JPH0387314A - Production of grain-oriented silicon steel sheet reduced in iron loss - Google Patents
Production of grain-oriented silicon steel sheet reduced in iron lossInfo
- Publication number
- JPH0387314A JPH0387314A JP1220254A JP22025489A JPH0387314A JP H0387314 A JPH0387314 A JP H0387314A JP 1220254 A JP1220254 A JP 1220254A JP 22025489 A JP22025489 A JP 22025489A JP H0387314 A JPH0387314 A JP H0387314A
- Authority
- JP
- Japan
- Prior art keywords
- grain
- silicon steel
- steel sheet
- oriented silicon
- iron loss
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 104
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 52
- 229910000976 Electrical steel Inorganic materials 0.000 title claims abstract description 38
- 238000004519 manufacturing process Methods 0.000 title claims description 10
- 238000000034 method Methods 0.000 claims abstract description 29
- 230000005381 magnetic domain Effects 0.000 claims abstract description 19
- 238000005096 rolling process Methods 0.000 claims abstract description 12
- 238000005530 etching Methods 0.000 claims abstract description 10
- 238000000137 annealing Methods 0.000 abstract description 19
- 229910000831 Steel Inorganic materials 0.000 abstract description 12
- 239000010959 steel Substances 0.000 abstract description 12
- 230000015572 biosynthetic process Effects 0.000 abstract description 11
- 239000011248 coating agent Substances 0.000 abstract description 11
- 238000000576 coating method Methods 0.000 abstract description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 8
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 abstract description 5
- 238000009413 insulation Methods 0.000 abstract description 5
- 229910017604 nitric acid Inorganic materials 0.000 abstract description 5
- 235000019441 ethanol Nutrition 0.000 abstract description 4
- 229910019142 PO4 Inorganic materials 0.000 abstract description 2
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 abstract description 2
- 230000006866 deterioration Effects 0.000 abstract description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 abstract 1
- 239000010452 phosphate Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 18
- 230000004907 flux Effects 0.000 description 13
- 239000011162 core material Substances 0.000 description 8
- 230000006872 improvement Effects 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 239000013078 crystal Substances 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- FGHSTPNOXKDLKU-UHFFFAOYSA-N nitric acid;hydrate Chemical compound O.O[N+]([O-])=O FGHSTPNOXKDLKU-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000005554 pickling Methods 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- -1 dichromates Chemical compound 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- CRGGPIWCSGOBDN-UHFFFAOYSA-N magnesium;dioxido(dioxo)chromium Chemical compound [Mg+2].[O-][Cr]([O-])(=O)=O CRGGPIWCSGOBDN-UHFFFAOYSA-N 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- OXNIZHLAWKMVMX-UHFFFAOYSA-N picric acid Chemical compound OC1=C([N+]([O-])=O)C=C([N+]([O-])=O)C=C1[N+]([O-])=O OXNIZHLAWKMVMX-UHFFFAOYSA-N 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 1
- 229910000165 zinc phosphate Inorganic materials 0.000 description 1
Landscapes
- ing And Chemical Polishing (AREA)
- Soft Magnetic Materials (AREA)
- Manufacturing Of Steel Electrode Plates (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、鉄損の極めて低い方向性珪素鋼板の製造方法
に関わり、特に、熱処理によっても鉄損改善効果を失う
ことのない、磁区細分化法による低鉄損方向性珪素鋼板
の製造方法に関する。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing grain-oriented silicon steel sheets with extremely low core loss, and in particular, to magnetic domain subdivision that does not lose the core loss improvement effect even after heat treatment. The present invention relates to a method for manufacturing grain-oriented silicon steel sheets with low core loss using a chemical conversion method.
方向性珪素鋼板は、変圧器などの鉄心材料に広く使用さ
れている電磁鋼板である。電気機器の省エネルギ、ある
いは発熱による温度上昇抑制の観点から鉄損を低減する
ことが要求されている。Grain-oriented silicon steel sheets are electrical steel sheets that are widely used as core materials for transformers and the like. There is a need to reduce iron loss from the perspective of saving energy in electrical equipment or suppressing temperature rises due to heat generation.
鉄損を低減するために、結晶方位を(110)(001
)により高度に揃えること、板厚を薄くすること、3i
含有量を上げてm板の比抵抗を増加させること、等が有
効である。In order to reduce iron loss, the crystal orientation is changed to (110) (001
) to achieve a high level of alignment, reduce the plate thickness, and 3i
It is effective to increase the specific resistance of the m-plate by increasing the content.
例えば、特願昭62−3270号記載の発明では、市販
の方向性珪素鋼板に冷間圧延と真空中、工200℃以上
での熱処理を加えて、薄板化と結晶方位の高配向化を図
って、結晶粒径が10mm以上の三次再結晶粒からなる
鉄損の極めて低い方向性珪素鋼板を得る方法が提案され
ている。しかしながら、結晶粒が大きいと磁区幅が大き
くなり高周波領域での鉄損が低くならないという傾向が
ある。For example, in the invention described in Japanese Patent Application No. 62-3270, a commercially available grain-oriented silicon steel sheet is cold-rolled and heat-treated in a vacuum at a temperature of 200°C or higher in order to make the sheet thinner and to have a highly oriented crystal orientation. Therefore, a method has been proposed for obtaining grain-oriented silicon steel sheets with extremely low iron loss, which are composed of tertiary recrystallized grains with a grain size of 10 mm or more. However, if the crystal grains are large, the magnetic domain width becomes large and there is a tendency that the core loss in the high frequency region cannot be reduced.
一方、磁区の細分化を図って鉄損を下げる方法として、
最終仕上げ焼鈍後の方向性珪素鋼板の表面に小球を押圧
して深さ3μm以下の凹みを形成して線状の微小歪を付
与する方法(特公昭585968号)がある。また、特
公昭58−26406号、特公昭58−26410号で
は、最終仕上げ焼鈍後の方向性珪素鋼板の表面にレーザ
ー照射により痕跡を形成して局所的な微小歪を与え、鉄
損を低減する方法が提案されている。しかしながら、上
記のようにして得られた鉄損の低い珪素鋼板も、焼鈍、
例えば巻鉄心を製造の際の800℃以上での歪取り焼鈍
によって鉄損改善効果が消失してしまうという問題があ
る。On the other hand, as a method to reduce iron loss by subdividing magnetic domains,
There is a method (Japanese Patent Publication No. 585968) in which a small ball is pressed onto the surface of a grain-oriented silicon steel sheet after final finish annealing to form a recess with a depth of 3 μm or less to impart a linear microstrain. Furthermore, in Japanese Patent Publication No. 58-26406 and Japanese Patent Publication No. 58-26410, laser irradiation is used to form traces on the surface of a grain-oriented silicon steel sheet after final finish annealing to give local minute strain and reduce iron loss. A method is proposed. However, the silicon steel sheet with low iron loss obtained as described above also has
For example, there is a problem in that the iron loss improvement effect is lost due to strain relief annealing at 800° C. or higher during manufacturing of the wound core.
上記の焼鈍による鉄損改善効果の消失の解決のために、
仕上げ焼鈍済みまたは絶縁被膜処理済みの鋼板に点線ま
たは破線状の加工歪を付与し、その後750℃以上の熱
処理を行って微細結晶粒を生じさせて磁区を細分化する
方法が(特公昭6253579号)提案されている。In order to solve the above-mentioned loss of iron loss improvement effect due to annealing,
There is a method in which a dotted or broken line machining strain is applied to a steel plate that has been finish annealed or treated with an insulating coating, and then heat treated at 750°C or higher to generate fine crystal grains and subdivide the magnetic domains (Japanese Patent Publication No. 6253579). )Proposed.
さらに、仕上げ焼鈍された方向性珪素鋼板の鋼成分ある
いは鋼組織と異なる異質物を形成して、上記の焼鈍によ
る鉄損改善効果の消失を解決しようとする提案がある。Furthermore, there is a proposal to solve the above-mentioned loss of the iron loss improvement effect due to annealing by forming a foreign material different from the steel composition or steel structure of the finish-annealed grain-oriented silicon steel sheet.
例えば、冷延工程で金属粉末などを埋め込む方法(特公
昭63−31527号)、特定元素を塗布した後、熱処
理により異質物を形成させる方法(特公昭63−195
67号、特公昭63−30968号)、さらに電気メツ
キ後の熱処理により鋼の成分、組織と異なる侵入体を形
成する方法(特公昭63−19568号、特公昭63−
19569号)がある。For example, a method of embedding metal powder etc. in the cold rolling process (Japanese Patent Publication No. 63-31527), a method of forming foreign matter by heat treatment after applying a specific element (Japanese Patent Publication No. 63-195)
67, Japanese Patent Publication No. 63-30968), and a method of forming an interstitial material different from the composition and structure of steel by heat treatment after electroplating (Japanese Patent Publication No. 63-19568, Japanese Patent Publication No. 63-1982).
No. 19569).
上記の提案方法は歪取り焼鈍によって鉄損改善効果を消
失してしまうという問題はないものの、レーザー照射な
みの鉄損低減効果を得るのが難しい、あるいは熱処理等
を必要とし方向性珪素鋼板の製造コストが高くなる、と
いう問題点がある。Although the above proposed method does not have the problem that the iron loss improvement effect disappears due to strain relief annealing, it is difficult to obtain the same iron loss reduction effect as laser irradiation, or it requires heat treatment etc. to produce grain-oriented silicon steel sheets. There is a problem in that the cost is high.
本発明の目的は、熱処理、例えば800℃以上の歪取り
焼鈍を施しても鉄損改善効果が消失しない、しかも処理
コストの低い磁区細分化法を提案して、鉄損の低い方向
性珪素鋼板を提供しようとするものである。The purpose of the present invention is to propose a magnetic domain refining method that does not lose the iron loss improvement effect even when subjected to heat treatment, for example, stress relief annealing at 800°C or higher, and which has a low processing cost, thereby producing grain-oriented silicon steel sheets with low iron loss. This is what we are trying to provide.
本発明は、最終仕上げ焼鈍後の方向性珪素鋼板あるいは
10mm以上の三次再結晶粒からなる低損失方向性珪素
鋼板の表面に、エツチング法(化学研磨法)により線状
の溝を形成することによって、上記珪素鋼板の鉄損を低
減しようとするものである。The present invention is achieved by forming linear grooves by etching (chemical polishing) on the surface of a grain-oriented silicon steel sheet after final finish annealing or a low-loss grain-oriented silicon steel sheet consisting of tertiary recrystallized grains of 10 mm or more. , which attempts to reduce the iron loss of the silicon steel plate.
溝の形成による鉄損の低下は、鋼板表面に溝が存在する
と静磁エネルギが増加し、これを打ち消すために生じた
反転磁区が、磁区の細分化をもたらしたためと考えられ
る。The decrease in iron loss due to the formation of grooves is thought to be due to the fact that the presence of grooves on the surface of the steel sheet increases static magnetic energy, and the reversal of magnetic domains that occur to cancel this increase results in fragmentation of the magnetic domains.
従来技術における小球を押圧しての線状の凹み、あるい
はレーザ照射による痕跡の形成は、いずれも微小歪を与
える。それに対して本発明はエツチング法による溝の形
成であり、歪の付与によらないので、焼鈍によって鉄損
の改善効果が消失することかない。また結晶粒の大きい
珪素鋼板に対しても、鉄損の低減効果を発揮するもので
ある。In the prior art, forming linear depressions by pressing a small ball or forming traces by laser irradiation both give minute distortions. In contrast, in the present invention, the grooves are formed by an etching method and are not dependent on the application of strain, so the effect of improving core loss is not lost by annealing. It also exhibits the effect of reducing iron loss on silicon steel sheets with large crystal grains.
本発明のエツチング法による溝の形成は好ましくは絶縁
被膜の塗布前において行われ、エチルアルコールと硝酸
などを腐食液として珪素鋼板の圧延方向との角度45〜
90度の方向に線状あるいは破線状に、溝の間隔2〜1
0mm、溝の幅は20〜30μm、溝の深さは3〜4μ
mの範囲において行われる。次いで、該鋼板にリン酸や
、リン酸アルミニウム、リン酸マグネシウム、リン酸亜
鉛、リン酸カルシウム等のリン酸塩、クロム酸やクロム
酸マグネシウム等のクロム酸塩、重クロム酸塩、コロイ
ダルシリカなどの1種または2種以上を含む絶縁被膜溶
液を塗布し、350℃以上の温度で焼付けして絶縁被膜
を形成する。The grooves are formed by the etching method of the present invention preferably before the application of the insulating film, using ethyl alcohol, nitric acid, or the like as a corrosive liquid at an angle of 45 to 45 to the rolling direction of the silicon steel sheet.
Linear or broken line in 90 degree direction, groove spacing 2 to 1
0mm, groove width 20-30μm, groove depth 3-4μm
It is carried out in the range of m. Next, the steel plate is treated with phosphoric acid, phosphates such as aluminum phosphate, magnesium phosphate, zinc phosphate, calcium phosphate, chromates such as chromic acid and magnesium chromate, dichromates, colloidal silica, etc. An insulating coating solution containing one or more species is applied and baked at a temperature of 350° C. or higher to form an insulating coating.
本発明方法の適用珪素鋼板は、仕上焼鈍された方向性珪
素鋼板あるいは三次再結晶粒成長銅極にあっては、三次
再結晶化のための熱処理後の鋼板で、該方向性珪素鋼板
の化学組成、仕上げ焼鈍されるまでの製造条件は特定す
る必要はない。好ましくは、絶縁被膜塗布前の鋼板に処
理する。しかし、絶縁被膜塗布後であっても、物理的、
化学的方法で被膜を除去すればよいことであってこれに
付いても限定するものではない。The silicon steel sheet to which the method of the present invention is applied is a grain-oriented silicon steel sheet that has been finish annealed or, in the case of a tertiary recrystallized grain growth copper electrode, a steel sheet that has been heat-treated for tertiary recrystallization. It is not necessary to specify the composition and manufacturing conditions up to final annealing. Preferably, the treatment is applied to a steel plate before the insulation coating is applied. However, even after applying the insulation coating, physical
It is only necessary to remove the film by a chemical method, and there is no limitation to this method.
エツチング液は上記のエチルアルコールと硝酸の他、水
と硝酸、弗酸と硫酸、塩酸と硝酸、水と塩酸、エチルア
ルコールとピクリン酸等が処理速度に応じて用いられる
。In addition to the above-mentioned ethyl alcohol and nitric acid, as the etching solution, water and nitric acid, hydrofluoric acid and sulfuric acid, hydrochloric acid and nitric acid, water and hydrochloric acid, ethyl alcohol and picric acid, etc. are used depending on the processing speed.
第1図に走査型電子顕微鏡による溝形成前の磁区写真を
(a)に、溝形成後の磁区写真を(b)に示すが、本発
明の適用により磁区が細分化された様子が明確に示され
ている。Figure 1 shows (a) a photograph of the magnetic domain before groove formation using a scanning electron microscope, and (b) a photograph of the magnetic domain after groove formation, clearly showing how the magnetic domains have been subdivided by the application of the present invention. It is shown.
なお、図中の1は磁壁、2は磁区幅、3は結晶粒界、4
はエツチングにより形成された溝である。In addition, 1 in the figure is the domain wall, 2 is the magnetic domain width, 3 is the grain boundary, and 4 is the magnetic domain width.
is a groove formed by etching.
上記発明が導かれた具体的な実験に従って説明を進める
。実験には三次再結晶粒よりなる絶縁被膜塗布前の方向
性珪素鋼板を用いた。その特性は鉄tMW+tzs。(
1,77,50Hzにおける鉄損)=0.55W/Kg
、磁束密度Bs (800A/mにおける磁束密度)
−1,947、板厚0.071mmの方向性珪素t!f
4板を、800℃で30分の歪取り焼鈍したものも用い
た。The description will proceed according to specific experiments that led to the above invention. In the experiment, a grain-oriented silicon steel plate was used before being coated with an insulating coating made of tertiary recrystallized grains. Its characteristics are iron tMW+tzs. (
Iron loss at 1, 77, 50Hz) = 0.55W/Kg
, magnetic flux density Bs (magnetic flux density at 800 A/m)
-1,947, plate thickness 0.071 mm oriented silicon t! f
4 plates were annealed for strain relief at 800° C. for 30 minutes.
lO%硝酸水をエツチング液として用い、各試料の溝幅
を20〜590μmの範囲で変え、圧延方向と90度の
方向に、溝深さ5μmとなるように溝を形成し、溝幅の
影響を検討した。Using 1O% nitric acid water as an etching solution, the groove width of each sample was varied in the range of 20 to 590 μm, and grooves were formed in a direction 90 degrees to the rolling direction with a groove depth of 5 μm to evaluate the effect of groove width. It was investigated.
第2図に溝幅と磁壁の数との関係を示す。図中の曲線A
は絶縁被膜塗布焼付けにより鋼板にかかる張力を模擬し
、試料に4kg/mm2の張力を付与した時、曲線Bは
張力なしの時の溝幅と磁壁数の関係を示す。この実験か
ら、溝幅20〜30μmで磁壁の数が最も多く、つまり
磁壁と磁壁の間隔磁区幅が最も小さくなる。20mmよ
り溝幅が広くなると、溝の影響が緩和されて好ましくな
い。FIG. 2 shows the relationship between the groove width and the number of domain walls. Curve A in the diagram
simulates the tension applied to a steel plate by applying and baking an insulating coating, and when a tension of 4 kg/mm2 is applied to the sample, curve B shows the relationship between the groove width and the number of domain walls when no tension is applied. From this experiment, the number of domain walls is the largest when the groove width is 20 to 30 μm, that is, the interval between the domain walls and the domain width is the smallest. If the groove width is wider than 20 mm, the influence of the groove will be reduced, which is not preferable.
次に、試料の溝幅を25μmに固定し、溝深さを0.5
〜11μmの範囲で変化させ、圧延方向と90度の方向
に同様のエツチング法で溝を形成し、溝深さの影響につ
いて実験した。第3図に溝深さと磁壁の数との関係を示
す。図中の曲線Cは第2図同様張力を4kg/mm2付
与した時、曲線りは張力なしの時の溝幅と磁壁数との関
係を示す。Next, the groove width of the sample was fixed at 25 μm, and the groove depth was set to 0.5 μm.
Grooves were formed by the same etching method in a direction 90 degrees to the rolling direction, and experiments were conducted to examine the effect of groove depth. FIG. 3 shows the relationship between the groove depth and the number of domain walls. Curve C in the figure shows the relationship between the groove width and the number of domain walls when a tension of 4 kg/mm2 is applied as in Fig. 2, and the curve shows the relationship between the groove width and the number of domain walls when no tension is applied.
この実験結果から、深さ3〜4μmで磁壁の数が多くな
っている。3μmより浅い場合、4μmより深い場合は
いずれも磁壁数が減少しており、最適範囲は深さ3〜4
μmであることが判明した。From this experimental result, the number of domain walls increases at a depth of 3 to 4 μm. The number of domain walls decreases both when it is shallower than 3 μm and when it is deeper than 4 μm, and the optimal range is at a depth of 3 to 4 μm.
It turned out to be μm.
さらに溝の間隔の影響を調べるため、溝幅25μm、溝
深さ3.5μmで圧延方向と90度の方向に各試料ごと
に間隔の距離を0.5〜20mmの範囲で変え、等間隔
の溝を形成した。Furthermore, in order to investigate the effect of the groove spacing, the groove width was 25 μm, the groove depth was 3.5 μm, and the distance between the grooves was varied in the range of 0.5 to 20 mm for each sample in the direction 90 degrees to the rolling direction. A groove was formed.
第4図は、各試料の溝間隔と試料の鉄損測定結果の関係
を示す9図中の曲線Fは、張力4kg/m m ”を付
与した場合の鉄損測定値、曲線Eは張力なしの場合の鉄
損測定値を示している。張力なし、張力4 k g 7
mm2の場合いずれも2〜10mmで鉄損が低くなって
いる。2mm以下では溝のない状態に近くなり磁壁数が
増加しないし、IQmm以上では溝形成の影響が小さい
領域を生しるため、いずれも好ましくない。この図から
溝形成前と溝形成後の鉄損を比較すると、溝形成後は、
鉄損が8〜19%低減しており、製品に適用した場合の
省エネルギ効果は計り知れない。Figure 4 shows the relationship between the groove spacing of each sample and the iron loss measurement results of the sample. Curve F in Figure 9 shows the iron loss measurement when a tension of 4 kg/mm'' is applied, and curve E shows the iron loss measurement without tension. It shows the iron loss measurement value in the case of no tension, tension 4 kg g 7
In the case of mm2, the iron loss is low in all cases between 2 and 10 mm. If it is less than 2 mm, there will be no groove and the number of domain walls will not increase, and if it is more than IQ mm, a region will be created where the influence of groove formation will be small, so both are not preferable. Comparing the iron loss before and after groove formation from this figure, after groove formation,
Iron loss is reduced by 8-19%, and the energy-saving effect when applied to products is immeasurable.
また、溝の方向の影響については、溝幅25μm、溝深
さ3.5μmとし、圧延方向との角度を各試料ごとに2
0〜90度範囲で変化させて溝を形成し影響を検討した
。Regarding the influence of the groove direction, the groove width was 25 μm, the groove depth was 3.5 μm, and the angle with the rolling direction was set at 2 for each sample.
Grooves were formed by varying the angle between 0 and 90 degrees, and the effects were examined.
第5図は、各試料の溝が圧延方向とのなす角度と磁壁数
の関係を示す。図中の曲線Gには第2図同様張力を4K
g/mm2付与した時の、曲線Hには張力なしの場合の
角度と磁壁数の関係を示す。FIG. 5 shows the relationship between the angle formed by the grooves of each sample with the rolling direction and the number of domain walls. Curve G in the figure has a tension of 4K as in Figure 2.
Curve H shows the relationship between the angle and the number of domain walls when no tension is applied when g/mm2 is applied.
これより角度45度以上で、磁壁の数が増加しており、
磁区幅の大幅な改善を図るためには角度を45〜90度
とすることが必要である。From this, the number of domain walls increases at an angle of 45 degrees or more,
In order to significantly improve the magnetic domain width, it is necessary to set the angle to 45 to 90 degrees.
以下に三次再結晶粒からなる方向性珪素鋼板に本発明を
適用した場合に基づいて、本発明の詳細な説明する。The present invention will be described in detail below based on the case where the present invention is applied to a grain-oriented silicon steel sheet comprising tertiary recrystallized grains.
JISの規定による鉄損がW+7/S。≦1.05 W
/kg、iff東密度B8≧1.89T、仮1!J−0
,3mmの市販方向性珪素鋼板の被膜を酸洗いして除去
する。Iron loss according to JIS regulations is W+7/S. ≦1.05W
/kg, if East density B8≧1.89T, provisional 1! J-0
, 3 mm commercially available grain-oriented silicon steel plate was removed by pickling.
次に、冷間圧延により圧下率67%で、板厚100μm
まで圧延する。その後、2 X 10−’Torrの真
空下で1200℃まで昇温し7時間保持する、特願昭6
2−3270号に基づく方法で鉄損W19/il+ =
0.49 w/ k g (張力4kg、7mm”付
与)、磁束密度Bs=1.977、板厚t=0.071
mm、磁壁の数4本/mm(張力4kg/mm2付与〉
の三次再結晶粒からなる方向性珪素鋼板を得た。Next, the plate thickness was 100 μm by cold rolling at a reduction rate of 67%.
Roll until. Thereafter, the temperature was raised to 1200°C under a vacuum of 2 x 10-' Torr and maintained for 7 hours.
Iron loss W19/il+ = by the method based on No. 2-3270
0.49 w/kg (tension 4kg, 7mm” applied), magnetic flux density Bs=1.977, plate thickness t=0.071
mm, number of domain walls 4/mm (tension 4 kg/mm2 applied)
A grain-oriented silicon steel sheet consisting of tertiary recrystallized grains was obtained.
この鋼板表面にビニル樹脂をコーティングし常温で乾燥
した後、先端が35μmのけかき針で、5mm間隔に、
線状に樹脂を除去した。次に、表面に10%硝酸水を滴
下し樹脂の除去された部分をエツチングし、10秒後に
水洗いした。その後アセトンに浸漬しビニル樹脂を溶解
させ除去した。After coating the surface of this steel plate with vinyl resin and drying it at room temperature, use a 35 μm tip scriber to pierce it at 5 mm intervals.
The resin was removed in a linear manner. Next, 10% nitric acid water was dropped onto the surface to etch the part where the resin had been removed, and after 10 seconds, it was washed with water. Thereafter, it was immersed in acetone to dissolve and remove the vinyl resin.
以上の方法により、幅40μm、深さ2.5μm、間隔
5mm、圧延方向との角度90度で溝を形成した後、絶
縁被膜による鋼板にかかる張力を模擬し、試料に張力を
4kg/mm”付与した状態で周波数50Hz、励磁磁
束密度を0.5Tから1.7Tまで変化させ鉄損を測定
した。第6図に測定結果を示す。1.7Tでの鉄損は0
.35w/kgまで低減できることが確認できた。After forming grooves with a width of 40 μm, a depth of 2.5 μm, an interval of 5 mm, and an angle of 90 degrees to the rolling direction using the above method, the tension applied to the steel plate due to the insulation coating was simulated, and a tension of 4 kg/mm was applied to the sample. The iron loss was measured with the applied state at a frequency of 50 Hz and the excitation magnetic flux density varied from 0.5 T to 1.7 T. The measurement results are shown in Figure 6. The iron loss at 1.7 T was 0.
.. It was confirmed that it could be reduced to 35w/kg.
また同様に張力を4kg/mm”付与した状態で、W、
7.。、W、ya。。、磁束密度B、、磁壁数を測定し
た。さらにこの試料に、コロイダルシリカとリン酸アル
ミニウムからなる絶縁被膜を塗布し、500℃で2分間
の焼付けを行った。その後800℃で30分の歪取り焼
鈍を行い、鉄損、磁束密度、磁壁数の測定を行った。第
1表に溝形成前、形成後、被膜塗布、歪取り焼鈍後の鉄
損WI715゜。Similarly, with a tension of 4 kg/mm, W,
7. . ,W,ya. . , magnetic flux density B, and number of domain walls were measured. Furthermore, an insulating film made of colloidal silica and aluminum phosphate was applied to this sample, and baked at 500° C. for 2 minutes. Thereafter, strain relief annealing was performed at 800° C. for 30 minutes, and iron loss, magnetic flux density, and number of domain walls were measured. Table 1 shows the iron loss WI715° before and after groove formation, film application, and strain relief annealing.
WS/400 、磁束密度B8、磁壁数測定結果を示す
。WS/400, magnetic flux density B8, and domain wall number measurement results are shown.
この表から明らかなように、磁束密度については変化が
見られないが、磁壁数は約7倍に増加し、それに伴い鉄
損はW、7.。で約30%、W574゜。As is clear from this table, there is no change in the magnetic flux density, but the number of domain walls increases by about 7 times, and accordingly the iron loss increases by W, 7. . Approximately 30%, W574°.
で約20%減少した。また、絶縁被膜塗布により、張力
4 k g 7mm2付与と同じ鉄損低減効果が得られ
た。また、この結果は歪取り焼鈍後の鉄損測定値であり
、歪取り焼鈍による鉄損低減効果の消失は見られなかっ
た。It decreased by about 20%. Further, by applying the insulating film, the same iron loss reduction effect as applying a tension of 4 kg and 7 mm2 was obtained. Furthermore, this result is the iron loss measurement value after strain relief annealing, and no loss of the iron loss reduction effect due to strain relief annealing was observed.
第1表
次に、市販方向性珪素調板に本発明を適用した例を説明
する。Table 1 Next, an example in which the present invention is applied to a commercially available oriented silicon tone plate will be explained.
JISの規定による、鉄PAW + tzs。≦1.0
5 W/kg、Gt1束密度B1≧1.897、板厚0
.3 m mの市販方向性珪素11仮を用いて、酸洗い
により被膜を除去し鉄FIW、zse −1,02w/
k g (張力1kg/mm2付与)、磁束密度B、
=1.917、板厚0.28mm、磁壁数6本/mm(
張力付与1kg/mm”)の材料を得た。この後、幅5
mm、長さ100mmに切断し試料とした。Iron PAW + tzs according to JIS regulations. ≦1.0
5 W/kg, Gt1 bundle density B1≧1.897, plate thickness 0
.. Using 3 mm commercially available grain-oriented silicon 11, the film was removed by pickling, and iron FIW, zse-1,02w/
kg (tension 1 kg/mm2 applied), magnetic flux density B,
= 1.917, plate thickness 0.28 mm, number of domain walls 6/mm (
A material with a tension of 1 kg/mm" was obtained. After this, a material with a width of 5
The sample was cut into pieces with a length of 100 mm and a length of 100 mm.
次に、三次再結晶粒よりなる方向性珪素鋼板の実施例と
同様に、硝酸水を用いて下記の溝寸法にエツチングした
。Next, as in the example of the grain-oriented silicon steel sheet made of tertiary recrystallized grains, etching was performed using nitric acid water to have the groove dimensions shown below.
これにより、幅25μm、深さ4μm、間隔7mmで圧
延方向との角度90度の溝を形成した後、試料に張力1
kg/mm”を付与し、鉄損Wl’115゜、磁束密度
Bll、磁壁の数を測定した。その後、コロイダルシリ
カとリン酸アルミニウムからなる絶縁被膜を塗布し、5
00℃で2分間焼付けし、さらに800℃で30分の歪
取り焼鈍を行い、鉄損、磁束密度、磁壁の数について測
定を行った。As a result, after forming grooves with a width of 25 μm, a depth of 4 μm, and an interval of 7 mm at an angle of 90 degrees with the rolling direction, the sample was subjected to a tension of 1
kg/mm'' was applied, and the iron loss Wl'115°, magnetic flux density Bll, and number of domain walls were measured.After that, an insulating film made of colloidal silica and aluminum phosphate was applied, and
Baking was performed at 00°C for 2 minutes, and strain relief annealing was further performed at 800°C for 30 minutes, and the core loss, magnetic flux density, and number of domain walls were measured.
その結果を第2表に示す。磁壁数は約3倍に増加し、鉄
損はW+?/Soで13%低減しており、市販方向性珪
素鋼板においても、鉄損の改善が確認された。また歪取
り焼鈍によっても改善効果は失われないことも1.ll
i認した。The results are shown in Table 2. The number of domain walls increases approximately three times, and the iron loss increases to W+? /So, the iron loss was reduced by 13%, and an improvement in iron loss was confirmed even in commercially available grain-oriented silicon steel sheets. Also, the improvement effect is not lost even with strain relief annealing. ll
I approved.
第2表
4・
〔発明の効果〕
本発明は前述したような構成になっているため、歪取り
焼鈍を施しても特性劣化はなく、鉄損の低い低損失方向
性珪素鋼板を得ることができる。Table 2 4 [Effects of the Invention] Since the present invention has the above-described structure, there is no deterioration in properties even when strain relief annealing is performed, and it is possible to obtain a low-loss grain-oriented silicon steel sheet with low iron loss. can.
第1図(a)、 (b)は走査型電子顕微鏡による溝
形成前後の磁区写真図、第2図は溝の深さと磁壁数との
関係を示す特性図、第3図は溝の深さと磁壁数との関係
を示す特性図、第4図は溝間隔と鉄損との関係を示す特
性図、第5図は圧延方向に対する溝の角度と磁壁数との
関係を示す特性図、第6図は溝形成後の励磁磁束密度と
鉄損の関係を示す特性図である。
■・・・磁壁、
2・・・磁区幅、
3・・・液晶粒界、
4・・・溝。
(b)
第2図
00
00
00
溝幅端m)
第3
図
溝深さ(Pm)
第4図
溝間隔(mm)
第5
図
圧延方向との角度(°)
第6図
励磁磁束密度(T)
手続補正書
(方式)
%式%
事件の表示
特願平 1−220254号
発明の名称
低鉄損方向性珪素鋼板の製造方法
補正をする者
事件との関係 出願人
名称 (544)
バブコック日立株式会社
4 代理人
住所
〒105東京都港区西新橋1丁目6番13号6 補正に
より増加する請求項の数
7 補正の対象
明細書の図面の簡単な説明の欄
なし
く1)明細書15ページ下から6〜5行の「第1図・・
・・・写真図、」を「第1図(a)、(b)は溝形成前
後の磁区の様子を示す金属組織の顕微鏡写真、」に補正
します。
以上Figures 1 (a) and (b) are magnetic domain photographs taken before and after groove formation using a scanning electron microscope, Figure 2 is a characteristic diagram showing the relationship between the groove depth and the number of domain walls, and Figure 3 is a graph showing the relationship between the groove depth and the number of domain walls. Fig. 4 is a characteristic diagram showing the relationship between the groove spacing and iron loss; Fig. 5 is a characteristic diagram showing the relationship between the groove angle with respect to the rolling direction and the number of domain walls; The figure is a characteristic diagram showing the relationship between excitation magnetic flux density and iron loss after groove formation. ■...Domain wall, 2...Magnetic domain width, 3...Liquid crystal grain boundary, 4...Groove. (b) Fig. 2 00 00 00 Groove width end m) Fig. 3 Fig. Groove depth (Pm) Fig. 4 Groove spacing (mm) Fig. 5 Angle with rolling direction (°) Fig. 6 Exciting magnetic flux density (T ) Procedural amendment (method) % formula % Indication of the case Patent Application No. 1-220254 Name of the invention Person amending the manufacturing method of low iron loss grain-oriented silicon steel plate Relationship to the case Applicant name (544) Babcock-Hitachi Co., Ltd. Company 4 Agent address: 1-6-13 Nishi-Shinbashi, Minato-ku, Tokyo 105-6 Number of claims increased by amendment 7 No column for brief explanation of drawings in the specification subject to amendment 1) Page 15 of the specification 6-5 lines from the bottom “Figure 1...
...Photograph" should be corrected to "Figure 1 (a) and (b) are microscopic photographs of the metal structure showing the state of the magnetic domains before and after groove formation.''that's all
Claims (4)
する方法において、その方法を歪の付与によらず、微細
溝の形成のみによつて磁区の細分化を図ることを特徴と
する低鉄損方向性珪素鋼板の製造方法。(1) A method for reducing iron loss by subdividing the magnetic domain width of a grain-oriented silicon steel sheet, characterized in that the method subdivides the magnetic domain only by forming fine grooves without applying strain. A method for manufacturing a grain-oriented silicon steel plate with low iron loss.
方法がエツチング法であることを特徴とする低鉄損方向
性珪素鋼板の製造方法。(2) A method for producing a low iron loss grain-oriented silicon steel sheet according to claim (1), wherein the method for forming the micro grooves is an etching method.
が、幅:20〜30μm、深さ:3〜4μm、微細溝の
ピツチ:2〜10mmであることを特徴とする低鉄損方
向性珪素鋼板の製造方法。(3) In claim (1), the dimensions of the fine grooves are width: 20 to 30 μm, depth: 3 to 4 μm, and pitch of the fine grooves: 2 to 10 mm. manufacturing method of silicon steel sheet.
方向と45〜90度の角度をなすことを特徴とする低鉄
損方向性珪素鋼板の製造方法。(4) A method for producing a low iron loss grain-oriented silicon steel sheet according to claim (1), wherein the fine grooves form an angle of 45 to 90 degrees with the rolling direction.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1220254A JPH0387314A (en) | 1989-08-29 | 1989-08-29 | Production of grain-oriented silicon steel sheet reduced in iron loss |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1220254A JPH0387314A (en) | 1989-08-29 | 1989-08-29 | Production of grain-oriented silicon steel sheet reduced in iron loss |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0387314A true JPH0387314A (en) | 1991-04-12 |
Family
ID=16748306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1220254A Pending JPH0387314A (en) | 1989-08-29 | 1989-08-29 | Production of grain-oriented silicon steel sheet reduced in iron loss |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0387314A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05121224A (en) * | 1991-10-24 | 1993-05-18 | Kawasaki Steel Corp | Low-loss grain-oriented electrical steel sheet and method for producing the same |
CN114762911A (en) * | 2021-01-11 | 2022-07-19 | 宝山钢铁股份有限公司 | Low-magnetostriction oriented silicon steel and manufacturing method thereof |
-
1989
- 1989-08-29 JP JP1220254A patent/JPH0387314A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05121224A (en) * | 1991-10-24 | 1993-05-18 | Kawasaki Steel Corp | Low-loss grain-oriented electrical steel sheet and method for producing the same |
CN114762911A (en) * | 2021-01-11 | 2022-07-19 | 宝山钢铁股份有限公司 | Low-magnetostriction oriented silicon steel and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR900007448B1 (en) | Method for producing a grain oriented electrical steel sheet having a low watt-loss | |
JP7040888B2 (en) | Method of forming a tension insulating film for grain-oriented electrical steel sheets and grain-oriented electrical steel sheets | |
US4863531A (en) | Method for producing a grain-oriented electrical steel sheet having a low watt loss | |
JP2895670B2 (en) | Grain-oriented electrical steel sheet with low iron loss and method of manufacturing the same | |
JPS6254873B2 (en) | ||
JP7620552B2 (en) | Grain-oriented electrical steel sheet and its manufacturing method | |
JP4949539B2 (en) | Manufacturing method of unidirectional electrical steel sheet | |
JPH05311453A (en) | Ultra low iron loss grain-oriented electrical steel sheet manufacturing method | |
US4846939A (en) | Method for producing a grain-oriented electrical steel sheet having an ultra low watt loss | |
JP2592740B2 (en) | Ultra-low iron loss unidirectional electrical steel sheet and method of manufacturing the same | |
JPH0387314A (en) | Production of grain-oriented silicon steel sheet reduced in iron loss | |
Kobayashi et al. | Heatproof domain refining method using combination of local strain and heat treatment for grain oriented 3% Si-Fe | |
JPH0121229B2 (en) | ||
JPH04232212A (en) | Manufacture of low iron loss grain-oriented silicon steel plate | |
JP2942074B2 (en) | Manufacturing method of low iron loss grain-oriented electrical steel sheet | |
JPH07320921A (en) | Grain-oriented electrical steel sheet with low iron loss | |
JP3541419B2 (en) | Manufacturing method of grain-oriented electrical steel sheet with low iron loss | |
JPH0480322A (en) | Manufacturing method of low core loss unidirectional silicon steel sheet | |
JPH1150154A (en) | Grain-oriented electrical steel sheet with extremely low iron loss and method for producing the same | |
JP2752682B2 (en) | Method for producing grain-oriented silicon steel sheet with excellent magnetic properties | |
JPS61139677A (en) | Manufacturing method of low iron loss grain-oriented electrical steel sheet | |
JPH01252726A (en) | Manufacture of grain-oriented silicon steel sheet with low iron loss | |
JPH0730410B2 (en) | Method of manufacturing low iron loss unidirectional silicon steel sheet | |
JPH0565543A (en) | Manufacture of low iron loss unidirectional silicon steel sheet having uniform characteristic in transverse direction without deteriorating magnetic characteristic even in the case of applying strain-removal annealing | |
JPH05247538A (en) | Manufacture of low iron loss grain-oriented electrical steel sheet |