[go: up one dir, main page]

JPH0389574A - 2nd harmonic generator - Google Patents

2nd harmonic generator

Info

Publication number
JPH0389574A
JPH0389574A JP22442289A JP22442289A JPH0389574A JP H0389574 A JPH0389574 A JP H0389574A JP 22442289 A JP22442289 A JP 22442289A JP 22442289 A JP22442289 A JP 22442289A JP H0389574 A JPH0389574 A JP H0389574A
Authority
JP
Japan
Prior art keywords
light
harmonic
waveguide
crystal
guided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22442289A
Other languages
Japanese (ja)
Inventor
Kimio Tateno
立野 公男
Masahiro Oshima
尾島 正啓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP22442289A priority Critical patent/JPH0389574A/en
Publication of JPH0389574A publication Critical patent/JPH0389574A/en
Pending legal-status Critical Current

Links

Landscapes

  • Lasers (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To improve second harmonic generating efficiency by providing an external resonator for a crystal or a waveguide in hybrid or monolithic manner and causing resonance with primary coherent light. CONSTITUTION:Output light from a semiconductor laser 1 is collimated and transmitted through a half-mirror with transmittance of 5%, and a ring-type resonator is constructed from mirrors 2, 3, 4, 5. After the mirror 4, the laser light beam is led to a waveguide path 7 by a lens 6. Thus, the guided light radiates second harmonic wave to the substrate 8 side as a Cerenkov beam 9. On the other hand, the transmitted guided light is converged by a lens 10 and guided again to the waveguide path 7 via the mirrors 5, 2, 3, 5 to radiate the Cerenkov beam 9. Described process is repeated many times to enhance second harmonic radiation of the semiconductor laser so that second harmonic light output larger than several times the case of single bus can be obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は第2次高調波発生装置における効率の向上に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to improving the efficiency of a second harmonic generator.

〔従来の技術〕[Conventional technology]

従来、光情報処理用短波長光源として、非線型光学結晶
上に作った導波路に半導体レーザによるレーザ光を照射
し、その第2次高調波を発生せしめる方法が1例えばク
レオ187.テクニカルダイジェスト、ページ198 
(CLEO’ 87゜Technical Diges
t p、198)において報告されて塾する。
Conventionally, as a short wavelength light source for optical information processing, there is a method in which a waveguide formed on a nonlinear optical crystal is irradiated with laser light from a semiconductor laser to generate the second harmonic. Technical Digest, page 198
(CLEO' 87°Technical Diges
tp, 198) and will be studied.

この方法は、第2図の如く、1次光に対し、波長が半分
の2次光を、チェレンコフ効果として基板内に放射させ
るものである。この方式の特徴は、第2次高調波発生に
おける第1次光と第2次光との位相整合が、比較的容易
にとれるという秀れた特徴を持っており、サイズが小型
であやことからも、光ディスク等に代表される光情報処
理装置の短波長光源として有望視されている。
In this method, as shown in FIG. 2, secondary light having a wavelength half that of the primary light is emitted into the substrate as a Cerenkov effect. This method has the excellent feature that it is relatively easy to achieve phase matching between the first and second order light in the generation of second harmonics, and it is small in size. It is also seen as a promising short-wavelength light source for optical information processing devices such as optical disks.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら上記従来例は、その変換効率が高々1〜2
%であり、これを実際に光情報処理装置の光源と用いる
には、未だその光出力レベルにおいて、十分とは言えな
い段階である。
However, the above conventional example has a conversion efficiency of 1 to 2 at most.
%, and its optical output level is still not at a sufficient level to actually use it as a light source for an optical information processing device.

そもそも、第2次高調波の変換効率ηは、位相整合が成
り立っている条件のもとでは で与えられることは良く知られている。ここに。
In the first place, it is well known that the conversion efficiency η of the second harmonic is given by η under the condition that phase matching is established. Here.

Pは1次光の出力レベル、Aは1次光のスポットサイズ
面積、nは屈折率、Qは相互作用長、そしてdsaは非
線型光学定数を与えるテンソルの成分である。従って、
従来の方式では、以上の各因子で決定される効率以上の
値は望めず、光記録に必要な光出力が得られないのが実
状であった。
P is the power level of the first order light, A is the spot size area of the first order light, n is the refractive index, Q is the interaction length, and dsa is the component of the tensor giving the nonlinear optical constant. Therefore,
In the conventional method, it is not possible to achieve a value higher than the efficiency determined by each of the above factors, and the actual situation is that the optical output necessary for optical recording cannot be obtained.

本発明は、上述の低効率の問題を解決することを目的と
しており、さらに高い効率のもとに、第2水高周波を発
生させる短波長のコヒーレント光源を提供せんとするも
のである。
The present invention aims to solve the above-mentioned problem of low efficiency, and provides a short wavelength coherent light source that generates a second water high frequency wave with even higher efficiency.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するために、本発明では、第2次高調波
を発生させる結晶自身に、外部共振器構造を持たせ、1
次光を何回も往復させるようにしたものである。このよ
うな外部共振器の構成は、非線型光学結晶を互いに向い
合わせた外部共振器ミラーの間に設置する構造、あるい
は非線型光学結晶上の導波路端面にファブリペローエタ
ロンを構成する構造、さらには、該導波路の上下あるい
は左右の側に分布帰還型の回折格子状共振器を設ける等
の構造などが好適である。
In order to achieve the above object, in the present invention, the crystal itself that generates the second harmonic has an external resonator structure.
The light was made to go back and forth many times. Such external resonator configurations include a structure in which a nonlinear optical crystal is installed between mutually facing external resonator mirrors, a structure in which a Fabry-Perot etalon is formed on the end face of a waveguide on a nonlinear optical crystal, and A suitable structure is one in which distributed feedback type diffraction grating resonators are provided on the top and bottom or left and right sides of the waveguide.

〔作用〕[Effect]

本発明の構成によれば、上記効率を与える式の中で、相
互作用長悲を長くとることができ、変換効率を向上させ
ることができる。勿論結晶白身の長さを長くすることに
より、相互作用長を伸ばす方法が考えられるが、実効的
な相互作用長とは、第1次光と第2次光との間で、常に
位相の整合が成り立っておらねばならず1通常の結晶成
長の技術では長い結晶の作成は困難であり、又、コスト
高にもつながるため不利である。
According to the configuration of the present invention, it is possible to increase the interaction length in the equation giving the efficiency, and it is possible to improve the conversion efficiency. Of course, it is possible to increase the interaction length by increasing the length of the crystal white, but the effective interaction length is always the phase matching between the primary light and the secondary light. 1. It is difficult to create long crystals using normal crystal growth techniques, and it is also disadvantageous because it leads to high costs.

このような、外部共振器により、相互作用長を長くする
方法は、見方を考えて云えば、外部共振器内での1次光
の内部出力を大きくすることに相当し、やはり変換効率
を決める重要因子の一つである1次光の出力Pを増大さ
せて、第2次高調波への変換効率ηを大きくする。
If you think about it, this method of increasing the interaction length using an external resonator is equivalent to increasing the internal output of the primary light within the external resonator, which also determines the conversion efficiency. The output P of the first-order light, which is one of the important factors, is increased to increase the conversion efficiency η to the second-order harmonic.

〔実施例〕〔Example〕

以下、本発明の第1の実施例を第■図により説明する。 A first embodiment of the present invention will be described below with reference to FIG.

半導体レーザlからの出力光をコリメートし、透過率的
5%のハーフミラ−2を透過せしめ、ミラー2,3,4
.5によってリング型共振器を構成する。ミラー4を経
たビームはレンズ6によって導波路7に該レーザ光を導
く、かくして導波された光は基板8側にチェレンコフビ
ーム9として第2次高調波を放射する。一方、透過した
導波光はレンズ10により集光され、ミラー5.2,3
゜4を経て再び導波路7に導びかれ、チェンコフビーム
9を放射する0以上の経過を何度も繰り返すことにより
、半導体レーザの2倍高周波がエンハンスされ、シング
ルパスの場合に比較して何倍以上もの第2次高調波光出
力を得ることができる。
The output light from the semiconductor laser 1 is collimated and transmitted through a half mirror 2 with a transmittance of 5%.
.. 5 constitutes a ring resonator. The beam passing through the mirror 4 is guided by a lens 6 to a waveguide 7, and the thus guided light emits a second harmonic as a Cerenkov beam 9 toward the substrate 8 side. On the other hand, the transmitted waveguide light is condensed by the lens 10 and mirrors 5.2 and 3.
By repeating the process of 0 or more in which the laser beam is guided again through the waveguide 7 through the laser diode 4 and radiates the Chenkov beam 9, the twice-high frequency of the semiconductor laser is enhanced, compared to the case of a single pass. It is possible to obtain a second harmonic optical output that is several times higher.

第3図は本発明の第2の実施例である。FIG. 3 shows a second embodiment of the invention.

半導体レーザ1からのビームはレンズ系11を経て導波
路7に導びかれる。導波路7は例えばニオブ酸リチウム
結晶などの2次の非IIA型光学結晶、あるいは、有機
結晶基板8の上に作られている。
A beam from semiconductor laser 1 is guided to waveguide 7 via lens system 11 . The waveguide 7 is formed on a secondary non-IIA type optical crystal such as a lithium niobate crystal, or on an organic crystal substrate 8.

しかも、導波路の入射端面12および出射端面13は互
いにファプリベローのエタロンを構成する配置となって
おり、第1次光の共振器を構成している。従って第1次
光は該エタロン内を往復し、その度毎にチェレンコフ型
第2次高調波9を発生するためシングルパス時に比べ大
きな光出力を得ることができる。
Moreover, the input end face 12 and the output end face 13 of the waveguide are arranged to mutually constitute an etalon of a fiber bellows, and constitute a resonator for primary light. Therefore, the first-order light travels back and forth within the etalon and generates Cerenkov-type second-order harmonics 9 each time, so it is possible to obtain a larger optical output than in the case of a single pass.

第4図は上記ファブリペローエタロンの代りに分布帰還
型共振器を構成した第3の実施例である。
FIG. 4 shows a third embodiment in which a distributed feedback resonator is constructed in place of the Fabry-Perot etalon.

導波路7の下側、あるいは上側に回折格子14を設け、
第1次光に対する外部共振器とすることにより、やはり
第2次高調波9の出力を増出させることができる。
A diffraction grating 14 is provided below or above the waveguide 7,
By using an external resonator for the first-order light, the output of the second-order harmonic 9 can also be increased.

以上述べて来た実施例において、増大された光出力は導
波路平面に垂直な面内ではコリメートされた平行光、こ
れと平行な面内では導波路の幅で決まる回折光として拡
がりを持つ。すなわち円錐状のビームとして放射される
。従ってこのままではビームを集光できない。
In the embodiments described above, the increased optical output spreads as collimated parallel light in a plane perpendicular to the waveguide plane and as diffracted light determined by the width of the waveguide in a plane parallel to this. That is, it is emitted as a conical beam. Therefore, the beam cannot be focused in this state.

第5図に示す実施例は、基板8の先端15を半円錐状に
加工し、光軸に平行となるよう第2次高調波を取り出す
ものである。
In the embodiment shown in FIG. 5, the tip 15 of the substrate 8 is processed into a semi-conical shape, and the second harmonic is extracted so as to be parallel to the optical axis.

さらに、外部共振器と半導体レーザ光との縦モードマツ
チングを取ることも、本方式では重要となる。このため
には半導体レーザの温度を制御する、あるいは、注入電
流を制御することにより常に、外部共振器とのモードマ
ツチングを取ることができる。あるいは、外部共振器の
方に、共振器間隔を制御する方法を取ることもできる。
Furthermore, it is also important in this method to achieve longitudinal mode matching between the external resonator and the semiconductor laser light. For this purpose, mode matching with the external resonator can always be achieved by controlling the temperature of the semiconductor laser or controlling the injection current. Alternatively, it is also possible to adopt a method of controlling the resonator spacing for external resonators.

これは例えばミラーにピエゾ素子をつけてコントロール
する方法、あるいは、;オブ酸リチウム結晶自身の電歪
特性を利用して共振器長制御を行うことも可能である。
This can be done, for example, by attaching a piezo element to the mirror for control, or by using the electrostrictive properties of the lithium oxide crystal itself to control the resonator length.

〔発明の効果〕〔Effect of the invention〕

以上述べて来たように1本発明によればこれまで不十分
であった半導体レーザの第2次高調波発生効率を向上す
ることが可能となり、波長400nmあるいは300n
m台の高出力短波長光源が可能となり、光デイスク記録
、レーザビームプリンタ、あるいはカラープリンタ等、
広範な応用が期待されるものとなる。
As described above, according to the present invention, it is possible to improve the second harmonic generation efficiency of a semiconductor laser, which has been insufficient until now, and
m high-output short-wavelength light sources are now possible, which can be used for optical disk recording, laser beam printers, color printers, etc.
It is expected that it will have a wide range of applications.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図、第4図は本発明の実施例の第2次高調
波発生装置の側面図、第2図は従来装置の測面図、第5
図は本発明の他の実施例の第2次高調波発生装置の斜視
図である。 l・・・半導体レーザ、2,3,4.5・・・ミラー7
・・・導波路、8・・・非線型光学結晶基板、9山チエ
レンコフビーム、12.13・・・共振ミラー(モノリ
シック)、14・・・回折格子、15・・・半円錐型基
板。 副1ヨ 茶2図 峯t/−図
1, 3, and 4 are side views of the second harmonic generation device according to the embodiment of the present invention, FIG. 2 is a surface measurement diagram of the conventional device, and FIG.
The figure is a perspective view of a second harmonic generator according to another embodiment of the present invention. l... Semiconductor laser, 2, 3, 4.5... Mirror 7
... Waveguide, 8 ... Nonlinear optical crystal substrate, 9-mount Thierenkov beam, 12.13 ... Resonance mirror (monolithic), 14 ... Diffraction grating, 15 ... Semi-conical substrate . Vice 1 yo tea 2 figure t/- figure

Claims (1)

【特許請求の範囲】[Claims] 1、第1次コヒーレント光を非線型光学特性を有する結
晶、あるいは該結晶上に作成した導波路内に導く手段を
有し、該結晶、あるいは該導波路により、該、第1次コ
ヒーレント光の2倍高周波を発生させる装置において、
該結晶、あるいは該導波路にハイブリッド、もしくはモ
ノリシックに外部共振器を設け、第1次コヒーレント光
を共振させることにより、第2次高調波発生の効率を向
上せしめることを特徴とする第2次高調波発生装置。
1. A means for guiding the first-order coherent light into a crystal having nonlinear optical characteristics or a waveguide created on the crystal, and the first-order coherent light is guided by the crystal or the waveguide. In a device that generates twice as high frequency,
The second harmonic is characterized in that the efficiency of second harmonic generation is improved by providing a hybrid or monolithic external resonator in the crystal or the waveguide and resonating the first coherent light. wave generator.
JP22442289A 1989-09-01 1989-09-01 2nd harmonic generator Pending JPH0389574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22442289A JPH0389574A (en) 1989-09-01 1989-09-01 2nd harmonic generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22442289A JPH0389574A (en) 1989-09-01 1989-09-01 2nd harmonic generator

Publications (1)

Publication Number Publication Date
JPH0389574A true JPH0389574A (en) 1991-04-15

Family

ID=16813536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22442289A Pending JPH0389574A (en) 1989-09-01 1989-09-01 2nd harmonic generator

Country Status (1)

Country Link
JP (1) JPH0389574A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431125U (en) * 1990-07-10 1992-03-12
US5130405A (en) * 1989-07-13 1992-07-14 Akzo N.V. Acid etch resistant coatings
JPH0511287A (en) * 1991-06-04 1993-01-19 Internatl Business Mach Corp <Ibm> Laser-beam wavelength converter
JPH0575189A (en) * 1991-09-11 1993-03-26 Fuji Photo Film Co Ltd Laser diode pumping solid laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5130405A (en) * 1989-07-13 1992-07-14 Akzo N.V. Acid etch resistant coatings
JPH0431125U (en) * 1990-07-10 1992-03-12
JPH0511287A (en) * 1991-06-04 1993-01-19 Internatl Business Mach Corp <Ibm> Laser-beam wavelength converter
JPH0575189A (en) * 1991-09-11 1993-03-26 Fuji Photo Film Co Ltd Laser diode pumping solid laser

Similar Documents

Publication Publication Date Title
JP2721436B2 (en) Second harmonic generator
JPH07507901A (en) High power compact diode pump tunable laser
JP2685969B2 (en) Second harmonic generator
JPH07318996A (en) Wavelength conversion waveguide type laser device
US6097540A (en) Frequency conversion combiner system for diode lasers
JPH05265058A (en) Wavelength converter
JPH05273624A (en) Optical wavelength conversion element, short wavelength laser beam source using the same, optical information processor using this short wavelength laser beam source and production of optical wavelength conversion element
JPH11509933A (en) Nonlinear optical generator with perturbed refractive index reflector device
CN1116724C (en) Wave guide laser apparatus in which wave length is changable
EP0259978A2 (en) Higher harmonic generating device
JPH02254427A (en) Optical wavelength converter
JPH0389574A (en) 2nd harmonic generator
JPS63121829A (en) Harmonic generating device
KR100416600B1 (en) Harmonic wave generating apparatus
US6919985B2 (en) Optical wavelength converting apparatus and optical wavelength converting method
JP2001284719A (en) External resonance type semiconductor laser
JP2005345949A (en) Wavelength conversion light source and driving method therefor
CN104854764A (en) Resonantly enhanced frequency converter
JPH04330795A (en) Semiconductor laser light source
KR960003866B1 (en) Second Harmonic Generator
JPH0331828A (en) Wavelength converting element
JPH03197932A (en) Light wavelength converter
JPH0196629A (en) Light wavelength conversion module
CN119481931A (en) High-power stable-wave semiconductor laser and laser device
JPH01108533A (en) Optical wavelength converter