[go: up one dir, main page]

JPH0386763A - Conductive polymeric material composite - Google Patents

Conductive polymeric material composite

Info

Publication number
JPH0386763A
JPH0386763A JP22308289A JP22308289A JPH0386763A JP H0386763 A JPH0386763 A JP H0386763A JP 22308289 A JP22308289 A JP 22308289A JP 22308289 A JP22308289 A JP 22308289A JP H0386763 A JPH0386763 A JP H0386763A
Authority
JP
Japan
Prior art keywords
dopant
polymeric material
conductive polymeric
conductive polymer
polymer material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22308289A
Other languages
Japanese (ja)
Inventor
Toshiyuki Osawa
利幸 大澤
Katsumi Yoshino
勝美 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP22308289A priority Critical patent/JPH0386763A/en
Publication of JPH0386763A publication Critical patent/JPH0386763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To realize the formation of a stable composite independent of the method of preparation of a conductive polymeric material by deactivating a dopant comprising a metallic compound contained in a conductive polymeric material to form an oxide or hydroxide. CONSTITUTION:A conductive polymeric material, such as polypyrrole, containing a dopant comprising a metallic compound (e.g. FeCl3) is treated with, e.g. aqueous ammonia so that the dopant is deactivated and converted into an oxide or hydroxide, thus giving a conductive polymeric material composite useful as a magnetic material, an electromagnetic wave shielding material, a magnetic toner, etc.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、磁性材料、電磁波シールド材料、磁性トナー
等の画像記録媒体に有用な導電性高分子材料と金属化合
物との複合体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a composite of a conductive polymer material and a metal compound useful for image recording media such as magnetic materials, electromagnetic shielding materials, and magnetic toners.

[従来の技術] ポリピロール、ポリチオフェンなどのπ電子系の発達し
た高分子材料はルイス酸tlどの不純物をドーピングす
ることにより導電性を発現せしめること゛ができる。電
気化学的にはこのドーピングが可逆に行なわれるために
機能材料として注目されている。一方、この高分子の機
能とさらに他の材料を複合化せしめる試みがある。例え
ば導電性高分子と他のポリマー(PVA1ポリカーボネ
ート、塩ビ、ナフィオン、PMMAなと)との複合化に
よる力学的性質、熱的性質、加工性の向上、Fed、F
e50<、MnO2等との複合化による磁性、誘電性の
付与などがある。
[Prior Art] Polymer materials with a developed π-electron system, such as polypyrrole and polythiophene, can be made to exhibit electrical conductivity by doping them with impurities such as Lewis acid Tl. Electrochemically, this doping is reversible, so it is attracting attention as a functional material. On the other hand, there are attempts to combine the functions of this polymer with other materials. For example, improving mechanical properties, thermal properties, and processability by combining conductive polymers with other polymers (PVA1 polycarbonate, PVC, Nafion, PMMA, etc.), Fed, F
Examples include e50<, imparting magnetism and dielectricity by combining with MnO2, etc.

例えばJAPANESE JOURNAL OF AP
PLIEDPHYSIC8Vol、24.No、9(1
985)L 887−888ではポリピロールの電解重
合系に磁性粉体(FeO5Fe304粉末)を添加する
ことにより電解重合膜内に磁性体を取り込ませ磁性を発
現せしめている。また、電解重合と同時に金属酸化物を
析出せしめる方法なども知られている。いずれも注目さ
れる機能性付与の方法であるが次のような欠点をもって
いる。
For example, JAPANESE JOURNAL OF AP
PLIEDPHYSIC8Vol, 24. No, 9 (1
985) L 887-888, by adding magnetic powder (FeO5Fe304 powder) to the electrolytic polymerization system of polypyrrole, the magnetic substance is incorporated into the electrolytic polymerized film to develop magnetism. Also known is a method in which a metal oxide is precipitated simultaneously with electrolytic polymerization. All of these methods are attracting attention, but they have the following drawbacks.

1〉これらの場合いずれも電解重合法に限定され、しか
も成膜することが条件となる。
1> In all of these cases, the method is limited to the electrolytic polymerization method, and the condition is that it is necessary to form a film.

2)電解重合のためのモノマーの酸化電位と金属酸化物
の析出電位が異るためいずれかの生成物を印加電界で破
壊してしまうことがある。
2) Since the oxidation potential of the monomer for electrolytic polymerization and the deposition potential of the metal oxide are different, either product may be destroyed by the applied electric field.

[発明が解決しようとする課題] 本発明は、こうした従来の欠点に鑑み、導電性高分子材
料の製法に依存せず、かつ、安定した複合体を提供する
ことを目的とするものである。
[Problems to be Solved by the Invention] In view of these conventional drawbacks, the present invention aims to provide a stable composite that does not depend on the manufacturing method of the conductive polymer material.

[課題を解決するための手段] 本発明者らは、前記した課題を解決するため、鋭意検討
した結果、導電性高分子材料中に含まれている金属化合
物ドーパントを出発材料として利用し、これを脱活性化
せしめ、さらにこれを酸化物または水酸化物として導電
性高分子材料中に形成せしめることが有効であることを
知見し、本発明に至った。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors, as a result of intensive studies, utilized a metal compound dopant contained in a conductive polymer material as a starting material. It has been found that it is effective to deactivate and further form the oxide or hydroxide in a conductive polymer material, leading to the present invention.

すなわち、本発明は金属化合物をドーパントとして含有
する導電性高分子材料において、該ドーパントの活性を
失わせるとともに、該ドーパントを出発物質として金属
酸化物又は金属水酸化物を導電性高分子材料内部に複合
化せしめてなる導電性高分子材料複合体である。脱ドー
プの方法としては電気化学的脱ドープ、光、熱などの物
理作用による脱ドープの他、アンモニア、ヒドラジン等
の還元剤による化学処理が挙げられる。更にドーパント
の活性を失わせる方法としては、ドーパントの分解ある
いは中性塩に変化させるなどの方法がある。この場合、
アンモニアによる処理はドーパントを脱ドープせしめる
と同時にアンモニウム塩にして活性を失わせることがで
きるため、ひとつの工程でドーパントを失活させること
ができる。
That is, in a conductive polymer material containing a metal compound as a dopant, the present invention eliminates the activity of the dopant and also introduces a metal oxide or metal hydroxide into the conductive polymer material using the dopant as a starting material. It is a conductive polymer material composite made of composite materials. Dedoping methods include electrochemical dedoping, dedoping by physical action such as light and heat, and chemical treatment using a reducing agent such as ammonia and hydrazine. Furthermore, as a method for losing the activity of the dopant, there are methods such as decomposing the dopant or changing it into a neutral salt. in this case,
Treatment with ammonia can dedope the dopant and at the same time turn it into an ammonium salt and deactivate it, so the dopant can be deactivated in one step.

本発明はドーピングという分子レベルの反応を出発とし
ているため複合体は分子レベルで均一に複合されると考
えられる。従って複合化によって得られた材料の機能も
均一であり、微粒子化による機能の不均一化(機能を持
ったものと持っていないものの混在)フィルムにおける
機能の局在化を防ぐことができる。
Since the present invention starts with a reaction at the molecular level called doping, it is thought that the complex is formed uniformly at the molecular level. Therefore, the functions of the material obtained by compounding are uniform, and it is possible to prevent non-uniformity of functions (mixture of functional and non-functional materials) caused by microparticulation and localization of functions in the film.

本発明において使用する導電性高分子材料としては、た
とえば、ポリアセチレン、ポリパラフェニレン、ポリピ
ロール、ポリN−メチルピロール、ポリチオフェン、ポ
リ−3−アルキルチオフェン、ポリ−3,4−ジアルキ
ルチオフェン、ポリアニリン、ポリジフェニルベンジジ
ン、ポリカルバゾール、ポリアズレン、ポリフェニレン
ビニレン、ポリチェニレンビニレンなどが挙げられる。
The conductive polymer materials used in the present invention include, for example, polyacetylene, polyparaphenylene, polypyrrole, polyN-methylpyrrole, polythiophene, poly-3-alkylthiophene, poly-3,4-dialkylthiophene, polyaniline, poly Examples include diphenylbenzidine, polycarbazole, polyazulene, polyphenylene vinylene, and polythenylene vinylene.

これらは電解重合法、あるいは化学重合法によって得ら
れたものでよく、製法にとくに制限を受けるものではな
いが、下記に示すように本発明においては金属化合物を
ドーパントとして利用するので、この観点からルイス酸
触媒によって得る方法が好ましい。
These may be obtained by an electrolytic polymerization method or a chemical polymerization method, and there are no particular restrictions on the manufacturing method, but from this point of view, since a metal compound is used as a dopant in the present invention as shown below. Preferred is the method using Lewis acid catalysts.

また、これらの導電性高分子材料にドーピングされるド
ーパントとしてはCI”−BrBF4″″ ClO4″
″ PFi’″ SbF&AsF6″″などが代表的な
例として挙げられるが、本発明に用いられるドーパント
としては金属化合物で゛あることが要求される。特に好
ましくはFeCl3、RuCl3などのルイス酸である
。これらのルイス酸はAlC13TiC13−FeCl
3−  RuCl3−などの形でドープされていること
が、予想され、それ自身酸化剤として導電性高分子材料
の重合反応に用いることができる。
In addition, CI"-BrBF4""ClO4" is used as a dopant to be doped into these conductive polymer materials.
Typical examples include "PFi'", "SbF &AsF6"", but the dopant used in the present invention is required to be a metal compound. Particularly preferred are Lewis acids such as FeCl3 and RuCl3. These Lewis acids are AlC13TiC13-FeCl
It is expected that it will be doped in the form of 3-RuCl3- or the like, and itself can be used as an oxidizing agent in the polymerization reaction of conductive polymer materials.

本発明はこれらの金属化合物であるルイス酸のドーパン
トとしての活性を失わせるとともに、これを金属酸化物
または水酸化物に還元せしめることによって実現する。
The present invention is achieved by deactivating these metal compounds, Lewis acids, as dopants and reducing them to metal oxides or hydroxides.

これらのルイス酸から得られる金属酸化物としてはFe
zes、F e 304 、A 1203、Ti2O3
などが挙げられ水酸化物としてはFeoOH%Ni0O
Hなどが得られる。
Metal oxides obtained from these Lewis acids include Fe.
zes, Fe 304, A 1203, Ti2O3
etc., and the hydroxide is FeoOH%Ni0O
H etc. can be obtained.

本発明の導電性高分子材料複合体は、本来の導電性に加
え、複合化する金属酸化物、または水酸化物の有する特
性をも保持することができる。たとえば、Fe3O4と
複合化された導電性高分子は、磁性材料となる。
The conductive polymer material composite of the present invention can maintain not only the original conductivity but also the properties of the metal oxide or hydroxide used in the composite. For example, a conductive polymer compounded with Fe3O4 becomes a magnetic material.

[実施例] 以下に本発明の実施例を挙げて本発明をさらに詳細に説
明する。
[Example] The present invention will be explained in further detail by giving examples of the present invention below.

実施例1 水、メタノールがl:1の比率の混合液1こFeCl3
 8H20を0.1M溶解せしめて樗た酸化浴中に撹拌
しながらビロール0.5Mを滴下し、約2時間反応せし
めた。
Example 1 1 volume of a mixed solution of water and methanol in a ratio of 1:1 FeCl3
8H20 was dissolved in 0.1M, and 0.5M of virol was added dropwise to the oxidation bath with stirring, and the mixture was allowed to react for about 2 hours.

反応終了後生成したポリピロールを濾過するとともにメ
タノールで十分に洗浄し80℃の温度で真空乾燥した。
After the reaction was completed, the polypyrrole produced was filtered, thoroughly washed with methanol, and dried under vacuum at a temperature of 80°C.

次にアセトニトリル中に十分に乾燥した無水のFeCl
2を0.01M溶解せしめこの中にポリピロール0.5
Mを分散せしめた。
Then thoroughly dry anhydrous FeCl in acetonitrile
2 was dissolved at 0.01M, and 0.5% of polypyrrole was dissolved in it.
M was dispersed.

その後50%のアンモニア水を撹拌しながら滴下し、約
1時間反応させ、ポリピロール中のドーパントを脱活性
化した。この時脱活性化したドーパントはFeC1z及
びアンモニアと反応してマグネタイトが複合化される。
Thereafter, 50% ammonia water was added dropwise with stirring, and the mixture was reacted for about 1 hour to deactivate the dopant in the polypyrrole. At this time, the deactivated dopant reacts with FeC1z and ammonia to form a composite of magnetite.

その後、ポリピロールのみを分離し、メタノールで十分
に洗浄した後二60℃の温度で再び真空乾燥した。
Thereafter, only the polypyrrole was separated, thoroughly washed with methanol, and then vacuum-dried again at a temperature of 260°C.

得られたポリピロールはFe3O4を含む複合体であり
磁性を示した。
The obtained polypyrrole was a composite containing Fe3O4 and exhibited magnetism.

実施例2 メタノールにFeCl3を0.1M溶解せしめた酸化洛
中でチオフェン0,5Mを反応させた以外は実施例1と
同様にしてポリチオフェンを得た。これを用いて実施例
1と同様にして磁性を示す複合体を得た。
Example 2 Polythiophene was obtained in the same manner as in Example 1, except that 0.5 M of thiophene was reacted in an oxidizing solution containing 0.1 M of FeCl3 dissolved in methanol. Using this, a magnetic composite was obtained in the same manner as in Example 1.

実施例3 実施例1で得られたポリピロールに再びI2ガス雰囲気
にさらし、!2をドーピングした。
Example 3 The polypyrrole obtained in Example 1 was exposed to an I2 gas atmosphere again, and! 2 was doped.

これによって導電性及び磁性の両者の機能を持たせるこ
とができた。(導電性は1O−sS/cmから0、IS
/c−へと向上した) [発明の効果] 以上説明したように、本発明によれば導電性高分子材料
の製法に制限されることなく、導電性高分子材料と金属
酸化物又は水酸化物との複合体とすることができ、該材
料に導電性に加えて他の機能も付与することができる。
This made it possible to provide both conductive and magnetic functions. (Conductivity is from 1O-sS/cm to 0, IS
/c-) [Effects of the Invention] As explained above, according to the present invention, without being limited to the manufacturing method of the conductive polymer material, the method of manufacturing the conductive polymer material and the metal oxide or hydroxide It can be made into a composite with an object, and the material can be given other functions in addition to electrical conductivity.

しかも、その複合化は分子レベル又は超微粒子レベルで
均一に実現できる。
Moreover, the compositing can be uniformly realized at the molecular level or ultrafine particle level.

Claims (2)

【特許請求の範囲】[Claims] (1)金属化合物をドーパントとして含有する導電性高
分子材料において、該ドーパントの活性を失わせるとと
もに、該ドーパントを出発物質として金属酸化物又は金
属水酸化物を導電性高分子材料内部に複合化せしめてな
ることを特徴とする導電性高分子材料複合体。
(1) In a conductive polymer material containing a metal compound as a dopant, the activity of the dopant is lost, and a metal oxide or metal hydroxide is composited inside the conductive polymer material using the dopant as a starting material. A conductive polymer material composite characterized by:
(2)金属酸化物が磁性体である請求項(1)記載の導
電性高分子材料複合体。
(2) The conductive polymer material composite according to claim (1), wherein the metal oxide is a magnetic material.
JP22308289A 1989-08-31 1989-08-31 Conductive polymeric material composite Pending JPH0386763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22308289A JPH0386763A (en) 1989-08-31 1989-08-31 Conductive polymeric material composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22308289A JPH0386763A (en) 1989-08-31 1989-08-31 Conductive polymeric material composite

Publications (1)

Publication Number Publication Date
JPH0386763A true JPH0386763A (en) 1991-04-11

Family

ID=16792559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22308289A Pending JPH0386763A (en) 1989-08-31 1989-08-31 Conductive polymeric material composite

Country Status (1)

Country Link
JP (1) JPH0386763A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992548A2 (en) * 1998-10-09 2000-04-12 Toyo Boseki Kabushiki Kaisha Anticorrosive primer composition
EP1209530A1 (en) * 2000-11-28 2002-05-29 Xerox Corporation Toner compositions comprising polypyrroles
US6439711B1 (en) 2000-11-28 2002-08-27 Xerox Corporation Ballistic aerosol marking process employing marking material comprising polyester resin and poly (3,4-ethylenedioxythiophene)
US6467871B1 (en) 2000-11-28 2002-10-22 Xerox Corporation Ballistic aerosol marking process employing marking material comprising vinyl resin and poly (3,4-ethylenedioxypyrrole)
US6485874B1 (en) 2000-11-28 2002-11-26 Xerox Corporation Toner compositions comprising vinyl resin and poly(3,4-ethylenedioxypyrrole)
US6673501B1 (en) 2000-11-28 2004-01-06 Xerox Corporation Toner compositions comprising polyester resin and polypyrrole
US6686111B1 (en) 2000-11-28 2004-02-03 Xerox Corporation Toner compositions comprising vinyl resin and poly (3,4-ethylenedioxythiophene)
US6699633B2 (en) 2000-11-28 2004-03-02 Xerox Corporation Toner compositions comprising polyester resin and poly(3,4-ethylenedioxythiophene)
CN102660222A (en) * 2012-05-16 2012-09-12 南昌航空大学 Graphite-doped poly-schiff base/ferrite composite stealth material
CN103555270A (en) * 2013-11-07 2014-02-05 南昌航空大学 Chiral poly-schiff alkali salt/ferrite wave-adsorbing material and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992548A2 (en) * 1998-10-09 2000-04-12 Toyo Boseki Kabushiki Kaisha Anticorrosive primer composition
EP0992548A3 (en) * 1998-10-09 2001-09-12 Toyo Boseki Kabushiki Kaisha Anticorrosive primer composition
EP1209530A1 (en) * 2000-11-28 2002-05-29 Xerox Corporation Toner compositions comprising polypyrroles
US6439711B1 (en) 2000-11-28 2002-08-27 Xerox Corporation Ballistic aerosol marking process employing marking material comprising polyester resin and poly (3,4-ethylenedioxythiophene)
US6467871B1 (en) 2000-11-28 2002-10-22 Xerox Corporation Ballistic aerosol marking process employing marking material comprising vinyl resin and poly (3,4-ethylenedioxypyrrole)
US6485874B1 (en) 2000-11-28 2002-11-26 Xerox Corporation Toner compositions comprising vinyl resin and poly(3,4-ethylenedioxypyrrole)
US6589702B1 (en) 2000-11-28 2003-07-08 Xerox Corporation Toner compositions comprising polypyrroles
US6673501B1 (en) 2000-11-28 2004-01-06 Xerox Corporation Toner compositions comprising polyester resin and polypyrrole
US6686111B1 (en) 2000-11-28 2004-02-03 Xerox Corporation Toner compositions comprising vinyl resin and poly (3,4-ethylenedioxythiophene)
US6689527B2 (en) 2000-11-28 2004-02-10 Xerox Corporation Toner compositions comprising vinyl resin and poly (3,4-ethylenedioxythiophene)
US6699633B2 (en) 2000-11-28 2004-03-02 Xerox Corporation Toner compositions comprising polyester resin and poly(3,4-ethylenedioxythiophene)
US6730450B1 (en) 2000-11-28 2004-05-04 Xerox Corporation Toner compositions comprising polyester resin and poly (3,4-ethylenedioxythiophene)
US6743559B2 (en) * 2000-11-28 2004-06-01 Xerox Corporation Toner compositions comprising polyester resin and polypyrrole
CN102660222A (en) * 2012-05-16 2012-09-12 南昌航空大学 Graphite-doped poly-schiff base/ferrite composite stealth material
CN103555270A (en) * 2013-11-07 2014-02-05 南昌航空大学 Chiral poly-schiff alkali salt/ferrite wave-adsorbing material and preparation method thereof

Similar Documents

Publication Publication Date Title
Chiang et al. ‘Polyaniline’: protonic acid doping of the emeraldine form to the metallic regime
Genies et al. Electrochemical in situ epr evidence of two polaron-bipolaron states in polyaniline
Ohtani et al. Synthesis and properties of high-molecular-weight soluble polyaniline and its application to the 4MB-capacity barium ferrite floppy disk's antistatic coating
US4697000A (en) Process for producing polypyrrole powder and the material so produced
JPS63101415A (en) Production of conductive polyphyrrole
Kim et al. Difference in doping behavior between polypyrrole films and powders
JPH0386763A (en) Conductive polymeric material composite
JPH08231863A (en) Deflocculated conductive polymer
Muñoz-Bonilla et al. Magnetic nanoparticles-based conducting polymer nanocomposites
JPH04234453A (en) Electronically conductive material having magnetic particles and its manufacture
CA1269194A (en) Copolymers and blends of polymers with conjugated p- system
JPH05217418A (en) Conductive gel
Rouhi et al. Novel conductive magnetic nanocomposite based on poly (indole-co-thiophene) as a hemoglobin diagnostic biosensor: Synthesis, characterization and physical properties
Jozefowicz et al. Protonic acid doping of two classes of the emeraldine form of polyaniline
Mandal et al. Synthesis and characterization of polyaniline based materials: their biological relevance—an overview
JPH0632845A (en) Production of electrically conductive high molecular complex material
Kang et al. Protonation and deprotonation of polyaniline films and powders revisited
US5986046A (en) Oxzidant solution for synthesizing heat-resistant electroconductive polymer and method for preparing electroconductive polymer
Li et al. Polyurethane/polyaniline and polyurethane‐poly (methyl methacrylate)/polyaniline conductive core‐shell particles: Preparation, morphology, and conductivity
CA1263527A (en) Polymers treated with electron-donor dopants
JP2546617B2 (en) Conductive polymer compound with improved temperature characteristics
JP3127819B2 (en) Conductive composition and method for producing the same
Komarudin et al. Iodine Doping of Poly (thiophene-2, 5-diyl) and poly (3-Alkylthiophene-2, 5-Diyl) s in Aqueous Media
JPS62225518A (en) organic semiconductor
Maddison et al. Dopant exchange in conducting polypyrrole films