JPH038422A - Hollow fiber membrane - Google Patents
Hollow fiber membraneInfo
- Publication number
- JPH038422A JPH038422A JP1148306A JP14830689A JPH038422A JP H038422 A JPH038422 A JP H038422A JP 1148306 A JP1148306 A JP 1148306A JP 14830689 A JP14830689 A JP 14830689A JP H038422 A JPH038422 A JP H038422A
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- membrane
- fiber membrane
- polyethylene glycol
- albumin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 164
- 239000012510 hollow fiber Substances 0.000 title claims abstract description 89
- 239000011148 porous material Substances 0.000 claims abstract description 38
- 108010088751 Albumins Proteins 0.000 claims abstract description 27
- 102000009027 Albumins Human genes 0.000 claims abstract description 27
- 239000008280 blood Substances 0.000 claims abstract description 25
- 210000004369 blood Anatomy 0.000 claims abstract description 25
- 229920001223 polyethylene glycol Polymers 0.000 claims abstract description 23
- 239000002202 Polyethylene glycol Substances 0.000 claims abstract description 22
- 238000001914 filtration Methods 0.000 claims abstract description 18
- 238000007873 sieving Methods 0.000 claims abstract description 16
- 239000004627 regenerated cellulose Substances 0.000 claims abstract description 13
- 239000000835 fiber Substances 0.000 claims abstract description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 26
- 239000003795 chemical substances by application Substances 0.000 abstract description 28
- 239000007788 liquid Substances 0.000 abstract description 17
- 229920002678 cellulose Polymers 0.000 abstract description 12
- 239000001913 cellulose Substances 0.000 abstract description 12
- 238000009987 spinning Methods 0.000 abstract description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 abstract description 10
- 229920000297 Rayon Polymers 0.000 abstract description 6
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052921 ammonium sulfate Inorganic materials 0.000 abstract description 6
- 235000011130 ammonium sulphate Nutrition 0.000 abstract description 6
- 239000002964 rayon Substances 0.000 abstract description 6
- CYTYCFOTNPOANT-UHFFFAOYSA-N Perchloroethylene Chemical group ClC(Cl)=C(Cl)Cl CYTYCFOTNPOANT-UHFFFAOYSA-N 0.000 abstract 1
- 101000994673 Urodacus yaschenkoi Potassium channel toxin alpha-KTx 6.21 Proteins 0.000 abstract 1
- 238000009736 wetting Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 description 36
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 34
- 102000015736 beta 2-Microglobulin Human genes 0.000 description 17
- 108010081355 beta 2-Microglobulin Proteins 0.000 description 17
- 235000011187 glycerol Nutrition 0.000 description 17
- 238000009792 diffusion process Methods 0.000 description 16
- 238000000746 purification Methods 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- 239000007864 aqueous solution Substances 0.000 description 12
- 239000000463 material Substances 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 9
- 210000003734 kidney Anatomy 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 6
- 238000001035 drying Methods 0.000 description 6
- -1 interfacial tension Chemical compound 0.000 description 6
- 231100000614 poison Toxicity 0.000 description 6
- 235000018102 proteins Nutrition 0.000 description 6
- 102000004169 proteins and genes Human genes 0.000 description 6
- 108090000623 proteins and genes Proteins 0.000 description 6
- 238000001179 sorption measurement Methods 0.000 description 6
- 239000003440 toxic substance Substances 0.000 description 6
- BOSAWIQFTJIYIS-UHFFFAOYSA-N 1,1,1-trichloro-2,2,2-trifluoroethane Chemical compound FC(F)(F)C(Cl)(Cl)Cl BOSAWIQFTJIYIS-UHFFFAOYSA-N 0.000 description 5
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000001631 haemodialysis Methods 0.000 description 5
- 230000000322 hemodialysis Effects 0.000 description 5
- 238000009991 scouring Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 238000000502 dialysis Methods 0.000 description 4
- RCJVRSBWZCNNQT-UHFFFAOYSA-N dichloridooxygen Chemical compound ClOCl RCJVRSBWZCNNQT-UHFFFAOYSA-N 0.000 description 4
- 238000005194 fractionation Methods 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 238000004804 winding Methods 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 108050008461 Beta-lactoglobulin Proteins 0.000 description 3
- 102000008192 Lactoglobulins Human genes 0.000 description 3
- 108010060630 Lactoglobulins Proteins 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 3
- 239000012503 blood component Substances 0.000 description 3
- 239000004202 carbamide Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 229920002565 Polyethylene Glycol 400 Polymers 0.000 description 2
- 235000011054 acetic acid Nutrition 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- FWFGVMYFCODZRD-UHFFFAOYSA-N oxidanium;hydrogen sulfate Chemical compound O.OS(O)(=O)=O FWFGVMYFCODZRD-UHFFFAOYSA-N 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000007096 poisonous effect Effects 0.000 description 2
- 229940113115 polyethylene glycol 200 Drugs 0.000 description 2
- 231100000167 toxic agent Toxicity 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 208000020084 Bone disease Diseases 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- 206010064553 Dialysis amyloidosis Diseases 0.000 description 1
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 1
- 102000006395 Globulins Human genes 0.000 description 1
- 108010044091 Globulins Proteins 0.000 description 1
- 229920004449 Halon® Polymers 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 208000012659 Joint disease Diseases 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 208000020832 chronic kidney disease Diseases 0.000 description 1
- 208000022831 chronic renal failure syndrome Diseases 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005534 hematocrit Methods 0.000 description 1
- 238000002615 hemofiltration Methods 0.000 description 1
- WMIYKQLTONQJES-UHFFFAOYSA-N hexafluoroethane Chemical compound FC(F)(F)C(F)(F)F WMIYKQLTONQJES-UHFFFAOYSA-N 0.000 description 1
- 239000011796 hollow space material Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 208000000069 hyperpigmentation Diseases 0.000 description 1
- 230000003810 hyperpigmentation Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229940105132 myristate Drugs 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000016709 nutrition Nutrition 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- TUNFSRHWOTWDNC-UHFFFAOYSA-N tetradecanoic acid Chemical compound CCCCCCCCCCCCCC(O)=O TUNFSRHWOTWDNC-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/06—Organic material
- B01D71/08—Polysaccharides
- B01D71/10—Cellulose; Modified cellulose
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- External Artificial Organs (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Artificial Filaments (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、アルブミン等の血中有用蛋白質の逸失を抑え
、かつ分子量1oooo以上の血中服毒物質を効率良く
除去できる取扱性良好な中空繊維膜に関する。[Detailed Description of the Invention] [Field of Industrial Application] The present invention provides a hollow fiber with good handling properties that suppresses the loss of useful proteins in the blood such as albumin, and can efficiently remove toxic substances in the blood with a molecular weight of 100 or more. Regarding membranes.
詳しくは、血液浄化療法においてβ2−マイクログロブ
リンに代表される分子tsooo〜66000のアルブ
ミンよりは分子サイズの小さい高分子量服毒物質を広範
囲にわたってアルブミンに対して選択的に除去する膜で
あって、かつモジュール成型効率の良好な透析用中空繊
維膜に関するものである。Specifically, in blood purification therapy, it is a membrane that selectively removes high-molecular-weight toxic substances having a molecular size of ~66,000 molecules smaller than albumin, represented by β2-microglobulin, over a wide range, and which is a module. The present invention relates to a hollow fiber membrane for dialysis with good molding efficiency.
慢性腎不全等により血液浄化療法を継続的に受けている
患者には、高頻度で貧血、高血圧、色素沈着、骨・関節
障害等の合併症が認められ、その原因究明と対応策の研
究が進められている。一般には生体側以外の要因として
血液浄化膜の物質除去能が取り上げられ、これによって
除去できない物質または生体側の産生量に比して著しく
除去可能量が小さい物質が体内に蓄積する結果、種々の
合併症が引き起こされると考えられている。しかしなが
ら、病因物質の同定を含めた合併症発症機序が明らかに
された例はな(、分子量60の尿素をはじめせいぜい分
子1t5000程度の服毒物質までを効率良く除去でき
る膜が従来一般には求められたに過ぎず、この要求をよ
く満足する再生セルロース製中空繊維膜(平均孔半径約
30Å以下)を主に用いることを中心とした血液浄化療
法が引き続き行われてきた。Complications such as anemia, hypertension, hyperpigmentation, and bone and joint disorders are frequently observed in patients who are continuously receiving blood purification therapy due to chronic renal failure, etc., and research is needed to investigate the causes and countermeasures. It is progressing. In general, the ability of blood purification membranes to remove substances is taken up as a factor other than the living body, and as a result, substances that cannot be removed or substances that can be removed in significantly smaller amounts than the amount produced by the living body accumulate in the body, resulting in various problems. It is believed that complications may occur. However, there is no example in which the mechanism of complications including the identification of the pathogenic substance has been clarified (membranes that can efficiently remove poisonous substances with a molecular weight of at most 15,000 molecules, including urea with a molecular weight of 60, have not been generally sought. However, blood purification therapy has continued to be carried out mainly using hollow fiber membranes made of regenerated cellulose (average pore radius of about 30 Å or less), which satisfies this requirement.
近年、各種合併症のうち、毛根前症候群をはじめとする
透析アミロイド−シスの発症に、β2マイクログロブリ
ンの体内蓄積が大きく関与していることが明らかにされ
、β2−マイクログロブリンを効率良く除去できる血液
浄化膜が求められるようになった。また、これを機に、
分子3166000のアルブミンより小さい分子サイズ
領域の物質は除去した上でその治療効果を検討しようと
いう考え方が急速に広まった。In recent years, it has been revealed that the accumulation of β2-microglobulin in the body is greatly involved in the onset of dialysis amyloidosis, including pre-hair syndrome among various complications, and β2-microglobulin can be efficiently removed. Blood purification membranes are now in demand. Also, taking this opportunity,
The idea of removing substances in the molecular size range smaller than albumin (3,166,000 molecules) and then examining their therapeutic effects rapidly spread.
膜孔半径が30Å以下である旧来の血液浄化用再生セル
ロース膜においては、β2−マイクログロブリン以上の
大きさの分子量を有する物質に対する除去能力を実質的
に期待できないことが知られている。一方、膜の血液透
析・濾過特性を充分に考慮せずに膜孔半径を大きくしす
ぎるとアルブミンのふるい係数も増大し、血中有用成分
であるアルブミンを逸失してしまう。合成高分子系素材
を用いた従来の所謂タンパクルージング膜はこの部類で
ある。It is known that conventional regenerated cellulose membranes for blood purification, which have a membrane pore radius of 30 Å or less, cannot be expected to have a substantial ability to remove substances having a molecular weight larger than β2-microglobulin. On the other hand, if the membrane pore radius is made too large without sufficient consideration of the hemodialysis/filtration characteristics of the membrane, the sieving coefficient of albumin will also increase, resulting in the loss of albumin, which is a useful blood component. Conventional so-called protein cruising membranes using synthetic polymeric materials fall into this category.
これに対して、主に合成高分子系の膜素材を中心にβ2
−マイクログロブリン除去に的を絞った吸着除去中空繊
維膜が開発されている(例えば、特開昭63−1098
71 ’)。しかしながら、このものは透析の基本概念
である物質の拡散透過除去を主とせず、吸着現象に依存
しているために、その素材の飽和吸着量以上の除去は不
可能であり、臨床的に充分な量のβ2−マイクログロブ
リン除去量を得るためには、相当量の中空糸膜を必要と
する。On the other hand, mainly synthetic polymer-based membrane materials
- Adsorption-removal hollow fiber membranes targeted at microglobulin removal have been developed (for example, JP-A-63-1098
71'). However, since this method does not primarily rely on the diffusion permeation removal of substances, which is the basic concept of dialysis, but relies on adsorption phenomena, it is impossible to remove more than the saturated adsorption amount of the material, and it is not clinically sufficient. In order to obtain a sufficient amount of β2-microglobulin to be removed, a considerable amount of hollow fiber membrane is required.
また、中空糸膜の実用強度を維持するために全体積空孔
率(本願明細書でいう含水空孔率に相当する)は75%
以下にすべきとされている。物質の拡散除去能は、膜の
含水空孔率が高いほど良好となるので、拡散依存型の中
空糸膜に対しては、この数値は満足しうるものではない
。In addition, in order to maintain the practical strength of the hollow fiber membrane, the total volume porosity (corresponding to the water-containing porosity in this specification) is 75%.
It is said that the following should be done. Since the higher the water-containing porosity of the membrane, the better the diffusion removal ability of the substance becomes, this value is not satisfactory for a diffusion-dependent hollow fiber membrane.
一方、再生セルロースを素材として用いた大孔径中空繊
維膜としてはウィルス分離等に用いられるものが知られ
ている(例えば、特開昭58−89626、特開昭58
−89628、特開昭59−204911、特開昭61
−254202 )が、これはウィルスフリー血漿の製
造等を企図したものであるため、アルブミン、グロブリ
ン等の血液浄化膜では透過してはならない物質を積極的
に透過させる極めて大きな膜孔径、膜構造、血液濾過特
性を有するものである。すなわち、再生セルロース膜に
おいては、このような大孔径膜と、従来の血液浄化膜と
の中間の大きさの孔径を有し、かつ本発明の目的に合致
する膜構造、血液透析・濾過特性を有する中空繊維膜は
知られていなかったのである。On the other hand, large-pore hollow fiber membranes using regenerated cellulose as a material are known to be used for virus separation, etc. (for example, JP-A-58-89626, JP-A-58
-89628, JP-A-59-204911, JP-A-61
-254202), but since this is intended for the production of virus-free plasma, it has an extremely large membrane pore size and membrane structure that actively allows substances that should not pass through blood purification membranes, such as albumin and globulin, to pass through. It has blood filtration properties. In other words, the regenerated cellulose membrane has a pore size intermediate between such large-pore membranes and conventional blood purification membranes, and has a membrane structure and hemodialysis/filtration characteristics that meet the objectives of the present invention. Hollow fiber membranes with this feature were unknown.
さらに従来の中空繊維膜では、その物質透過性能を維持
するために何等かの水可溶性物質を含浸させることが行
われており、このような物質としては、一般にグリセリ
ンが実用されている。Further, conventional hollow fiber membranes are impregnated with some kind of water-soluble substance in order to maintain their substance permeation performance, and glycerin is generally used as such a substance.
本発明者らは、グリセリンを大量に含浸させてなる中空
繊維膜が、本発明の目的とする良好な物質透過特性を概
ね満足する中空繊維膜となることを先に確認していた。The present inventors have previously confirmed that a hollow fiber membrane impregnated with a large amount of glycerin can be a hollow fiber membrane that generally satisfies the good substance permeability properties aimed at by the present invention.
従来知られているこれら高分子量服毒物質除去膜は、い
ずれも吸着乃至濾過の機序に大きく依存することによっ
て物質除去を行うものであり、血液浄化法として最も一
般的な血液透析療法において本来期待すべき拡散機序に
よる除去はほとんどなしえないものであった。All of these conventionally known high-molecular weight toxic substance removal membranes remove substances by relying heavily on adsorption or filtration mechanisms, and are expected to be used in hemodialysis therapy, which is the most common blood purification method. Removal by diffusion mechanisms was almost impossible.
さらに、これらのものの内合成高分子を素材とするもの
は、アルブミン等の有用蛋白質の相当量の逸失がある、
β2−マイクログロブリンに対する選択吸着性を重視す
るがゆえにそれ以外の高分子量服毒物質の除去には不向
きである等の問題があり、血液浄化膜としては極めて限
定された用途にしか適さないという問題がありた。また
、これらは素材強度が比較的低く、物質の拡散除去能を
大きく支配する中空糸膜の含水空孔率をあまり高くでき
ない、膜厚もあまり薄くできない等の問題もあった。Furthermore, those made from internally synthesized polymers lose a considerable amount of useful proteins such as albumin.
Because the focus is on selective adsorption to β2-microglobulin, there are problems such as it being unsuitable for removing other high molecular weight toxic substances, and as a blood purification membrane it is only suitable for extremely limited uses. There was. In addition, these materials have relatively low material strength, and there are also problems in that the water-containing porosity of the hollow fiber membrane, which largely controls the diffusion removal ability of substances, cannot be increased too much, and the membrane thickness cannot be made very thin.
血液浄化療法には、種々のものがあり、同じ血液浄化膜
でも用い方が異なれば異なった性能を示す。最も一般的
な血液透析療法においては、アルブミンに対するふるい
係数が0.15以下であれば有用タンパク成分等の逸失
は実用上問題とならないが、より小さいことが望ましく
、使用に当たって特段の注意を有しない。0.10以下
とすべきである。There are various types of blood purification therapy, and even the same blood purification membrane exhibits different performance if used in different ways. In the most common hemodialysis therapy, loss of useful protein components is not a practical problem if the sieving coefficient for albumin is 0.15 or less, but it is desirable that it be smaller, and no special precautions are required when using it. . It should be less than 0.10.
ところが、アルブミンの逸失を抑制しようとした従来の
膜は、一方でβ2−マイクログロブリン等除去すべき物
質の除去能力を充分に持ちえないという問題があった。However, conventional membranes intended to suppress the loss of albumin have had the problem of not having sufficient ability to remove substances such as β2-microglobulin.
血液浄化療法における老廃物質除去の機序としては、主
として、■濾過除去、■拡散除去、■吸着除去が挙げら
れるが、高分子量物質ではその拡散係数が小さいために
これを除去するには作用機序として濾過又は吸着に鯨ら
ざるをえないとされてきた。しかしながら、1治療当た
り2〜31程度の除水しか行わない通常の血液透析療法
において「濾過除去」に大きな期待をすることはできな
い。すなわち、有効に「拡散除去」をもできる膜が求め
られるのである。さらに、従来の高分子最深毒物質除去
膜は、概して尿素、クレアチニン等の低分子量服毒物質
の除去特性が、旧来の血液浄化膜に比して若干劣るとい
う問題点もあった。The main mechanisms for removing waste substances in blood purification therapy include ■ filtration removal, ■ diffusion removal, and ■ adsorption removal. It has been said that whales have no choice but to perform filtration or adsorption. However, in normal hemodialysis therapy where only about 2 to 31 volumes of water are removed per treatment, we cannot expect much from "filtration removal". In other words, there is a need for a membrane that can also effectively perform "diffusion removal." Furthermore, conventional polymeric most toxic substance removal membranes generally have a problem in that their ability to remove low molecular weight toxic substances such as urea and creatinine is somewhat inferior to that of conventional blood purification membranes.
これらの問題を解決すべく、本発明者らは、グリセリン
をその付着率20%以上と大量に含浸させてなる中空繊
維膜を考案し、一定の成果を得たが、その性能は目的を
より好ましい範囲にて充分に満足しうる最適水準のもの
とはならなかった。In order to solve these problems, the present inventors devised a hollow fiber membrane impregnated with a large amount of glycerin, with an adhesion rate of 20% or more, and achieved certain results, but its performance exceeded the intended purpose. It did not reach an optimal level that could be fully satisfied within the preferred range.
また、含浸グリセリンに固有な物理的特性、例えば、界
面張力、吸湿特性及び粘性等に起因して、中空繊維膜の
ベタつき感、中空繊維膜を束ねた際のフィラメント固着
を生じ、中空繊維膜を束ねて膜分離モジュールとなす際
の取扱性不良、フィラメント分散性不良によるモジュー
ル成型不良、モジュールとしての中空繊維膜性能発現効
率不良等の問題を生じやすいという改善すべき点があり
、特に再生セルロース中空繊維膜においてはこの問題が
顕著であった。また、グリセリンは150°C以上で徐
々に揮散していくため、グリセリンを付与した後に乾燥
せしめるような中空繊維膜の製造工程にあっては、得ら
れる中空繊維膜の性能を太きく支配するグリセリン付着
率を制御しにくいという中空繊維膜製造方法上の問題も
あった。In addition, physical properties specific to impregnated glycerin, such as interfacial tension, hygroscopic properties, and viscosity, may cause the hollow fiber membrane to feel sticky, and the filaments may stick when the hollow fiber membrane is bundled. There are issues that need to be improved, such as poor handling when bundling to form a membrane separation module, poor module molding due to poor filament dispersibility, and poor efficiency in developing hollow fiber membrane performance as a module. This problem was noticeable in fiber membranes. In addition, since glycerin gradually evaporates at temperatures above 150°C, in the manufacturing process of hollow fiber membranes in which glycerin is applied and then dried, glycerin greatly controls the performance of the resulting hollow fiber membranes. There was also a problem with the hollow fiber membrane manufacturing method that it was difficult to control the adhesion rate.
本発明の目的は、第一には、栄養蛋白質であるアルブミ
ンの逸失を実用上問題とならない程度(すなわち、1回
の治療あたり10g以下、好ましくは5g以下)に抑え
、かつそれより小さい分子サイズのβ2−マイクログロ
ブリンをはじめとする高分子量服毒物質を濾過及び拡散
の機序によって巾広く除去しうるーすなわち、見掛けの
分画特性が良好な中空繊維膜をグリセリン含有中空繊維
膜より好ましい範囲において提供すること、そして第二
には、付着率20%以上のグリセリン大量含有中空繊維
膜の有する上述のごとき中空繊維膜製造時の性能制御の
困難性、モジュール組立時の取扱性不良、モジュールと
しての中空繊維膜性能発現効率不良等の問題を生じない
中空繊維膜を提供すること、の二つの目的を同時に達成
することにある。The first object of the present invention is to suppress the loss of albumin, which is a nutritional protein, to a level that does not pose a practical problem (i.e., 10 g or less, preferably 5 g or less per treatment), and to High molecular weight poisonous substances including β2-microglobulin can be widely removed by filtration and diffusion mechanisms - in other words, hollow fiber membranes with better apparent fractionation properties are preferable to glycerin-containing hollow fiber membranes. Second, the hollow fiber membrane containing a large amount of glycerin with an adhesion rate of 20% or more has the above-mentioned difficulties in controlling performance during production of the hollow fiber membrane, poor handling when assembling the module, and problems as a module. The object of the present invention is to simultaneously achieve two purposes: to provide a hollow fiber membrane that does not cause problems such as poor efficiency in developing hollow fiber membrane performance.
本発明の上記目的は以下の中空繊維膜により達成される
。The above objects of the present invention are achieved by the following hollow fiber membrane.
すなわち、繊維軸方向に連続貫通した中空部を有し、湿
潤時の平均膜孔半径が40〜250Å、好ましくは60
〜200Å、さらに好ましくは60〜180Å、含水空
孔率が60〜95%、好ましくは76〜95%、さらに
好ましくは80〜95%で、ポリエチレングリコールを
含有し、かつ血液濾過におけるアルブミンのふるい係数
が0.10以下、好ましくは0.05以下であることを
特徴とする再生セルロース製中空繊維膜である。That is, it has a hollow portion that continuously penetrates in the fiber axis direction, and the average membrane pore radius when wet is 40 to 250 Å, preferably 60 Å.
~200 Å, more preferably 60 to 180 Å, a water-containing porosity of 60 to 95%, preferably 76 to 95%, more preferably 80 to 95%, contains polyethylene glycol, and has a sieving coefficient of albumin in hemofiltration. This is a hollow fiber membrane made of regenerated cellulose, characterized in that the
ここで言う「湿潤時」とは、37℃の純水にて1時間以
上中空繊維膜を浸漬処理した後のことを意味する。また
、「膜の平均孔半径」は膜の水濾過速度、拡散速度、含
水空孔率等を実測乃至一部仮定して細孔理論により以下
の諸式にて概算できる。なお、「含水空孔率」とは、湿
潤中空繊維膜中に占める水の体積分率を意味するが、こ
こでは製造条件が既知である場合の筒易的な含水空孔率
算出式によった。製造条件が未知等の場合は、ビクノメ
ーター等を用いた常法によりこれを実測し、その値を用
いることができる。The term "wet" as used herein means after the hollow fiber membrane has been immersed in pure water at 37° C. for one hour or more. Further, the "average pore radius of the membrane" can be estimated by the following equations based on pore theory based on actual measurements or partial assumptions of the water filtration rate, diffusion rate, water-containing porosity, etc. of the membrane. Note that "water-containing porosity" means the volume fraction of water in the wet hollow fiber membrane, but here, it is calculated using a simple formula for calculating the water-containing porosity when the manufacturing conditions are known. Ta. If the manufacturing conditions are unknown, they can be measured by a conventional method using a vicinometer or the like, and the values can be used.
ここで、
f (q) = (1−2,105q+ 2.0865
q″−1,7068q’+ 0.72603q’)/
(1−0,75857q’)SD=(1q)”
q””rl/1p
τ = 10式、0式
より
Ak(−):膜面内聞孔率
τ(−):細孔理論(油路モデル)による油路率g (
Pa−sec) :水の粘性率(0,691x 10−
’とした)L p (crl / cIIY/ se
c / Pa) :膜の水濾過係数(37’C,20(
l鵬ug下、膜面積約100 ’cAの中空繊維膜モジ
ュールにて実測)
PIII(cm/5ec) :膜の水拡散移動係数(3
7°Cにて実測)
H(−):膜の含水空孔率(定義は後記)八X(ell
):湿潤時中空繊維膜の膜厚すなわち、Pm、Lpを実
測すれば、■式を用いてr、が求まる。Here, f (q) = (1-2,105q+ 2.0865
q″−1,7068q’+ 0.72603q’)/
(1-0,75857q')SD=(1q)"q""rl/1p τ = From equations 10 and 0, Ak(-): In-plane porosity τ(-): Pore theory (oil passage model) according to the oil passage ratio g (
Pa-sec): Viscosity of water (0,691x 10-
) L p (crl / cIIY / se
c/Pa): Membrane water filtration coefficient (37'C, 20(
(Actually measured using a hollow fiber membrane module with a membrane area of approximately 100'cA under 100μg) PIII (cm/5ec): Water diffusion transfer coefficient of membrane (3
(Actually measured at 7°C)
): By actually measuring the thickness of the hollow fiber membrane when wet, that is, Pm and Lp, r can be found using the equation (2).
さらに、次式に基づいてHを求めることによりAk、τ
等他の膜構造パラメータも求められる。Furthermore, by finding H based on the following equation, Ak, τ
Other membrane structural parameters are also determined.
r、 (CIll) :膜の平均孔半径r、 (C
al) :水の分子径(1,07X10−”とした)
D (c+a /5ee) :水の拡散係数(2,97
X10−’とした)H(−):膜含水空孔率
Vs (c4/win) :紡糸液吐出量ρs (g/
Id) :紡糸液密度
C<−>:紡糸液中のセルロース重量分率ω(c11/
m1n) :巻取速度
ρ、1g/d):セルロースの真の密度(1,52と仮
定)
r、(am):中空繊維膜の湿潤時の外半径r=(cm
):中空繊維膜の湿潤時の内半径5hr(−):乾燥状
態から湿潤状態へ移行した時の糸長方向伸縮率(37℃
で実測)
注:H,V、、ρSr Cおよびωは中空繊維膜作成
時に実測し、また、roおよびl”iは×200倍顕微
拡大鏡を用いて実測する。r, (CIll) : Average pore radius of the membrane r, (C
al): Molecular diameter of water (1,07×10-”)
D (c+a/5ee): Diffusion coefficient of water (2,97
X10-') H(-): Membrane water content porosity Vs (c4/win): Spinning solution discharge amount ρs (g/
Id): Spinning solution density C<->: Cellulose weight fraction ω in the spinning solution (c11/
m1n): Winding speed ρ, 1g/d): True density of cellulose (assumed to be 1.52) r, (am): Outer radius of the hollow fiber membrane when wet r = (cm
): Inner radius of the hollow fiber membrane when wet (-): Stretching rate in the longitudinal direction of the yarn when transitioning from a dry state to a wet state (37°C
Note: H, V, ρSr, C and ω are actually measured at the time of hollow fiber membrane preparation, and ro and l”i are actually measured using a x200x microscope magnifying glass.
しかるに、本発明の再生セルロース中空繊維膜は、β2
−マイクログロブリン除去については、濾過除去の機序
による除去量と同等以上の拡散による除去量が得られる
。However, the regenerated cellulose hollow fiber membrane of the present invention has β2
- Regarding the removal of microglobulin, the amount removed by diffusion is equal to or greater than the amount removed by the filtration mechanism.
拡散には膜孔半径、lI厚、膜含水空孔率等が膜側の寄
与要因となる。Contributing factors to the diffusion include the membrane pore radius, lI thickness, membrane water-containing porosity, and the like.
本発明の中空繊維膜は再生セルロースからなる。The hollow fiber membrane of the present invention is made of regenerated cellulose.
膜の素材に再生セルロースを用いると、その優れた機械
的強度故に膜厚を極めて薄くでき、しかも親水性に優れ
るため実用強度を維持しつつも拡散機序に有効な含水空
孔率の大きい膜が得られるので、他の素材には見られな
い良好な低分子量物質除去能力をも有するものとなる。When regenerated cellulose is used as a membrane material, it can be made extremely thin due to its excellent mechanical strength, and its excellent hydrophilicity allows it to maintain practical strength while maintaining a high water-containing porosity that is effective for the diffusion mechanism. Therefore, it also has a good ability to remove low molecular weight substances that is not found in other materials.
よって、人工腎臓として用いるのに特に好適である。Therefore, it is particularly suitable for use as an artificial kidney.
β2−マイクログロブリン除去については、臨床使用に
ついて20%以上の除去率が望まれているが、β2−マ
イクログロブリンのふるい係数が0.3以上、好ましく
は0.5以上である膜またはその総括物質移動係数が2
X I O−’ax/sec、以上である膜、または
その両特性を備えた膜を用いることによってこの除去率
は達成できる。ここで言う「除去率」とは、透析患者血
中β2−マイクログロブリン濃度の透析前後の変化を、
ヘマトクリット値を用いて濃縮補正して算出されるもの
である。Regarding β2-microglobulin removal, a removal rate of 20% or more is desired for clinical use, but a membrane or its general substance with a β2-microglobulin sieving coefficient of 0.3 or more, preferably 0.5 or more The transfer coefficient is 2
This removal rate can be achieved by using a membrane that has X I O-'ax/sec or higher, or a membrane that has both characteristics. The term "removal rate" used here refers to the change in blood β2-microglobulin concentration of dialysis patients before and after dialysis.
It is calculated by correcting concentration using the hematocrit value.
以上のごとき特徴を備えた、本発明に係る中空繊維膜は
例えば、以下の方法にて作製することができる。The hollow fiber membrane according to the present invention having the above characteristics can be produced, for example, by the following method.
公知の方法にて調製された、セルロース濃度4〜12%
、好適には4〜8%のキュプラアンモニウムレーヨン紡
糸液を、気体もしくは液体である公知の非凝固性中空部
形成剤(例えば、パークレン、トリクレン、トリクロロ
トリフルオロエタン等の液体ハロゲン化炭素:イソプロ
ビルミリステート等の各種エステル:空気、窒素;テト
ラフルオロメタン、ヘキサフルオロエタン等の所謂フレ
オンガス、各種ハロンガス)またはメタノール、エタノ
ール、プロパツール、アセトン、メチルエチルケトン:
蟻酸、酢酸、プロピオン酸;グリセリンその他のポリオ
ール等のうちから選ばれた少なくとも1つを含む水溶液
乃至はこれらの相互混合溶液のごとき、紡糸液に対して
微凝固性を示す中空部形成剤とともに、二重紡糸口金か
ら吐出し、非凝固性雰囲気下を通過せしめ、次いで、凝
固浴へ導く。凝固剤としては苛性ソーダ、硫酸、塩酸、
酢酸、硫酸アンモニウム、アセトン、低級アルコール等
の水溶液を用いうるが、好適には硫酸または硫酸アンモ
ニウム水溶液が用いられる。硫酸または硫酸アンモニウ
ム水溶液の利用は、従来品より膜孔径の大きな本発明の
中空繊維膜が容易に与えうる。さらに、これらの凝固剤
を用いたものは均質膜とはならず、実効膜厚が小さい中
空繊維膜を与える。Cellulose concentration 4-12%, prepared by a known method
, preferably 4 to 8% cuproammonium rayon spinning solution, and a gaseous or liquid known non-coagulable hollow-forming agent (e.g. liquid halogenated carbon such as percrene, trichrene, trichlorotrifluoroethane, etc.: isopropylene). Various esters such as myristate: air, nitrogen; so-called freon gas such as tetrafluoromethane and hexafluoroethane, various halon gases), or methanol, ethanol, propatool, acetone, methyl ethyl ketone:
Along with a hollow part forming agent that exhibits microcoagulability in the spinning solution, such as an aqueous solution containing at least one selected from formic acid, acetic acid, propionic acid, glycerin and other polyols, or a mutually mixed solution thereof, It is discharged from a double spinneret, passed through a non-coagulating atmosphere, and then led to a coagulation bath. Coagulants include caustic soda, sulfuric acid, hydrochloric acid,
Aqueous solutions such as acetic acid, ammonium sulfate, acetone, and lower alcohols can be used, but sulfuric acid or ammonium sulfate aqueous solutions are preferably used. The use of sulfuric acid or ammonium sulfate aqueous solution can be easily provided by the hollow fiber membrane of the present invention, which has a larger pore size than conventional products. Furthermore, the use of these coagulants does not result in a homogeneous membrane, but rather provides a hollow fiber membrane with a small effective thickness.
このような中空繊維膜の律速層(=透過する物質サイズ
を規定する層の意)の膜孔半径を100Å以下に抑える
ことによって、アルブミンよりサイズの小さい高分子最
深毒物質の拡散除去に有利である一方で、アルブミンよ
り大きい分子量を有する血中有用成分の逸失を抑えうる
見掛けの分子量分画性、すなわち、選択除去性が濾過除
去のみの場合よりも格段に向上する利点がある。By suppressing the membrane pore radius of the rate-determining layer (layer that regulates the size of permeable substances) of such hollow fiber membranes to 100 Å or less, it is advantageous for the diffusion and removal of the most deeply toxic polymeric substances, which are smaller in size than albumin. On the other hand, there is an advantage that the apparent molecular weight fractionation, that is, the selective removal ability, which can suppress the loss of useful blood components having a molecular weight larger than that of albumin, is much improved compared to the case of only filtration removal.
凝固した繊維を水及び無機酸にて精練した後に膜孔径保
持剤を付与し、さらに乾燥工程を経て目的の中空繊維■
りを得る。膜孔径保持剤としては、液体ポリエチレング
リコールを用いる。ここで言う「液体ポリエチレングリ
コール」とは、常温で液体である平均分子量150〜6
00のものの他、これらを含む平均分子ffi 200
00以下のものの水溶液;アセトン、エタノール、トリ
クレン、トルエン等の有機溶剤溶液及び常温で液体の低
分子量ポリエチレングリコールへの溶解物をも含む。そ
の際、ポリエチレングリコールの付着率は20〜200
重景%、好ましくは50〜180重量%、さらに好まし
くは70〜150重量%である。After scouring the coagulated fibers with water and inorganic acid, a membrane pore size retaining agent is applied, and then a drying process is performed to form the desired hollow fibers.
get the benefits. Liquid polyethylene glycol is used as the membrane pore size retaining agent. "Liquid polyethylene glycol" as used herein refers to an average molecular weight of 150 to 6, which is liquid at room temperature.
In addition to those of 00, average molecular ffi 200 containing these
00 or less; also includes solutions in organic solvents such as acetone, ethanol, trichlene, toluene, etc., and solutions in low molecular weight polyethylene glycols that are liquid at room temperature. At that time, the adhesion rate of polyethylene glycol is 20 to 200
The weight percentage is preferably 50 to 180% by weight, more preferably 70 to 150% by weight.
β2−マイクログロブリン以上の分子量の老廃物のうち
何をターゲットとして除去するかによって膜孔径を設計
しうるが、40〜250人の孔径を持つ中空繊維膜を得
るには、好適な例として、硫酸アンモニウム水溶液また
は硫酸(水溶液)による凝固と膜孔径保持剤として液体
ポリエチレングリコールを組合せて用いることが挙げら
れる。The membrane pore size can be designed depending on which waste products with a molecular weight of β2-microglobulin or higher are to be targeted for removal. Examples include using a combination of coagulation with an aqueous solution or sulfuric acid (aqueous solution) and liquid polyethylene glycol as a membrane pore size retaining agent.
従来、膜孔径保持剤としてはグリセリンが実用化され既
存の中空繊維膜について広く用いられているが、これを
本発明のごとく液体ポリエチレングリコールに代替する
ことによって、同じ溶質除去性能の中空繊維膜を得るに
必要な膜孔径保持剤付着率を対素材ポリマー重量当たり
、10%〜40%低減できる。Conventionally, glycerin has been put to practical use as a membrane pore size retaining agent and is widely used in existing hollow fiber membranes, but by replacing this with liquid polyethylene glycol as in the present invention, it is possible to obtain hollow fiber membranes with the same solute removal performance. The adhesion rate of the membrane pore size retaining agent required to obtain this can be reduced by 10% to 40% based on the weight of the polymer material.
第1図および第2図には後述の実施例2と同様の条件下
で膜孔径保持剤の付与濃度、付与量を種々変化させるこ
とによって中空繊維膜の膜孔径保持剤付着率を変えた場
合の、膜孔径保持剤付着率と種々の溶質除去性能の相関
関係をグリセリン含有中空系とポリエチレングリコール
含有中空糸とを比較して示した。すなわち、第1図はβ
−ラクトグロブリン(β−LG)のふるい係数(SC)
の孔径保持剤付着率依存性を示し、また、第2図はアル
ブミン(Alb、)のふるい係数(SC)の孔径保持剤
付着率依存性を示している(両図とも、37°C1水溶
液系で測定)。膜孔径保持剤の分子サイズと水酸基の相
互作用の相違等により、本発明のポリエチレングリコー
ル含有再生セルロース製中空繊維は分子i分画特性によ
り優れた膜であることが示されている。Figures 1 and 2 show cases in which the coating rate of the membrane pore size retaining agent on the hollow fiber membrane was changed by varying the concentration and amount of the membrane pore size retaining agent applied under the same conditions as in Example 2 described below. The correlation between the adhesion rate of membrane pore size retaining agent and various solute removal performances was shown by comparing a glycerin-containing hollow system and a polyethylene glycol-containing hollow fiber. In other words, in Figure 1, β
- Sieving coefficient (SC) of lactoglobulin (β-LG)
Figure 2 shows the dependence of the sieving coefficient (SC) of albumin (Alb) on the pore size retention agent deposition rate. ). It has been shown that the polyethylene glycol-containing regenerated cellulose hollow fiber of the present invention is a membrane with superior molecular i fractionation characteristics due to differences in the molecular size of the membrane pore size retaining agent and the interaction of hydroxyl groups.
さらにポリエチレングリコール含有中空繊維膜は、中空
繊維膜のベタつき感による取扱性不良、フィラメント間
の分散性不良によるモジュール成型不良、モジュールと
しての中空繊維膜性能発現効率不良等の問題点が低減さ
れる。この効果は、液体ポリエチレングリコールとグリ
セリンの物理的特性、例えば界面張力、吸湿特性、粘性
等の相違に基づく、いわゆるペタツキ感が液体ポリエチ
レングリコールの方が小さいという物質上の利点と、上
述の付着率低減の相乗作用として達成される。Furthermore, hollow fiber membranes containing polyethylene glycol reduce problems such as poor handling due to the sticky feel of the hollow fiber membranes, poor module molding due to poor dispersibility between filaments, and poor efficiency in developing hollow fiber membrane performance as a module. This effect is due to the material advantage that liquid polyethylene glycol has a smaller sticky feeling due to differences in physical properties such as interfacial tension, moisture absorption properties, and viscosity between liquid polyethylene glycol and glycerin, and the above-mentioned adhesion rate. achieved as a synergistic effect of reduction.
さらには、液体ポリエチレングリコールはグリセリンに
比し、加熱乾燥工程での揮散が少ないため、それを付与
した後に乾燥せしめるような中空繊維膜の製造工程にあ
っても、その付着率は、工程中における中空繊維膜への
付与体積量、及び希釈溶液にあっては付与時濃度を変え
ること等により容易に制御される等製造上の利点がある
他、液体ポリエチレングリコール含有中空繊維膜は吸湿
性が小さく、従って製品保存時の中空繊維膜物性が経時
的に安定したものとなる。さらに、紡糸原液(ドープ)
に、ポリエチレングリコールを混合することも可能であ
る。Furthermore, compared to glycerin, liquid polyethylene glycol volatilizes less during the heating and drying process, so even in the manufacturing process of hollow fiber membranes, which is dried after applying it, the adhesion rate will be lower during the process. In addition to manufacturing advantages such as being easily controlled by changing the volume applied to the hollow fiber membrane and the concentration at the time of application in the case of diluted solutions, hollow fiber membranes containing liquid polyethylene glycol have low hygroscopicity. Therefore, the physical properties of the hollow fiber membrane during product storage become stable over time. In addition, spinning stock solution (dope)
It is also possible to mix polyethylene glycol with it.
本発明の再生セルロース製中空繊維膜における含有液体
ポリエチレングリコールの意義は中空繊維膜として完成
した時点において、目的の構造を保持せしめること、人
工腎臓のごとき膜分離装置として組立る際に良好な取扱
性を確保すること、及びその組立上の問題に起因する膜
分離装置内における中空繊維膜性能発現効率の低下を抑
止することにある。なお、本発明の中空繊維膜を膜分離
装置として組立た際(本発明の第二の目的の効果を享受
した後)に、装置内を洗浄乃至液体充填して実用に供す
るような場合には、ポリエチレングリコールのセルロー
ス付着率が減少することがあるが、再乾燥しない限り中
空繊維膜目的の構造と性能は維持されるので、本発明の
第一の目的が損なわれることはない。The significance of the liquid polyethylene glycol contained in the regenerated cellulose hollow fiber membrane of the present invention is that it maintains the desired structure when the hollow fiber membrane is completed, and that it provides good handling when assembled into a membrane separation device such as an artificial kidney. The objective is to ensure the following: and to suppress a decrease in the performance expression efficiency of the hollow fiber membrane within the membrane separation device due to assembly problems. In addition, when the hollow fiber membrane of the present invention is assembled as a membrane separation device (after enjoying the effect of the second objective of the present invention), if the inside of the device is to be cleaned or filled with liquid for practical use. Although the cellulose adhesion rate of polyethylene glycol may be reduced, the structure and performance intended for the hollow fiber membrane are maintained unless re-dried, so the first objective of the present invention is not impaired.
以下に実施例を挙げて、本発明をさらに具体的に詳述す
る。実施例中、「%」は特に断わらない限り重量%を意
味する。EXAMPLES The present invention will be described in more detail with reference to Examples below. In the examples, "%" means % by weight unless otherwise specified.
ふるい係数は、測定時膜間差圧5QmmHgにて平行濾
過法にて測定した。The sieving coefficient was measured by a parallel filtration method at a transmembrane differential pressure of 5 QmmHg at the time of measurement.
裏施貫よ
紡糸液として公知の方法にて作製されたセルロース1度
8%のキュプラアンモニウムレーヨン液、および中空部
形成剤としてトリクロロトリフルオロエタンを、二重紡
糸口金より各々5.8ml /lll1n 。A cuproammonium rayon solution containing 8% cellulose prepared by a known method as a back-spinning solution and trichlorotrifluoroethane as a hollow space forming agent were each used at a rate of 5.8 ml/llllin from a double spinneret.
2.44d/sinの割合で空中に吐出し、約25C1
1自重落下させた後、25゛Cl2O%硫酸アンモニウ
ム水溶液にて凝固せしめ、精練工程のコンベア上に導い
た。この糸状体に強制的な機械的張力が負荷されないコ
ンベア上にて、50℃温水;50℃、2%硫酸水;50
℃温水の順にシャワ一方式の精練を行った後に解舒し、
膜孔保持剤付与装置によるポリエチレングリコール40
0 (=日本薬局方収載「マクロゴール400 J )
100%液、1.1 d/lll1n /2フィラメン
ト付与を経て155℃のトンネル型乾燥炉を走行させた
後90 m/winの速度で巻取った。Discharged into the air at a rate of 2.44d/sin, approximately 25C1
After being allowed to fall by its own weight, it was coagulated with a 25% Cl2O% ammonium sulfate aqueous solution, and then introduced onto a conveyor for the scouring process. On a conveyor where no forced mechanical tension is applied to this filament, 50°C warm water; 50°C, 2% sulfuric acid water;
After scouring with one shower in the order of ℃ warm water, unwind,
Polyethylene glycol 40 by membrane pore retaining agent applying device
0 (= “Macrogol 400 J” listed in the Japanese Pharmacopoeia)
After applying 100% liquid and 1.1 d/llln/2 filaments, it was run in a tunnel type drying oven at 155°C and then wound up at a speed of 90 m/win.
このようにして得られた中空繊維膜のポリエチレンクリ
コール400付着量は対セルロース当f、、F)105
%であった。The amount of polyethylene glycol 400 attached to the hollow fiber membrane thus obtained was 105
%Met.
さらに、得られた中空繊維膜を用いて膜面積約1、5
mの人工腎臓用モジュールをウレタン系ボッティング剤
を用いて100本組立てたところ接着不良等の問題を生
じない良品収量は100本であった。Furthermore, using the obtained hollow fiber membrane, a membrane area of approximately 1.5
When 100 m artificial kidney modules were assembled using a urethane-based botting agent, the yield was 100 good products without problems such as poor adhesion.
この中空繊維膜の構造仕様、in vitro膜透過性
能は表1に示すごとくであった。表1に示すinV i
tro試験結果において、β2−マイクログロブリン
のみならず膜透過能指標物質であるβ−ラクトグロブリ
ン(=β−LG、分子量35000)を効率良く除去で
き、その一方で、アルブミンの透過は極めて少なく、ア
ルブミンより分子サイズの大きい物質の透過を阻止し、
それ以下の分子サイズの物質は幅広い領域の物質群にわ
たって除去しうる膜であることを示した。The structural specifications and in vitro membrane permeation performance of this hollow fiber membrane were as shown in Table 1. inV i shown in Table 1
The TRO test results show that not only β2-microglobulin but also β-lactoglobulin (= β-LG, molecular weight 35,000), which is a membrane permeability indicator substance, can be efficiently removed, while the permeation of albumin is extremely low, and albumin permeation is extremely low. Blocks the permeation of substances with larger molecular sizes,
It was shown that substances with molecular sizes smaller than this can be removed over a wide range of substance groups.
1施貫I
紡糸液吐出量を6.17II11/minとし、中空部
形成剤としてトリクロロトリフルオロエタンを用い、そ
の吐出量を2.45!nl/winとし、ポリエチレン
グリコール400・の30%水溶液付与量を1.0戚/
lll1n/2フイラメント、乾燥温度を155°C1
巻取り速度を100m/minとし、その他は実施例1
に従ってポリエチレングリコール400付着量が対セル
ロ−ス当たり24%の中空繊維膜を得た。1 operation I The spinning solution discharge rate was 6.17II11/min, trichlorotrifluoroethane was used as the hollow part forming agent, and the discharge rate was 2.45! nl/win, and the amount of 30% aqueous solution of polyethylene glycol 400 applied is 1.0 relative/win.
lll1n/2 filament, drying temperature 155°C1
The winding speed was 100 m/min, and the other conditions were as in Example 1.
Accordingly, a hollow fiber membrane having a polyethylene glycol 400 adhesion amount of 24% based on cellulose was obtained.
さらに、得られた中空繊維膜を用いて膜面積約1.5ホ
の人工腎臓用モジュールをウレタン系ボッティング剤を
用いて100木組立てたところ接着不良等の問題を生じ
ない良品収量は99本であった。Furthermore, when an artificial kidney module with a membrane area of approximately 1.5 mm was assembled using the obtained hollow fiber membrane using a urethane-based botting agent, the yield was 99 good products without problems such as poor adhesion. Met.
この中空繊維膜の緒特性は表1に示すごとく、アルブミ
ンより分子サイズの小さい物質に対してを効な除去性能
を示した。As shown in Table 1, this hollow fiber membrane exhibited effective removal performance for substances with a smaller molecular size than albumin.
尖施貫主
ポリエチレングリコール400を70%水溶液とし、そ
の付与量を2.0 m/min / 2フイラメントと
し、その他は実施例2に従って、ポリエチレングリコー
ル400付着量が対セルロース当たり131%の中空繊
維膜を得た。A hollow fiber membrane was prepared using a 70% aqueous solution of polyethylene glycol 400, which was applied at a rate of 2.0 m/min/2 filaments, and in accordance with Example 2, in which the amount of polyethylene glycol 400 deposited was 131% relative to cellulose. Obtained.
さらに、得られた中空繊維膜を用いて膜面積約1、5
rrfの人工腎臓用モジュールをウレタン系ボッティン
グ剤を用いて100本組立てたところ接着不良等の問題
を生じない良品収量は100本であった。Furthermore, using the obtained hollow fiber membrane, a membrane area of approximately 1.5
When 100 rrf artificial kidney modules were assembled using a urethane botting agent, the yield was 100 good products without problems such as poor adhesion.
この中空繊維膜の緒特性は表1に示すごとく、アルブミ
ンより分子サイズの小さい物質に対して有効な除去性能
を示した。As shown in Table 1, the hollow fiber membrane exhibited effective removal performance for substances with a molecular size smaller than that of albumin.
1JJL例」ユ
紡糸液吐出量を5.8 m/minとし、中空部形成剤
としてトリクロロトリフルオロエタンを用い、その吐出
量を2゜83mf/minとし、ポリエチレングリコー
ル200(平均分子団=約200) 100%液の付与
量を1.5 mfl /min / 2フイラメント、
乾燥温度を160°C1巻取り速度を90m/minと
し、その他は実施例1に従ってポリエチレングリコール
200付着量が対セルロース当たり 120%の中空繊
維膜を得た。1JJL Example: The spinning solution discharge rate was 5.8 m/min, trichlorotrifluoroethane was used as the hollow part forming agent, the discharge rate was 2°83 mf/min, and polyethylene glycol 200 (average molecular group = approximately 200 mf/min) was used. ) The amount of 100% liquid applied is 1.5 mfl /min / 2 filaments,
The drying temperature was 160° C., the winding speed was 90 m/min, and the other conditions were as in Example 1 to obtain a hollow fiber membrane having a polyethylene glycol 200 adhesion amount of 120% based on cellulose.
さらに、得られた中空繊維膜を用いて膜面積約1.51
1での人工腎臓用モジュールをウレタン系ポツティング
剤を用いてioo、tm立てたところ接着不良等の問題
を生じない良品収量は100本であった。Furthermore, using the obtained hollow fiber membrane, the membrane area was approximately 1.51.
When the artificial kidney module prepared in No. 1 was made ioo,tm using a urethane potting agent, the yield of good products without problems such as poor adhesion was 100.
この中空繊維膜の緒特性は表1に示すごとく、アルブミ
ンより分子サイズの小さい物質に対して有効な除去性能
を示した。As shown in Table 1, the hollow fiber membrane exhibited effective removal performance for substances with a molecular size smaller than that of albumin.
尖施且】
紡糸液として公知の方法にて作製されたセルロース濃度
8%のキュプラアンモニウムレーヨン液、中空部形成剤
としてトリクロロトリフルオロエタンを二重紡糸口金よ
り各々13.0In1/min 、 2.781d/
minの割合で空中に吐出し、約30cm自重落下させ
た後、25°Cl2O%硫酸アンモニウム水溶液にて凝
固せしめ、精練工程のコンベア上に導いた。A cuproammonium rayon solution with a cellulose concentration of 8% prepared by a known method as a spinning solution, and trichlorotrifluoroethane as a hollow part forming agent were each used at a rate of 13.0 In1/min and 2.781 d using a double spinneret. /
The mixture was discharged into the air at a rate of 20 min and allowed to fall by its own weight by about 30 cm, and then coagulated with a 25° Cl2O% ammonium sulfate aqueous solution and led onto a conveyor for the scouring process.
この糸状体に強制的な機械的張力が負荷されないコンベ
ア上にて、50°C温水;50°C12%硫酸水;50
°C温水の順にシャワ一方式の精練を行った後に解舒し
、膜孔径保持剤付与装置によりポリエチレングリコール
400 (PEG400)を付与、150”Cのトンネ
ル型乾燥炉を走行させた後100m/minの速度で巻
取り対セルロース当たりPEG400付着量150%の
中空糸膜を得た。50°C warm water; 50°C 12% sulfuric acid water;
After performing shower-type scouring in the order of °C warm water, unraveling, applying polyethylene glycol 400 (PEG400) using a membrane pore size retaining agent applying device, and running a 150"C tunnel type drying oven at 100 m/min. A hollow fiber membrane with a PEG400 coating amount of 150% per cellulose was obtained at a winding speed of .
この中空糸膜の構造仕様、in vitro膜透過性能
は表1に示すごとくであった。The structural specifications and in vitro membrane permeation performance of this hollow fiber membrane were as shown in Table 1.
止較拠よ
公知の方法に従って、従来からの人工腎臓用として用い
られているキュプラアンモニウムレーヨン中空繊維膜を
得た。これは表1に示すごとく尿素等の低分子物質除去
能には優れるものの、β2マイクログロブリン等の高分
子量領域の物質の除去能力が低く、本発明の第一の目的
に適さないものであった。A cuproammonium rayon hollow fiber membrane, which has been conventionally used for artificial kidneys, was obtained according to a known method. As shown in Table 1, although this has an excellent ability to remove low molecular weight substances such as urea, it has a low ability to remove substances in the high molecular weight range such as β2 microglobulin, and is not suitable for the first purpose of the present invention. .
比奴1
実施例3におけるポリエチレングリコール400の70
%水溶液をグリセリンの70%水溶液にでき換え、その
他はこれと同じ条件にて中空糸膜を得た。この時得られ
た中空繊維膜のグリセリン付着率は110%であり、実
施例3との比較においてグリセリンの方がポリエチレン
グリコール400よりも揮敗しやすいことが示された。Hinu 1 70 of polyethylene glycol 400 in Example 3
% aqueous solution was changed to a 70% aqueous solution of glycerin, and a hollow fiber membrane was obtained under the same conditions except for the above. The glycerin adhesion rate of the hollow fiber membrane obtained at this time was 110%, and a comparison with Example 3 showed that glycerin evaporates more easily than polyethylene glycol 400.
さらに、得られた中空繊維膜を用いて膜面積約1.5イ
の人工腎臓用モジュールをウレタン系ボッティング剤を
用い各実施例と同一条件にてioo木組立てたところ接
着不良等の問題を生じない良品収量は43本であった。Furthermore, using the obtained hollow fiber membrane, an artificial kidney module with a membrane area of approximately 1.5 mm was assembled using a urethane-based botting agent under the same conditions as in each example, and problems such as poor adhesion were found. The yield of non-defective products was 43.
この中空繊維膜の緒特性は表1に示すごとくであった。The properties of this hollow fiber membrane were as shown in Table 1.
此Ml辻1
特開昭59−204912に示されるセルロース大孔径
膜の製法に従って、内径250塵、膜厚25I!ra、
平均膜孔半径300人のキュプラアンモニウムレーヨン
中空繊維膜を得た。このものは、表1に示すごとくβ2
−マイクログロブリンのふるい係数が1.0と極めて高
い除去能力を示したが、その一方で血中有用蛋白質であ
るアルブミンのふるい係数も1.00と高値であり本発
明の目的には不適なものであった。This Ml Tsuji 1 According to the manufacturing method of cellulose large pore membrane shown in JP-A-59-204912, the inner diameter is 250 mm and the membrane thickness is 25 I! ra,
A cuproammonium rayon hollow fiber membrane with an average pore radius of 300 was obtained. This is β2 as shown in Table 1.
- Although the sieving coefficient of microglobulin was 1.0, which showed extremely high removal ability, the sieving coefficient of albumin, which is a useful protein in the blood, was also high at 1.00, which is inappropriate for the purpose of the present invention. Met.
以下余日
〔作用および発明の効果〕
繊維軸方向に連続貫通した中空部を有し、湿潤時の平均
膜孔半径が40〜250Å、含水空孔率76〜95%、
かつ血液濾過におけるアルブミンのふるい係数が0.1
0以下であり、ポリエチレングリコールを中空繊維膜素
材純重量に対し20〜200重量%の割合で付着させた
本発明の中空繊維膜は、β2マイクログロブリンのふる
い係数が0.3以上またはその総括物質移動係数が2
X 10−’cm/sec、以上とβ2−マイクログロ
ブリンの濾過及び拡散除去に適し、かつβ2−マイクロ
グロブリン以外の高分子量物質除去能にも優れる一方で
、血液浄化療法、特に血液透析療法におけるアルブミン
等の有用蛋白質の逸失を実用上問題とならない程度に抑
えることができる。[Function and Effects of the Invention] The following is an explanation of the following: [Function and Effects of the Invention] It has a hollow portion that extends continuously in the fiber axis direction, has an average membrane pore radius of 40 to 250 Å when wet, and has a water-containing porosity of 76 to 95%.
and the sieving coefficient of albumin in blood filtration is 0.1
The hollow fiber membrane of the present invention, in which polyethylene glycol is attached at a ratio of 20 to 200% by weight based on the net weight of the hollow fiber membrane material, has a sieving coefficient of β2 microglobulin of 0.3 or more or its general substance. The transfer coefficient is 2
X 10-'cm/sec or more, it is suitable for filtration and diffusion removal of β2-microglobulin, and has excellent ability to remove high molecular weight substances other than β2-microglobulin. The loss of useful proteins such as these can be suppressed to a level that does not pose a practical problem.
すなわち、本発明に係る中空繊維膜は、アルブミンより
大きい分子量を有する血中有用成分を実質的に逸失する
ことなく、それ以下の分子量を有する老廃物を、β2−
マイクログロブリンに代表される高分子量領域物質をも
含めた広範囲の物質群にわたって除去可能な血液浄化膜
とする。That is, the hollow fiber membrane according to the present invention eliminates waste products having a molecular weight lower than albumin without substantially losing useful blood components having a molecular weight larger than that of albumin.
To provide a blood purification membrane capable of removing a wide range of substances including substances in the high molecular weight region typified by microglobulin.
さらに、膜孔径保持剤としてポリエチレングリコールを
付着させることにより、低膜孔径保持剤付着率でも上述
の作用効果が得られ、しかも見掛けの分子量分画特性が
より優れたものとなる。また、中空繊維膜を束ねた際の
フィラメント間の固着が少なく、その分散性が損なわれ
ないためにモジュール成型不良、モジュールとしての中
空繊維膜性能発現効率不良等の問題が解消される。Furthermore, by attaching polyethylene glycol as a membrane pore size retaining agent, the above-mentioned effects can be obtained even with a low membrane pore size retaining agent attachment rate, and moreover, the apparent molecular weight fractionation characteristics can be improved. Further, when the hollow fiber membranes are bundled, there is little adhesion between the filaments, and their dispersibility is not impaired, so problems such as poor module molding and poor efficiency in developing hollow fiber membrane performance as a module are solved.
第1図はβ−ラクトグロブリン(β−LG)のふるい係
数(SC)の孔径保持剤付着率依存性を示し、また、第
2図はアルブミン(Alb、)のふるい係数(SC)の
孔径保持剤付着率依存性を示す。
第1図
第2図Figure 1 shows the dependence of the sieving coefficient (SC) of β-lactoglobulin (β-LG) on the pore size retention agent attachment rate, and Figure 2 shows the dependence of the sieving coefficient (SC) of albumin (Alb) on pore size retention. It shows dependence on agent adhesion rate. Figure 1 Figure 2
Claims (1)
の平均膜孔半径が40〜250Å、含水空孔率が60〜
95%で、ポリエチレングリコールを含有し、かつ血液
濾過におけるアルブミンのふるい係数が0.10以下で
あることを特徴とする再生セルロース製中空繊維膜。(1) It has a hollow part that penetrates continuously in the fiber axis direction, the average membrane pore radius when wet is 40 to 250 Å, and the water-containing porosity is 60 to 60.
A regenerated cellulose hollow fiber membrane containing 95% polyethylene glycol and having an albumin sieving coefficient in blood filtration of 0.10 or less.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE68919142T DE68919142T3 (en) | 1988-07-20 | 1989-07-18 | Hollow fiber membrane. |
ES89113145T ES2061820T5 (en) | 1988-07-20 | 1989-07-18 | HOLLOW FIBER MEMBRANE. |
US07/381,253 US4919809A (en) | 1988-07-20 | 1989-07-18 | Hollow fiber membrane |
EP89113145A EP0351773B2 (en) | 1988-07-20 | 1989-07-18 | Hollow fiber membrane |
KR1019890010302A KR920000560B1 (en) | 1988-07-20 | 1989-07-20 | Hollow fiber membrane |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6388089 | 1989-03-17 | ||
JP1-63880 | 1989-03-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH038422A true JPH038422A (en) | 1991-01-16 |
Family
ID=13242048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1148306A Pending JPH038422A (en) | 1988-07-20 | 1989-06-13 | Hollow fiber membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH038422A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5947856A (en) * | 1996-07-03 | 1999-09-07 | Toyota Jidosha Kabushiki Kaisha | Control system for automatic transmission, including coordinated frictional engagement element release control |
JP2006194724A (en) * | 2005-01-13 | 2006-07-27 | Toray Ind Inc | Separation membrane for protein and/or peptide analysis pretreatment |
-
1989
- 1989-06-13 JP JP1148306A patent/JPH038422A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5947856A (en) * | 1996-07-03 | 1999-09-07 | Toyota Jidosha Kabushiki Kaisha | Control system for automatic transmission, including coordinated frictional engagement element release control |
JP2006194724A (en) * | 2005-01-13 | 2006-07-27 | Toray Ind Inc | Separation membrane for protein and/or peptide analysis pretreatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4874522A (en) | Polysulfone hollow fiber membrane and process for making the same | |
JPWO2002009857A1 (en) | Modified hollow fiber membrane | |
WO1997034687A1 (en) | Hollow yarn membrane used for blood purification and blood purifier | |
JPH10108907A (en) | Membrane for hemocatharsis, its preparation and module for hemocatharsis | |
US6013182A (en) | Selectively permeable hollow fiber membrane and process for producing same | |
JP2792556B2 (en) | Blood purification module, blood purification membrane and method for producing the same | |
KR100424995B1 (en) | Selective permeable membrane and manufacturing method thereof | |
JP3714686B2 (en) | Polysulfone-based hollow fiber membrane and method for producing the same | |
JPH06296686A (en) | Polysulfone hollow yarn membrane for medical purpose | |
JP3253861B2 (en) | Permselective hollow fiber membrane | |
JPH038422A (en) | Hollow fiber membrane | |
JP3020016B2 (en) | Hollow fiber membrane | |
JPH10263375A (en) | Selective permeable hollow fiber membrane | |
JPH0194902A (en) | Polysulfone hollow fiber membrane and its manufacturing method | |
JP4055634B2 (en) | Hemodialysis membrane and method for producing the same | |
JPS6160165B2 (en) | ||
JP4381073B2 (en) | Blood purification membrane with excellent blood compatibility | |
JP2003275300A (en) | Regenerated cellulose hollow fiber membrane for blood purification, its manufacturing method, and blood purifying apparatus | |
JP2001038171A (en) | Hollow fiber membrane | |
JPH09308684A (en) | Selective separating membrane | |
JPH02211229A (en) | Hollow yarn membrane | |
JP2000153134A (en) | High performance blood purifying membrane | |
JP4381022B2 (en) | Hollow fiber blood purification membrane | |
JP4386607B2 (en) | Polysulfone blood purification membrane production method and polysulfone blood purification membrane | |
JP2007054470A (en) | Hollow fiber membrane for blood purification and its manufacturing method |