the beam, and is deflected in a direction perpendicular to both the beam traveling direction and the magnetic field direction. , electron beam deflection amount X-ym
The directional component dt is expressed as a function of B2 as follows.
dl (s、θ)= e/(2mV)J’ Bld
Q −(1)ここでeは電子の屯待1mは電子の質猷
、■は電子の加速電圧である。息は電子ビームの走行F
li離であり、(1)式は、ビ・−ムの偏向Md1が電
子ビームが通った位置のBzの電子ビームに沿っての線
積分に比例することを表わしている。一方、電子ビーム
偏向量の2方向の成分d2は、13X、B、およびX軸
と電子ビーム直角方向のなす角θの関数であり、
dz (s、θ) = 2 / (B−xcosθ+B
ysinlj)dff・・・(2)
と表わされる。dl (s, θ) = e/(2mV)J' Bld
Q - (1) Here, e is the electron's waiting time, 1 m is the electron's length, and ■ is the electron's accelerating voltage. Breath is a traveling electron beam F
Equation (1) indicates that the beam deflection Md1 is proportional to the line integral along the electron beam at the position Bz through which the electron beam passes. On the other hand, the component d2 of the electron beam deflection amount in two directions is a function of 13X, B, and the angle θ formed between the
ysinlj)dff...(2)
本発明では、これらの測定データからHzの磁界分布を
再構成するために、医療機器の分野で開発されたコンピ
ュータ断胎映像法(Comput、ed丁o+iogr
aphy ;以ドC′rと略す)の手法を用いる。In the present invention, in order to reconstruct the Hz magnetic field distribution from these measurement data, we utilize a computerized abortion imaging method (Computer + IOGR) developed in the field of medical equipment.
aphy; hereinafter abbreviated as C'r) is used.
次にC′1′法によるHzの分布の再構成法について説
明する。第3図のように、B2が分布している2=一定
の向に電子ビームeを入射する。試料の原点と電子ビー
ムとの距離をS、試料のX軸と電子ビームの直角方向と
の角度をθとする。測定偵は直線eに沿ったBz(xl
y)の積分によって与えられるので、次のように表わさ
れる。Next, a method of reconstructing the Hz distribution using the C'1' method will be explained. As shown in FIG. 3, the electron beam e is incident in the 2=constant direction in which B2 is distributed. Let S be the distance between the origin of the sample and the electron beam, and θ be the angle between the X axis of the sample and the direction perpendicular to the electron beam. The measurement reconnaissance is Bz(xl
Since it is given by the integral of y), it can be expressed as follows.
・・・(3)
[RHz] F+ θ)は(s、、0)で指定される
直線におけるHzの1MM分を意味し、Bzのラドン変
換という。...(3) [RHz] F+ θ) means 1 MM of Hz on the straight line specified by (s,,0), and is called Radon transformation of Bz.
2次元フーリエ変換をドh2次元フーり逆変換をド2−
1 と表わすと、フーリエ変換の反転公式から。The 2-dimensional Fourier transform is d2-
1 from the inversion formula of Fourier transform.
k3 z = F’ !−” ト° zBz
−(4)Xexp(2yc i 14(xc
osθ+y sinθ))lR1dRdθ・・・(5)
一方、−次元フーリエ変換をFAと表わすと。k3 z = F'! −” t° zBz
-(4)Xexp(2yc i 14(xc
osθ+y sinθ))lR1dRdθ...(5) On the other hand, if the -dimensional Fourier transform is expressed as FA.
[?’1RBZ](t#
θ)”[h’zBzコ(t、cosθ 、t gin
θ)・・・(6)
XIR161P(2ye i R・(xcosθ−y
sinθ))dRdθ・・・(′I)
(7)
式を
とおくと
×1尺1exp(2tc i R・(xcosO+ys
irl))d RXIRlexp(2tc i R(x
cos&+ysitl))d s d R・・・(11
)
以上のように(9)
式のフーリエ変換を計算する代
りに、
あらかじめ計算した(I2)式の重み関数gと測定値[
K B z] (s p 13 ) Q)M(:I
ンボリューション)を積分する方法をコンボリューショ
ン法という6最後に(8)式の逆射影変換によりBzの
分布が得られる。[? '1RBZ](t# θ)"[h'zBzko(t, cosθ, t gin
θ)...(6) XIR161P(2ye i R・(xcosθ−y
sinθ))dRdθ...('I) (7) Leaving the equation aside, ×1 shaku1exp(2tc i R・(xcosO+ys
irl))d RXIRlexp(2tc i R(x
cos&+ysitl))d s d R...(11
) As mentioned above, instead of calculating the Fourier transform of equation (9), we use the weighting function g of equation (I2) calculated in advance and the measured value [
K B z] (s p 13 ) Q) M(:I
The method of integrating the Bz (convolution) is called the convolution method.Finally, the distribution of Bz is obtained by the inverse projective transformation of equation (8).
以上のアルゴリズムを用いて実際に再構成計算を行うに
は、各計算式をディジタル化する。電子ビームの走査を
d 1llJ隔に行い、走査番号をmとすると、s =
m dと表わされる。また、試料の間転をΔθ聞醐で
行い、回転番号をnとすると、0=nΔ0となる。従っ
て2111定値はd】(m、n)。To actually perform reconstruction calculations using the above algorithm, each calculation formula is digitized. If the electron beam is scanned at intervals of d 1llJ and the scan number is m, then s =
It is expressed as m d. Further, if the sample is rotated by Δθ and the rotation number is n, then 0=nΔ0. Therefore, the constant value of 2111 is d](m, n).
d dm 、 n )と表わされる(12)式の1’(
み関数を求となる。1'( of equation (12) expressed as d dm , n )
Then, the function is found.
または再構成の時のリンギング雑音を防ぐため。or to prevent ringing noise during reconfiguration.
(13)式を修正して を用いる。(13) by modifying equation Use.
− 次に。− next.
測定値
[RBzl(md*
nΔ θ)
と重み関数11もしくはgzから、(11)式に相当す
るコンボリューション計算を行う。Convolution calculation corresponding to equation (11) is performed from the measured value [RBzl(md*nΔθ) and the weighting function 11 or gz.
Hz’ (kd、 nΔO) m=−(M−1)/ 2 ・・・(15) ここで、Mは電子ビームの走査の数である。Hz’ (kd, nΔO) m=-(M-1)/2 ...(15) Here, M is the number of electron beam scans.
次に第4図のように再構成するx −y +r11の座
標をε間隔で離散化し、x=pと、y=qεと表わす0
回転角nΔθの時の(p+ q)点でのBzの値は次の
ように求める。第4図のように、直線nΔθに(p*q
)点から垂線をドし、この交点と原点との距#lsを求
める。原点から5lllれた位置のBz’の値は、交点
に隣接したk、およびに+1の格子点での82 の値よ
り補間計算により求める1次に1以上により求めたBz
’(pε。Next, as shown in Fig. 4, the coordinates of x - y + r11 to be reconstructed are discretized at intervals of ε, and 0 is expressed as x=p and y=qε.
The value of Bz at point (p+q) when the rotation angle is nΔθ is determined as follows. As shown in Figure 4, (p*q
) from the point and find the distance #ls between this point of intersection and the origin. The value of Bz' at a position 5llll from the origin is determined by interpolation calculation from the value of 82 at the grid point of k adjacent to the intersection and +1.
'(pε.
qε;nΔθ)より(8)式に相当する逆射影蛮換・・
・(16)
を計算してB2の分布が得られる。ここでNは回転ステ
ップの数である0以上の操作をまとめて第5図に示した
。From qε; nΔθ), the inverse projective transformation corresponding to equation (8)...
・(16) The distribution of B2 is obtained by calculating. Here, N is the number of rotation steps, and operations of 0 or more are collectively shown in FIG.
以上のように、電子ビームを磁界の検出手段として用い
る3次元磁界分布測定装置において、試料の回@輔に平
行な磁界成分B2の再構成は、上述のC′r法のアルゴ
リズムを用いることにより実現uJ能である。しかし、
(2)式のように、一つの測定データが独立な二つの未
知量Bx、Byの和で示されているため、上述と同じア
ルゴリズムでBx、Byの再構成を行うことは不tel
能である。As described above, in a three-dimensional magnetic field distribution measuring device that uses an electron beam as a magnetic field detection means, the magnetic field component B2 parallel to the rotation of the sample can be reconstructed by using the C'r method algorithm described above. Realization uJ Noh. but,
As shown in equation (2), one measurement data is expressed as the sum of two independent unknown quantities Bx and By, so it is impossible to reconstruct Bx and By using the same algorithm as above.
It is Noh.
発明者らは、試料の回転軸に直角な磁界成分Bx、By
の3次元分布の再構成法について鋭意検討した結果、電
子ビームの偏向量の測定値d2に試料回転角θの余弦c
og (j を乗じて、これを上述のCT法を用いて
演算することによりBxの再構成が出来、またdzにs
in (+ を乗じて、演算することによりByの再
構成が出来ることを見出した。The inventors discovered that the magnetic field components Bx, By perpendicular to the axis of rotation of the sample
As a result of intensive study on the method for reconstructing the three-dimensional distribution of
By multiplying by og (j and calculating this using the above-mentioned CT method, Bx can be reconstructed, and s
It has been found that By can be reconstructed by multiplying in (+) and calculating.
以−ドに牛の原理について示す。The principle of the cow is shown below.
本発明に使用する磁界分布測定装Ftにように、空間の
漏洩磁界を81り定する場合、磁界を生ずる原因となる
コイル、や磁石等の起磁力は測定領域には存在せず、第
2図においてzくOの領域に存Y1ミする。従つで測定
室NilであるZ>Oの領域の磁界分布は、Z<Oの領
域に存在する起磁力によって定まっている。第6図に示
すように、Z<Oの侮意の位置0 (xo* y(l
zo)に単位の磁極があるとすると、この磁極によ
るZ>Oの点p(X+y*z)の磁界は、
・−・(17)
・・・(18)
と表わされる。Z〈0の領域の起磁力の分布は正負の磁
極の分布によって表わされるので、Z〉0の空間での磁
界分布も上記の磁界の重ね合わせで表わされる。上記の
磁界分布について(3)式にボしだと同様のラドン変換
を計算すると。When determining the leakage magnetic field in space as in the magnetic field distribution measurement device Ft used in the present invention, the magnetomotive force of the coil, magnet, etc. that causes the magnetic field does not exist in the measurement area, and the second In the figure, it exists in the area of z and O. Therefore, the magnetic field distribution in the region Z>O, which is the measurement chamber Nil, is determined by the magnetomotive force existing in the region Z<O. As shown in Fig. 6, the position of contempt 0 (xo* y(l
Assuming that there is a unit magnetic pole at zo), the magnetic field at point p(X+y*z) where Z>O due to this magnetic pole is expressed as follows. Since the distribution of magnetomotive force in the region of Z<0 is represented by the distribution of positive and negative magnetic poles, the magnetic field distribution in the space of Z>0 is also represented by the superposition of the above magnetic fields. For the above magnetic field distribution, if we calculate the same Radon transformation as if we filled out equation (3).
[R,BxE(S。[R,BxE(S.
θ) ・・・(19) l L< B y](s e U) ・・・(20) となる。θ) ...(19) l L< B y] (s e U) ...(20) becomes.
ここでCは
C=ξ2+2ξ
(sinxo−eos&yo)+s2
−2 s (cosθxo+5inByo)+xo”+
yo”+(z+zo)”・・・(21)
である。Here, C is C=ξ2+2ξ (sinxo-eos&yo)+s2-2 s (cosθxo+5inByo)+xo”+
yo”+(z+zo)” (21).
(19) 。(19).
(20)はそれぞれ、
[尺Bx](s+
U)
[RHy](SL−
θ)
但し
L)=s”+2s (xocosθ+yasirl)
+(xocosθ−yosin & )”+ x o”
十y o”+(Z + z o)”・・・(24)
一方、実際に測管出来るのは(2)式に示したように、
(B xcos B +B ysinθ)であるから、
このラドン変換にCO8θ、 sinθを乗じた値は、
[K(Bxcosθ+Hysin&)](s、 &)X
cosθ・・・(25)
[E(Bxcos&+8ysirl)](s、θ)Xs
j、n。(20) are respectively [Bx] (s + U) [RHy] (SL - θ) where L) = s'' + 2s (xocos θ + yasirl)
+(xocosθ−yosin & )”+ x o”
10y o"+(Z + z o)"...(24) On the other hand, as shown in equation (2), the pipe that can actually be measured is
Since (B xcos B +B ysinθ),
The value obtained by multiplying this Radon conversion by CO8θ and sinθ is:
[K(Bxcosθ+Hysin&)](s, &)X
cosθ...(25) [E(Bxcos&+8ysirl)](s, θ)Xs
j, n.
・・・(26)
以上のように、x−y+(ri内磁界威分の?1llI
定情d2にcos B を乗じた値は、X成分の磁界
の′mIf&分の値に等しく、また、daにsinθ
を乗じた値はy成分の磁界の線積分の値に等して、従っ
て治す図に示すようにこれらの値を用いた前述のC′1
′法により再構成計算を行うことにより、Bx、Byの
3凍死分布の再M或がuj能となる。...(26) As above, x−y+(ri magnetic field strength ?1llI
The value obtained by multiplying the constant state d2 by cos B is equal to the value of 'mIf&' of the magnetic field of the X component, and the value obtained by multiplying da by sin θ
The value multiplied by
By performing reconstruction calculations using the ' method, the three freezing distributions of Bx and By can be reconstructed by M or uj.
」二連の説明では電子ビームを用いた磁界分布の測定に
ついて述べて来たが、測定の対象とする物理量は必ずし
も磁界でなくともよく、また測定の手段は電子ビームで
なくともよい0本発明の方法により従来任意の成分が測
定できなかったベクトル量の:3次次元布が測定できる
。Although the two series of explanations have described the measurement of magnetic field distribution using an electron beam, the physical quantity to be measured does not necessarily have to be a magnetic field, and the means of measurement does not necessarily have to be an electron beam. With this method, it is possible to measure a three-dimensional distribution of vector quantities, which was previously impossible to measure.
本発明の測定装bゝ′tには、少なくとも81り定領域
を通過する直線に沿ったベクトル物理量の和を測定する
機構と、試料を前記+A ′kAに直角な軸を回転軸と
して回転する機構、測定する領域内を前記直線が回転軸
と直角方向に走査する機構と、 i!III足データ全
データてもとのベクトル物β11量の分布を再構成する
機構が必要である。The measuring device b't of the present invention includes a mechanism for measuring the sum of vector physical quantities along a straight line passing through at least an 81 constant area, and a mechanism for rotating the sample about an axis perpendicular to the +A'kA. a mechanism, a mechanism in which the straight line scans within the measurement area in a direction perpendicular to the rotation axis, and i! III. A mechanism is required to reconstruct the distribution of the original vector object β11 amount using all the data.
試料のlI?1転軸に平行な成分のベクトル物理量の分
布を再構成するには、前記のベクトル物理量の和を測定
する機構が、少なくとも前Ke I!Fl k軸に平行
なベクトル物理量の和をa+11定する機能を右してい
ることが必要である。この測定値から、前記のベクトル
物理量の分布を再構成する機構において5前記のコンピ
ュータ断λダ映倣法の計算手続を行うことにより、回転
軸に平行な成分のベクトル物理量の3次元分布を再構成
することが出来る。lI of the sample? In order to reconstruct the distribution of the vector physical quantities of the components parallel to the rotation axis, the mechanism for measuring the sum of the vector physical quantities described above must be used at least before Ke I! Fl It is necessary to have a function that determines the sum of vector physical quantities parallel to the k-axis as a+11. From this measured value, the three-dimensional distribution of the vector physical quantity of the component parallel to the axis of rotation is reconstructed by performing the calculation procedure of the computer section lambda reflection method described above in the mechanism for reconstructing the distribution of the vector physical quantity. It can be configured.
回転軸に垂直な成分のベクトル物理量の分布の再構成は
、任意のベクトル物理量についてu)能ではない、空間
の磁気スカラーボランシャルUは次のような3次元ラプ
ラス方程式を満足する。Reconstruction of the distribution of the vector physical quantity of the component perpendicular to the axis of rotation is not possible for any vector physical quantity.The magnetic scalar voluntarine U of space satisfies the following three-dimensional Laplace equation.
δ”LJ a”v a”u−++−=0
・・・(Z7)Bx2 δy″ a
z2
磁界は1i11気スカラーボランシヤルの勾配に算しく
と表わされる。従って、このように3次1Gラプラス方
糊式を満足するスカラー物理量の勾配によって表わされ
るベクトル物理量については、木9.QIJの装置およ
び方法を用いて回転軸に唯直な成分のベクトル物理量の
分VH3を測定することが出来る。δ”LJ a”v a”u-++-=0
...(Z7)Bx2 δy'' a
The z2 magnetic field can be expressed as the gradient of the 1i11 scalar voluncial. Therefore, for the vector physical quantity expressed by the gradient of the scalar physical quantity that satisfies the cubic 1G Laplace square equation, the tree 9. Using the QIJ device and method, it is possible to measure the vector physical quantity VH3 of the component that is perpendicular to the rotation axis.
本測定のためには前記の測定の機構が、回転軸に対して
垂直な成分のベクトル物理量の和をft1l 足できる
機能を有していることが必要である。さらに、測定機構
が直線に対して直角成分を測定する機能を有している場
合は、前記のベクトル物理量の分布を再構成する機構に
おいて、前記の測定値に。For this measurement, it is necessary that the measurement mechanism described above has a function that can add the sum of vector physical quantities of components perpendicular to the rotation axis by ft1l. Furthermore, if the measuring mechanism has a function of measuring a component perpendicular to a straight line, the mechanism for reconstructing the distribution of the vector physical quantity can be used to measure the component at right angles to the straight line.
回転軸に直角で試料に同定した1lllxと直線の直角
方向のなす角0の余弦cosθ を乗じた値をもとに、
前記のコンピュータ断磨映像法の計算手続を行うことに
よりX#4に1ド行な成分のベクトル物理量の分布を再
構成するとか出来る。また、前記の測定値に角0の正弦
sinθ を乗じた値をもとに、回転軸およびX軸にと
もに直角な軸yに平行なベクトル物理量の分布を再構成
するとか出来るつまた、前記測定機構が前記1保線に対
して平行な成分のベクトル物理量を測定する機能を有し
ている場合は、前述のgunθとcos &は逆の関係
となり、前記測定値にgin 13 を乗じた値をも
とにX軸方向の、cos B を乗じた餉をもとにy
軸方向成分のベクトル物理量の分布を再構成するとか出
来る。Based on the value multiplied by the cosine cosθ of the angle 0 formed by 1llllx identified on the sample at right angles to the axis of rotation and the direction perpendicular to the straight line,
By performing the calculation procedure of the computer abrasion imaging method described above, it is possible to reconstruct the distribution of the vector physical quantity of the one-do row component in X#4. In addition, it is possible to reconstruct the distribution of vector physical quantities parallel to the axis y perpendicular to both the rotation axis and the If the mechanism has the function of measuring the vector physical quantity of the component parallel to the above-mentioned 1 line maintenance, the above-mentioned gun θ and cos & will have an inverse relationship, and the value obtained by multiplying the measured value by gin 13 will also be Based on the weight multiplied by cos B in the X-axis direction, y
It is possible to reconstruct the distribution of vector physical quantities of axial components.
(実施例〕
本発明の方法により、Bx= By、Bzの3次元分布
の再構成がロノ能であることを実証するために。(Example) In order to demonstrate that the method of the present invention can reconstruct the three-dimensional distribution of Bx=By, Bz with ease.
磁気ヘッドが発生する理論的な磁界分布BxseBys
g Bzsについて、本発明の方法により再構成計算を
行い、再構成磁界分布Bxr、 Byr+ Bzrをも
との理論磁界分布と比較した。理論磁界分布はギャップ
長1.2μm、hラック幅6μm、ギャップデプス10
μmの磁気ヘッドについて計算により求めたものである
。まず、上述の理論磁界分布を持つ磁気ヘッドのギャッ
プ中心をx=0.t−ラック幅中心をy=0.記録媒体
対向面をz=0として、2軸を回転軸として間隔Δθ=
1°間隔で−90°〜90°の範囲で試料をIF5転し
、記録媒体対向面からの距Mz=0.1itm の商を
、電子ビームで間隔d = 0 、2 p m で−1
0〜10μmの範囲で走査した時の測定値d1(m、n
)、dz(m、n)を(1)式、(2)式に基づいて計
算により求た0次にこの測定値はもとに、第5図にボし
たように、dxの測定値をそのまのCT法により、また
dzの測定値はeos fJおよびsinθを乗じたイ
1〔(をc ’r法により計算し、それぞれBz、 B
x、 Byの分布を求めた。再構成の際に用いた格子点
の間隔とは0.2μm、再構成の範囲はx = −10
〜10μm、y=−10〜10μmである。第7図にI
3工、第8図にはBy、第9図にはBzの理論6J&昇
分布と阿構成磁界分布の比較を示した。各回において(
a)は理論磁界分布のz=0.1μmのx−y曲内の分
布、(b)は再構成磁界分布、(c)は(aン、(b)
のy=一定の位1dにおける理論磁界分布とlIJ、構
成磁界分布の比較を示したものである。第7図、第9図
では(C)でのyの値はO,第8図ではy=3.0μm
の化性での分布を示している。Theoretical magnetic field distribution generated by the magnetic head BxseBys
Regarding g Bzs, reconstruction calculations were performed using the method of the present invention, and the reconstructed magnetic field distributions Bxr, Byr+ Bzr were compared with the original theoretical magnetic field distribution. Theoretical magnetic field distribution is gap length 1.2 μm, h rack width 6 μm, gap depth 10
This is calculated for a μm magnetic head. First, set the gap center of the magnetic head having the above-mentioned theoretical magnetic field distribution to x=0. T-rack width center y=0. With the surface facing the recording medium as z=0 and the two axes as rotation axes, the interval Δθ=
The sample was rotated by IF5 in the range of -90° to 90° at 1° intervals, and the quotient of the distance Mz = 0.1 itm from the surface facing the recording medium was calculated by using an electron beam at intervals of d = 0, 2 p m and -1
Measured value d1 (m, n
), dz(m, n) is calculated based on equations (1) and (2) to the zeroth order.In addition, as shown in Figure 5, the measured value of dx is Using the CT method as it is, the measured value of dz is calculated by eos fJ and sin θ multiplied by the c'r method, and Bz and B, respectively.
The distribution of x and By was determined. The spacing of the grid points used for reconstruction is 0.2 μm, and the reconstruction range is x = −10
˜10 μm, y=−10 to 10 μm. In Figure 7 I
3, Figure 8 shows a comparison of the theoretical 6J & rise distribution of By, and Figure 9 shows a comparison of the A configuration magnetic field distribution of Bz. In each episode (
a) is the theoretical magnetic field distribution within the x-y curve of z = 0.1 μm, (b) is the reconstructed magnetic field distribution, (c) is (a), (b)
This figure shows a comparison between the theoretical magnetic field distribution and lIJ, and the constituent magnetic field distribution at y=constant order 1d. In Figures 7 and 9, the value of y in (C) is O, and in Figure 8, y = 3.0 μm.
It shows the distribution according to the tendency of
第7図〜第9図のように、再構成6j&界分布は再構成
範IJtiの端部、およびBy、Hzのピーク値におい
てやや計算誤差があるものの、全体的に極めて良く理論
磁界分布を再現している。As shown in Figures 7 to 9, although there are some calculation errors in the reconstruction 6j & field distribution at the ends of the reconstruction range IJti and the peak values of By and Hz, overall it reproduces the theoretical magnetic field distribution very well. are doing.
なお、本実施例では、再構成計算の方法としてコンボリ
ューション法を用いたが、コンボリューション法以外の
他のCT法でも再構成は口f能であり、例えば、(It
)式のx+<み1対数gを求めずに、(9)式のように
観測データの1次元フーリエ変換を求めた後、これに+
に!、lを乗じて逆フーリエ変換を行って(9)式の結
果を求め、次に前と同様に(8)式により、逆射影変換
を行ってもとの分布を再構成することも出来る。In this example, the convolution method was used as the reconstruction calculation method, but reconstruction can be easily performed using other CT methods other than the convolution method. For example, (It
) of the equation x+
To! , l to perform inverse Fourier transform to obtain the result of equation (9), and then perform inverse projective transform using equation (8) as before to reconstruct the original distribution.
以上のように、本発明により電子ビームを用いて磁気ヘ
ッド等の磁気コア、あるいは永久磁り等が発生する漏洩
磁界のx、y、z成分の:3次次元布を容易に、かつ高
精度に測定出来ることか明らかである。As described above, the present invention uses an electron beam to easily and accurately generate the three-dimensional distribution of the x, y, and z components of the leakage magnetic field generated by the magnetic core of a magnetic head, etc., or by a permanent magnet. It is clear that it can be measured.
4.114面の(資)車な説明
勤1図は本発明に用いる磁界分布測定装hゝ’/(1)
構成図を、第2図は本発明に用いる磁界分布8IQ定装
置の測定の原理図を、第3図〜鎗6図はそれぞれ本発明
の磁界分布の再構成の方法を説明する概念図、第7図〜
第9図はそれぞれ本発明により4++構威した磁界分布
ともとの理論磁界分布を比較したグラフの図である。4. Figure 1 of the explanation sheet on page 114 shows the magnetic field distribution measuring device used in the present invention h'/(1)
2 is a diagram showing the principle of measurement of the magnetic field distribution 8IQ determination device used in the present invention, and Figures 3 to 6 are conceptual diagrams explaining the method of reconstructing the magnetic field distribution of the present invention, Figure 7~
FIG. 9 is a graph comparing the magnetic field distribution constructed by 4++ according to the present invention and the original theoretical magnetic field distribution.
上・・・電子ビーム、2・・・電子銃、3・・・対物レ
ンズ、4・・・試料ステージ、5・・・試料、6・・・
真空槽、7・・・磁気ヘッド、8・・・ギャップ、9・
・・記録媒体対向向。Top...electron beam, 2...electron gun, 3...objective lens, 4...sample stage, 5...sample, 6...
Vacuum chamber, 7... Magnetic head, 8... Gap, 9.
...Face the recording medium.
工0・・・翻洩磁昇、11・・・電子ビーム位誼検出器
。Engineering 0... Transmission magnetic elevation, 11... Electron beam displacement detector.
第 因 め ■ 拓 図 ≠ 図 な 5 目 菌6 図 図面の浄書(内容に変更なし) 図画の浄書(内容に変更t1シ) 図面の浄書(内容1こ変更なし) B工 (丁ン 図面の浄書(内容に=更なし) 図面の浄IF(内容に変更なし) 図面の浄書(内容に変更なし) By(T) 図面の浄書(内容に変更なし) 8面の浄書(内容に変更々し) 図面の汀+w(内容に第四なし) β2 (T)No. Cause eye ■ Taku figure ≠ figure Na 5 eye Bacteria 6 diagram Engraving of drawings (no changes to content) Engraving of drawings (changed in content t1) Engraving of drawings (no changes in content) B engineering (Ding Engraving of drawings (content = no changes) Clean IF of the drawing (no change in content) Engraving of drawings (no changes to content) By(T) Engraving of drawings (no changes to content) 8 engravings (contents have changed) Bottom of the drawing + w (no fourth part in the content) β2 (T)
Claims (1)
する装置において、少なくとも測定領域を通過する直線
に沿つたベクトル物理量の和を測定する機構と、試料を
前記直線に直角な軸を回転軸として回転する機構と、測
定する領域内を前記直線が回転軸と直角方向に走査する
機構と、測定データを計算してもとのベクトル物理量の
分布を再構成する機構をもち、前記ベクトル物理量を再
構成する機構が少なくともコンピュータ断層映像法の計
算手続を実現する手段を有しており、前記の直線に沿つ
たベクトル物理量の和を測定する機構が、少なくとも、
前記回転軸に平行なベクトル物理量の成分の直線に沿つ
た和を測定する機能を有し、かつ前記のベクトル物理量
の分布を再構成する機構が、前記の測定値から前記回転
軸に平行なベクトル物理量の成分の分布を再構成する手
段を有することを特徴としたベクトル物理量の分不測定
装置。 2、試料が発生するベクトル物理量の3次元分布を測定
する装置において、少なくとも測定領域を通過する直線
に沿つたベクトル物理量の和を測定する機構と、試料を
前記直線に直角な軸を回転軸として回転する機構と、測
定する領域内を前記直線が回転軸と直角方向に走査する
機構と、測定データを計算してもとのベクトル物理量の
分布を再構成する機構をもち、前記ベクトル物理量を再
構成する機構が少なくともコンピュータ断層映像法の計
算手続を実現する手段を有しており、前記ベクトル物理
量が3次元のラプラス方程を満足するスカラー物理量の
勾配で表わされる量であつて、前記の直線に沿つたベク
トル物理量の和を測定する機構が前記直線に対して垂直
でかつ前記回転軸に垂直なベクトル物理量の成分の直線
に沿つた和を測定する機能を有し、前記のベクトル物理
量の分布を再構成する機構が、少なくとも、前記の測定
値に、前記回転軸に直角で試料に固定した軸xと前記直
線の直角方向のなす角θの余弦cosθを乗ずる手段、
および前記の測定値に角θの正弦sinθを乗ずる手段
を有し、前記cosθを乗じた値から前記x軸に平行な
成分のベクトル物理量の分布を再構成し、前記sinθ
を乗じた値から前記回転軸および前記軸xにともに直角
な軸yに平行な成分のベクトル物理量の分布を再構成す
る手段を有することを特徴とするベクトル物理量の分布
測定装置。 3、電子ビームが磁界の存在により偏向する原理を利用
して、磁気コアもしくは磁石が発生する磁界の3次元分
布を測定する装置において、少なくとも試料を電子ビー
ムに直角な軸を回転軸として回転する機構と、測定する
領域内を電子ビームが回転軸と直角方向に走査する機構
と、電子ビームの偏向量を測定する機構と、測定データ
を計算してもその磁界分布を再構成する機構をもち、前
記磁界分布を再構成する機構が少なくともコンピュータ
断層映像法の計算手続を実現できる手段を有し、かつ、
前記試料の回転軸に垂直な成分の電子ビームの偏向量測
定値から、前記回転軸に平行な成分の磁界分布を再構成
する手段を有することを特徴とした磁界分布測定装置。 4、電子ビームが磁界の存在により偏向する原理を利用
して、磁気コアもしくは永久磁石が発生する磁界の3次
元分布を測定する装置において、少なくとも試料を電子
ビームに直角な軸を回転軸として回転する機構と、測定
する領域内を電子ビームが回転軸と直角方向に走査する
機構と、電子ビームの偏向量を測定する機構と、測定デ
ータを計算してもとの磁界分布を再構成する機構をもち
、前記の磁界分布を再構成する機構が、少なくともコン
ピュータ断層映像法の計算手続を実現できる手段を有し
、かつ、前記試料の回転軸に平行な成分の電子ビームの
偏向量測定値に、前記回転軸に直角で試料に固定した軸
xと電子ビームの直角方向のなす角θの余弦cosθを
乗ずる手段、および前記偏向量測定値に角θの正弦si
nθを乗ずる手段を有し、前記cosθを乗じた値から
、前記軸xに平行な成分の磁界分布を再構成し、前記s
inθを乗じた値から前記回転軸および前記軸xにとも
に直角な軸yに平行な成分の磁界分布を再構成する手段
を有することを特徴とする磁界分布測定装置。 5、電子ビームが磁界の存在により偏向する原理を利用
して、磁気コアもしくは磁石が発生する磁界の3次元分
布を測定する方法において、少なくとも試料を回転する
操作と、測定する領域内を電子ビームで回転軸と直角方
向に走査する操作と、電子ビームの偏向量を測定する操
作と、測定データを計算してもとの磁界分布を再構成す
る操作を含み、前記磁界分布を再構成する操作が少なく
ともコンピュータ断層映像法の計算操作を含み、前記計
算操作により、前記試料の回転軸に垂直な成分の電子ビ
ームの偏向量測定値から、前記回転軸に平行な成分の磁
界分布を再構成することを特徴とした磁界分布の測定方
法。 6、電子ビームが磁界の存在により偏向する原理を利用
して、磁気コアもしくは磁石が発生する磁界の3次元分
布を測定する方法において、少なくとも試料を回転する
操作と、測定する領域内を電子ビームで回転軸と直角方
向に走査する操作と、電子ビームの偏向量を測定する操
作と、測定データを計算してもとの磁界分布を再構成す
る操作を含み、前記磁界分布を再構成する操作が少なく
ともコンピュータ断層映像法の計算操作を含み、かつ前
記試料の回転軸に平行な成分の電子ビームの偏向量測定
値に、前記回転軸に直角で試料に固定した軸xと電子ビ
ームの直角方向のなす角θの余弦cosθを乗ずる操作
、および前記偏向量測定値に角θの正弦sinθを乗す
る操作を含み、前記cosθを乗じた値から、前記軸x
に平行な成分の磁界分布を再構成し、前記sinθを乗
じた値から前記回転軸および前記軸xにともに直角な軸
yに平行な成分の磁界分布を再構成することを特徴とし
た磁界分布測定方法。[Scope of Claims] 1. An apparatus for measuring a three-dimensional distribution of vector physical quantities generated by a sample, including a mechanism for measuring the sum of vector physical quantities along a straight line that passes through at least a measurement area, and a mechanism that measures the sum of vector physical quantities along a straight line that passes through a measurement area, and a mechanism that measures the sum of vector physical quantities along a straight line that passes through a measurement area, and a mechanism that measures the sum of vector physical quantities along a straight line that passes through a measurement area; It has a mechanism for rotating around an axis of rotation, a mechanism for causing the straight line to scan within the measurement area in a direction perpendicular to the axis of rotation, and a mechanism for calculating the measured data and reconstructing the original distribution of vector physical quantities. , the mechanism for reconstructing the vector physical quantities has at least a means for realizing a calculation procedure of computer tomography, and the mechanism for measuring the sum of the vector physical quantities along the straight line has at least:
A mechanism having a function of measuring the sum along a straight line of components of vector physical quantities parallel to the rotation axis and reconstructing the distribution of the vector physical quantities calculates the vector parallel to the rotation axis from the measured values. 1. An apparatus for measuring components of a vector physical quantity, comprising means for reconstructing the distribution of components of the physical quantity. 2. An apparatus for measuring the three-dimensional distribution of vector physical quantities generated by a sample, which includes a mechanism for measuring the sum of vector physical quantities along at least a straight line passing through the measurement area, and a mechanism for rotating the sample around an axis perpendicular to the straight line. It has a mechanism for rotating, a mechanism for causing the straight line to scan the area to be measured in a direction perpendicular to the axis of rotation, and a mechanism for calculating the measured data and reconstructing the distribution of the original vector physical quantity. The constituting mechanism has at least a means for realizing a calculation procedure of computerized tomography, and the vector physical quantity is a quantity expressed by a gradient of a scalar physical quantity satisfying a three-dimensional Laplace equation, and The mechanism for measuring the sum of the vector physical quantities along the straight line has a function of measuring the sum of the components of the vector physical quantities along the straight line perpendicular to the straight line and perpendicular to the rotation axis, and a mechanism for reconstructing at least a means for multiplying the measured value by a cosine cos θ of an angle θ formed by an axis x fixed to the sample perpendicular to the rotation axis and a direction perpendicular to the straight line;
and means for multiplying the measured value by the sine sin θ of the angle θ, reconstructing the distribution of the vector physical quantity of the component parallel to the x-axis from the value multiplied by the cos θ, and
A vector physical quantity distribution measuring device comprising means for reconstructing a vector physical quantity distribution of a component parallel to an axis y perpendicular to both the rotation axis and the axis x from a value multiplied by . 3. In an apparatus that uses the principle that an electron beam is deflected by the presence of a magnetic field to measure the three-dimensional distribution of the magnetic field generated by a magnetic core or magnet, at least the sample is rotated about an axis perpendicular to the electron beam. It has a mechanism that allows the electron beam to scan within the measurement area in a direction perpendicular to the rotation axis, a mechanism that measures the amount of deflection of the electron beam, and a mechanism that reconstructs the magnetic field distribution even after calculating the measurement data. , the mechanism for reconstructing the magnetic field distribution has at least means capable of realizing a calculation procedure of computer tomography, and
A magnetic field distribution measuring device comprising means for reconstructing a magnetic field distribution of a component parallel to the rotation axis of the sample from a measured value of the deflection amount of the electron beam of the component perpendicular to the rotation axis of the sample. 4. In an apparatus that uses the principle that an electron beam is deflected by the presence of a magnetic field to measure the three-dimensional distribution of the magnetic field generated by a magnetic core or permanent magnet, at least the sample is rotated about an axis perpendicular to the electron beam. a mechanism in which the electron beam scans the area to be measured in a direction perpendicular to the axis of rotation, a mechanism in which the amount of deflection of the electron beam is measured, and a mechanism in which the measured data is calculated to reconstruct the original magnetic field distribution. , and the mechanism for reconstructing the magnetic field distribution has at least means capable of realizing a calculation procedure of computer tomography, and has a mechanism for reconstructing the magnetic field distribution, and has a means for realizing at least a calculation procedure of computer tomographic imaging, and has a mechanism for reconstructing the magnetic field distribution, and has a means for realizing a calculation procedure of at least a computerized tomography method, and has a mechanism for reconstructing the magnetic field distribution, and has a means for realizing a calculation procedure of at least a computerized tomography method, and has a mechanism for reconstructing the magnetic field distribution. , a means for multiplying the angle θ formed by an axis x fixed to the sample at right angles to the rotation axis and a cosine cos θ of the angle θ, and a means for multiplying the deflection amount measurement value by the sine s
comprises means for multiplying by nθ, reconstructs the magnetic field distribution of the component parallel to the axis x from the value multiplied by the cosθ, and
A magnetic field distribution measuring device comprising means for reconstructing a magnetic field distribution of a component parallel to an axis y perpendicular to both the rotation axis and the axis x from a value multiplied by inθ. 5. A method of measuring the three-dimensional distribution of the magnetic field generated by a magnetic core or magnet using the principle that an electron beam is deflected by the presence of a magnetic field, which includes at least rotating the sample and moving the electron beam within the area to be measured. an operation of scanning in a direction perpendicular to the rotation axis, an operation of measuring the amount of deflection of the electron beam, and an operation of calculating the measured data to reconstruct the original magnetic field distribution, and an operation of reconstructing the magnetic field distribution. includes at least a calculation operation of computer tomography imaging, and the calculation operation reconstructs the magnetic field distribution of the component parallel to the rotation axis of the sample from the measured value of the deflection amount of the electron beam of the component perpendicular to the rotation axis of the sample. A method for measuring magnetic field distribution characterized by: 6. A method of measuring the three-dimensional distribution of the magnetic field generated by a magnetic core or magnet by utilizing the principle that an electron beam is deflected by the presence of a magnetic field, which involves at least rotating the sample and moving the electron beam within the area to be measured. an operation of scanning in a direction perpendicular to the rotation axis, an operation of measuring the amount of deflection of the electron beam, and an operation of calculating the measured data to reconstruct the original magnetic field distribution, and an operation of reconstructing the magnetic field distribution. includes at least a calculation operation of computerized tomography imaging, and includes a measurement value of the deflection amount of the electron beam of a component parallel to the rotation axis of the sample, and a direction perpendicular to an axis x fixed to the sample at right angles to the rotation axis and the direction of the electron beam. the axis x
A magnetic field distribution characterized in that the magnetic field distribution of the component parallel to is reconstructed, and the magnetic field distribution of the component parallel to the axis y perpendicular to both the rotation axis and the axis x is reconstructed from the value multiplied by the sin θ. Measuring method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22736289A JPH0390877A (en) | 1989-09-04 | 1989-09-04 | Vector physical quantity distribution measuring device and its measuring method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP22736289A JPH0390877A (en) | 1989-09-04 | 1989-09-04 | Vector physical quantity distribution measuring device and its measuring method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0390877A true JPH0390877A (en) | 1991-04-16 |
Family
ID=16859611
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP22736289A Pending JPH0390877A (en) | 1989-09-04 | 1989-09-04 | Vector physical quantity distribution measuring device and its measuring method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0390877A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5308712A (en) * | 1991-03-28 | 1994-05-03 | Ngk Insulators, Ltd. | Air electrode and solid electrolyte fuel cell having the same |
JP2001228784A (en) * | 2000-02-16 | 2001-08-24 | Kansai Tlo Kk | Method and device for measuring three-dimensional magnetic field distribution and three-dimensional electric current distribution |
WO2011108543A1 (en) * | 2010-03-01 | 2011-09-09 | 国立大学法人神戸大学 | Potential obtaining device, magnetic field microscope, inspection device and method of obtaining potential |
WO2013035386A1 (en) * | 2011-09-08 | 2013-03-14 | 株式会社日立ハイテクノロジーズ | Multipole measurement apparatus |
-
1989
- 1989-09-04 JP JP22736289A patent/JPH0390877A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5308712A (en) * | 1991-03-28 | 1994-05-03 | Ngk Insulators, Ltd. | Air electrode and solid electrolyte fuel cell having the same |
JP2001228784A (en) * | 2000-02-16 | 2001-08-24 | Kansai Tlo Kk | Method and device for measuring three-dimensional magnetic field distribution and three-dimensional electric current distribution |
WO2011108543A1 (en) * | 2010-03-01 | 2011-09-09 | 国立大学法人神戸大学 | Potential obtaining device, magnetic field microscope, inspection device and method of obtaining potential |
JPWO2011108543A1 (en) * | 2010-03-01 | 2013-06-27 | 国立大学法人神戸大学 | Potential acquisition apparatus, magnetic field microscope, inspection apparatus, and potential acquisition method |
JP5713246B2 (en) * | 2010-03-01 | 2015-05-07 | 国立大学法人神戸大学 | Potential acquisition apparatus, magnetic field microscope, inspection apparatus, and potential acquisition method |
WO2013035386A1 (en) * | 2011-09-08 | 2013-03-14 | 株式会社日立ハイテクノロジーズ | Multipole measurement apparatus |
JP2013058382A (en) * | 2011-09-08 | 2013-03-28 | Hitachi High-Technologies Corp | Multipole measuring apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5173928A (en) | Tomograph using phase information of a signal beam having transmitted through a to-be-inspected object | |
JP4878063B2 (en) | Apparatus and method for acquiring a field by measurement | |
EP0042254B1 (en) | Nuclear resonance apparatus including means for rotating the gradient of a magnetic field | |
Milanfar | A model of the effect of image motion in the radon transform domain | |
Dong et al. | A reference ball based iterative algorithm for imaging acoustic obstacle from phaseless far-field data | |
US6606089B1 (en) | Method for visualizing a spatially resolved data set | |
JPH0390877A (en) | Vector physical quantity distribution measuring device and its measuring method | |
Pipe et al. | Method for measuring three-dimensional motion with tagged MR imaging. | |
JP5713246B2 (en) | Potential acquisition apparatus, magnetic field microscope, inspection apparatus, and potential acquisition method | |
Ólafsson et al. | The radon transform, inverse problems, and tomography: American Mathematical Society short course, January 3-4, 2005, Atlanta, Georgia | |
JP2007271465A (en) | Magnetic field distribution measuring device | |
JPH09220212A (en) | Flow velocity calculation method in magnetic resonance diagnostic device | |
Hu et al. | Magnetopause transects from two spacecraft: A comparison | |
JPH04348262A (en) | Phase type tomography device | |
CN114577100B (en) | Magnetic field target positioning calculation method | |
Bullitt et al. | Three‐dimensional reconstruction of curves from pairs of projection views in the presence of error. II. Analysis of error | |
Thomas et al. | Linear structure from motion | |
JP2655520B2 (en) | Coding and display of n-parameters in multidimensional Fourier NMR spectroscopy | |
Groenland et al. | Measurement system for two-dimensional magnetic field distributions, applied to the investigation of recording head fields | |
JPH03251776A (en) | Apparatus for imaging magnetic field | |
Hartono et al. | Exploring the Applicability of Linear Algorithm for Tracking Magnet Position and Orientation | |
Hofer et al. | Simulation of spin-resolved scanning tunneling microscopy: influence of the magnetization of surface and tip | |
JPS6288949A (en) | Method for measuring magnetization distribution using nuclear magnetic resonance | |
Sparavigna et al. | Streamline image analysis: a new tool for investigating defects in nematic liquid crystals | |
Ferrier et al. | Electron beam tomography of magnetic recording head fields |