JPH0383991A - Separation of glucose - Google Patents
Separation of glucoseInfo
- Publication number
- JPH0383991A JPH0383991A JP21750589A JP21750589A JPH0383991A JP H0383991 A JPH0383991 A JP H0383991A JP 21750589 A JP21750589 A JP 21750589A JP 21750589 A JP21750589 A JP 21750589A JP H0383991 A JPH0383991 A JP H0383991A
- Authority
- JP
- Japan
- Prior art keywords
- glucose
- eluent
- zone
- raw material
- adsorption
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 title claims abstract description 73
- 239000008103 glucose Substances 0.000 title claims abstract description 73
- 238000000926 separation method Methods 0.000 title claims description 25
- 229920001542 oligosaccharide Polymers 0.000 claims abstract description 34
- 150000002482 oligosaccharides Chemical class 0.000 claims abstract description 34
- 239000000126 substance Substances 0.000 claims abstract description 27
- 239000002994 raw material Substances 0.000 claims abstract description 24
- 238000011084 recovery Methods 0.000 claims abstract description 19
- 238000001179 sorption measurement Methods 0.000 claims abstract description 18
- 239000007864 aqueous solution Substances 0.000 claims abstract description 14
- 239000003480 eluent Substances 0.000 claims abstract description 13
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 12
- 239000012530 fluid Substances 0.000 claims abstract description 10
- 150000001768 cations Chemical class 0.000 claims abstract description 8
- 239000003463 adsorbent Substances 0.000 claims abstract description 7
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims abstract description 5
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims abstract description 5
- 238000013375 chromatographic separation Methods 0.000 claims abstract description 5
- 238000003795 desorption Methods 0.000 claims abstract description 5
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims abstract description 4
- 238000000605 extraction Methods 0.000 claims description 11
- 239000002594 sorbent Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 238000011144 upstream manufacturing Methods 0.000 claims description 2
- 239000007788 liquid Substances 0.000 abstract description 20
- 239000003814 drug Substances 0.000 abstract 1
- 229940079593 drug Drugs 0.000 abstract 1
- 238000004064 recycling Methods 0.000 abstract 1
- 235000000346 sugar Nutrition 0.000 description 11
- 239000000203 mixture Substances 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000003729 cation exchange resin Substances 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 229940023913 cation exchange resins Drugs 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- SPFMQWBKVUQXJV-BTVCFUMJSA-N (2r,3s,4r,5r)-2,3,4,5,6-pentahydroxyhexanal;hydrate Chemical compound O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O SPFMQWBKVUQXJV-BTVCFUMJSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical group [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- ZZZCUOFIHGPKAK-UHFFFAOYSA-N D-erythro-ascorbic acid Natural products OCC1OC(=O)C(O)=C1O ZZZCUOFIHGPKAK-UHFFFAOYSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 229930091371 Fructose Natural products 0.000 description 1
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 description 1
- 239000005715 Fructose Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 229930003268 Vitamin C Natural products 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000001172 liquid--solid extraction Methods 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 125000000542 sulfonic acid group Chemical group 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 235000019154 vitamin C Nutrition 0.000 description 1
- 239000011718 vitamin C Substances 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Landscapes
- Saccharide Compounds (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
近年、医薬用、ビタミンCやソルビトールなどの原料用
などに高純度のグルコースが必要とされているが、本発
明はグルコースの分離法に間するものであり、特にグル
コースとオリゴ糖を含む水溶液より、オリゴ糖を殆ど含
まないグルコース水溶液を、擬似移動層により連続的に
クロマト分離する方法に間するものである。[Detailed Description of the Invention] <Industrial Application Field> In recent years, highly purified glucose has been required for pharmaceutical use and as a raw material for vitamin C, sorbitol, etc., but the present invention In particular, it is a method for continuously chromatographically separating an aqueous glucose solution containing almost no oligosaccharides from an aqueous solution containing glucose and oligosaccharides using a simulated moving layer.
〈従来の技術〉
従来からグルコースとオルゴ糖を含む水溶液から高純度
のグルコースを製造する場合、結晶法により行われてい
るが、液相から固相への相変換を伴うので取扱がWJ例
であったり、グルコースの溶解度が大きく母液の取扱に
注意を要し、また結晶法そのものが高度の技術や経験を
必要としている。<Conventional technology> Conventionally, high-purity glucose has been produced from an aqueous solution containing glucose and oligosaccharides using the crystallization method, but since it involves a phase transformation from a liquid phase to a solid phase, it cannot be handled in the WJ example. In some cases, the solubility of glucose is high, requiring careful handling of the mother liquor, and the crystallization method itself requires advanced technology and experience.
一方上述した結晶法を用いることなく、クロマト分離の
手法を用いた擬似移動層によってグルコースとオリゴ糖
を分離することが行なわれている。On the other hand, glucose and oligosaccharides have been separated using a pseudo moving layer using a chromatographic separation method without using the above-mentioned crystallization method.
しかしながら従来の擬似移動層を用いる分離法において
は、高純度のグルコースを高回収率で分離することがで
きない。However, in the conventional separation method using a pseudo-moving bed, highly pure glucose cannot be separated with a high recovery rate.
〈発明が解決しようとする問題点〉
本発明は擬似移動層を用いてグルコースとオリゴ糖の混
合水溶液から高純度のグルコースを高回収率で分離する
ことができる分離法を提供することを目的とする。<Problems to be Solved by the Invention> An object of the present invention is to provide a separation method capable of separating high-purity glucose from a mixed aqueous solution of glucose and oligosaccharides at a high recovery rate using a pseudo-moving bed. do.
〈問題点を解決するための手段〉
本発明者らは、グルコースとオリゴ糖を含む水溶液より
、オリゴ糖を殆ど含まないグルコース水WI液を、擬似
移動層により連続的にクロマト分離する方法について検
討した結果、収着物質の脱着帯域、収着物質の濃縮帯域
、収着物質の吸着帯域、非収着物質の回収帯域をそれぞ
れ形成した擬似移動層において、循環流速の固定層流速
に対する比率βを収着物質の濃縮帯域においては0.
4〜0゜7とし、さらに非収着物質の回収帯域において
は0.3〜0.6とすることにより効率よく高純度のグ
ルコースを分離出来ることを見出し、本発明に到達した
ものである。<Means for Solving the Problems> The present inventors have studied a method of continuously chromatographically separating a glucose water WI solution containing almost no oligosaccharides from an aqueous solution containing glucose and oligosaccharides using a pseudo mobile layer. As a result, the ratio β of the circulating flow rate to the fixed bed flow rate was determined in the pseudo-moving bed, which formed a desorption zone for sorbed substances, a concentration zone for sorbed substances, an adsorption zone for sorbed substances, and a recovery zone for non-sorbed substances. 0 in the sorbent concentration zone.
The inventors have discovered that highly pure glucose can be efficiently separated by setting the temperature to 4 to 0.7 degrees and further setting the temperature to 0.3 to 0.6 in the non-sorbing substance recovery zone, and have thus arrived at the present invention.
すなわち本発明は、グルコースとマルトース以上の分子
量を有するオリゴ糖を含む水溶液を原料とし、水を溶離
剤としてグルコースを含む水溶液と前記オリゴ糖を含む
水溶液とに連続的にクロマト分離する方法であって、内
部に陽イオン交換体が充填され、且つ前端と後端とが流
体通路により結合された充填層内に、溶離剤供給部から
収着物質抜出部までの収着物質の脱着帯域、同抜出部か
ら原料供給部までの収着物質の濃縮帯域、同供給部から
非収着物質抜出部までの収着物質の吸着帯域および同抜
出部から溶離剤供給部までの非収着物質の回収帯域の四
つのゾーンを上流より上記順序で形成させつつ流体を循
環させ、上記供給部および抜出部の位置を間欠的に下流
方向に移動させる事より成る擬似移動層による分離法に
おいて、収着物質の濃縮帯域における循環流体の空塔流
速の吸着剤の見掛けの移動速度に対する比率β3を0゜
4〜0. 7とし、さらに非収着物質の回収帯域におけ
る循環流体の空塔流速の吸着剤の見掛けの移動速度に対
する比率β11t0.3〜0. 6とすることを特徴と
するグルコースの分離法である。That is, the present invention is a method for continuously chromatographically separating an aqueous solution containing glucose and an oligosaccharide having a molecular weight greater than maltose as a raw material into an aqueous solution containing glucose and an aqueous solution containing the oligosaccharide using water as an eluent. , a desorption zone for sorbent substances from an eluent supply section to a sorbent extraction section; A concentration zone for sorbent substances from the extraction section to the raw material supply section, an adsorption zone for sorbed substances from the supply section to the non-sorbent material extraction section, and a non-sorption zone from the withdrawal section to the eluent supply section. In a separation method using a pseudo-moving bed, which comprises forming four zones of a substance recovery zone in the above order from upstream, circulating the fluid, and intermittently moving the positions of the supply section and the withdrawal section in the downstream direction. , the ratio β3 of the superficial flow velocity of the circulating fluid in the sorbent concentration zone to the apparent moving velocity of the adsorbent is 0°4 to 0. 7, and the ratio β11t of the superficial flow velocity of the circulating fluid in the recovery zone of non-adsorbed substances to the apparent moving velocity of the adsorbent is 0.3 to 0.7. 6 is a method for separating glucose.
く本発明の詳細な説明〉 以下に本発明の詳細な説明する。Detailed description of the present invention> The present invention will be explained in detail below.
第1図は本発明の実施態様の一例の擬似移動層式クロマ
ト分離装置のフローを示す説明図である。FIG. 1 is an explanatory diagram showing the flow of a simulated moving bed chromatographic separation apparatus as an example of an embodiment of the present invention.
第1図において擬似移動層は8本の単位分離塔に分けら
れており、各単位分離塔にはオリゴ糖よりもグルコース
に対する吸着量が大きい塩型の陽イオン交換体が充填さ
れている。陽イオン交換体としては市販の各種陽イオン
交換樹脂あるいはゼオライトを用いることができる0通
常はスチレンとジビニルベンゼンの架橋共重合体にスル
ホン酸基が結合した強酸性陽イオン交換樹脂が用いられ
る。In FIG. 1, the pseudo mobile bed is divided into eight unit separation columns, and each unit separation column is filled with a salt-type cation exchanger that adsorbs a larger amount of glucose than oligosaccharides. As the cation exchanger, various commercially available cation exchange resins or zeolites can be used. Usually, a strongly acidic cation exchange resin in which a sulfonic acid group is bonded to a crosslinked copolymer of styrene and divinylbenzene is used.
陽イオン交換樹脂は、グルコースに対する吸着力とオリ
ゴ糖に対する吸着力との差が大きくなるように、通常、
ナトリウム形、カリウム形、もしくはカルシウム形で使
用される。Cation exchange resins are usually used to increase the difference between the adsorption power for glucose and the adsorption power for oligosaccharides.
Used in sodium, potassium, or calcium form.
また、グルコース原料としては、通常、全糖濃度40〜
75重量%、全糖中のグルコース含有率70〜97重量
%の水溶液が使用される。In addition, as a glucose raw material, the total sugar concentration is usually 40~
An aqueous solution with a glucose content of 75% by weight and a glucose content of 70-97% by weight based on total sugars is used.
各単位分離塔1ないし8を連通する流体通路に、弁11
ないし18を介してグルコース区分液抜き出し管10と
、弁21ないし28を介してオリゴ糖区分液抜き出し管
20と、弁41ないし48を介してグルコース原料導入
管40と、弁31ないし38を介して水流入管30とを
それぞれ連通する。なお51ないし58はそれぞれ循環
ポンプを示す。A valve 11 is provided in the fluid passage connecting each unit separation column 1 to 8.
Glucose fraction liquid extraction pipe 10 via valves 21 to 18, oligosaccharide fraction liquid extraction pipe 20 via valves 21 to 28, glucose raw material introduction pipe 40 via valves 41 to 48, and glucose raw material introduction pipe 40 via valves 31 to 38. The water inflow pipes 30 are communicated with each other. Note that 51 to 58 each indicate a circulation pump.
次に、擬似移動層の操作を説明すると、グルコ−ス原料
液が弁44を通じて供給されている時点では、水は弁3
日を通じて供給され、グルコース区分液は弁12を通じ
て抜き出され、オリゴ糖区分液は弁26を通じて抜き出
される。また当該操作時においては分離塔8および7に
おいて非収着物質の回収帯域(以下、ゾーンlと言う)
、分離塔6および5において収着物質の吸着帯域(以下
、ゾーン2と言う)、分離塔4および3において収着物
質の濃縮帯域(以下、ゾーン3と言う)、分離塔2およ
び1において収着物質の脱着帯域(以下、ゾーン4と言
う)が形成されている。各ゾーンにおいて各糖の濃度分
布が形成されており、この濃度分布はその形状を保持し
つつ下流方向に移動する。この移動に追随するように分
離塔へのグルコース原料液の供給、水の供給、グルコー
ス区分液の抜き出しおよびオリゴ糖区分液の抜き出しが
、弁の切り替えによって順次下流側に切り替えられる。Next, to explain the operation of the pseudo moving bed, at the time when the glucose raw material liquid is being supplied through the valve 44, the water is flowing through the valve 3.
The glucose fraction is withdrawn through valve 12 and the oligosaccharide fraction is withdrawn through valve 26. In addition, during this operation, a recovery zone (hereinafter referred to as zone 1) of non-sorbed substances in separation towers 8 and 7 is used.
, an adsorption zone for sorbent substances in separation columns 6 and 5 (hereinafter referred to as zone 2), a concentration zone for sorbent substances in separation columns 4 and 3 (hereinafter referred to as zone 3), and an adsorption zone for sorbent substances in separation columns 2 and 1 (hereinafter referred to as zone 3). A desorption zone (hereinafter referred to as zone 4) for the adsorbent is formed. A concentration distribution of each sugar is formed in each zone, and this concentration distribution moves downstream while maintaining its shape. Following this movement, the supply of the glucose raw material liquid to the separation column, the supply of water, the withdrawal of the glucose partitioned liquid, and the withdrawal of the oligosaccharide partitioned liquid are sequentially switched to the downstream side by switching the valves.
切り替えは4種類の管について同時に行ってもよく、ま
た各管毎に時間的にずらして行ってもよい、各法の流入
または抜き出しを継続する時間は、単位充填層の大きさ
、強酸性陽イオン交換樹脂の種類、層内を流下する液の
流速等により異なるが、通常数分ないし十数分である。Switching may be performed for the four types of pipes at the same time, or may be performed at different times for each pipe.The time for which each method continues to flow in or out depends on the size of the unit packed bed and the strong acid Although it varies depending on the type of ion exchange resin, the flow rate of the liquid flowing down the layer, etc., it is usually several minutes to more than ten minutes.
この切り替えにより、上述の4つのゾーンは逐次その充
填層に占める位置を流れの方向に移動し循環する。By this switching, the four zones described above sequentially move their positions in the packed bed in the flow direction and circulate.
陽イオン交換体を分離剤とする擬似移動層におけるグル
コースとオリゴ糖との分離の程度は種々の要因に影響さ
れるが、特に大きな要因は層内の循環流体の空塔流速(
以下循環流速という)と吸着剤の見掛けの移動速度(以
下固定層流速という)である、すなわち液の循環流速は
各ゾーン毎に異なるが、これらの各ゾーンの循環流速の
うち、充填層から抜き出されるグルコース区分液および
オリゴ糖区分液へのグルコースおよびオリゴ糖の分配に
大きく影響を与えるのは、ゾーン3の循環流速の固定層
流速に対する比率 (循環流速/固定層流速)β3およ
びゾーン1の循環流速の固定層流速に対する比率 (循
環流速/固定層流速)β1の値であることを知見し、こ
れらの値が各々0. 4〜0.7および0. 3〜0.
6とすることがグルコースとオリゴ糖の分離に最も適
していることを併せて知見した。更に好ましい結果を得
るためには水の供給量と原料液の供給量の比率γを2〜
4の範囲内とすることが望ましい。β3またはβ1の値
が上記の範囲内にない場合には、グルコースまたはオリ
ゴ糖は充填層の全域にわたって分布し、抜き出されるオ
リゴ糖区分液中にオリゴ糖が、またはグルコース区分液
中にオリゴ糖が多量に混入するようになる。しかし、上
述の条件が満足される場合には、グルコースはゾーン3
に、オリゴ糖はゾーン2に大部分が分布し、従って高純
度グルコース水溶液を高回収率で取得することができる
。The degree of separation of glucose and oligosaccharides in a pseudo-mobile bed using a cation exchanger as a separation agent is influenced by various factors, but a particularly large factor is the superficial flow rate of the circulating fluid in the bed (
The apparent moving speed of the adsorbent (hereinafter referred to as the fixed bed flow rate), that is, the circulating flow rate of the liquid, differs for each zone. The ratio of the circulation flow rate in zone 3 to the fixed bed flow rate (circulation flow rate/fixed bed flow rate) β3 and the zone 1 It was found that the ratio of the circulation flow rate to the fixed bed flow rate (circulation flow rate/fixed bed flow rate) is the value of β1, and these values are each 0. 4-0.7 and 0. 3-0.
It was also found that setting the value of 6 is most suitable for separating glucose and oligosaccharides. In order to obtain more favorable results, the ratio γ between the amount of water supplied and the amount of raw material liquid supplied should be 2 to 2.
It is desirable that it be within the range of 4. If the value of β3 or β1 is not within the above range, the glucose or oligosaccharide will be distributed throughout the packed bed, and the oligosaccharide will be present in the oligosaccharide fraction that is withdrawn or the oligosaccharide will be present in the glucose fraction. becomes mixed in in large quantities. However, if the above conditions are met, glucose will be in zone 3.
In addition, most of the oligosaccharides are distributed in zone 2, and therefore a highly purified glucose aqueous solution can be obtained with a high recovery rate.
なお、本明細書において固定層流速とは、充填層内の陽
イオン交換体の見かけの容積を、ゾーン1が充填層を一
周するのに要する時間で除したものである。Note that in this specification, the fixed bed flow rate is the apparent volume of the cation exchanger in the packed bed divided by the time required for zone 1 to go around the packed bed.
以下に本発明の詳細な説明するが、本発明は以下の実施
例に限定されるものではない。The present invention will be described in detail below, but the present invention is not limited to the following examples.
実施例1
グルコース96.0%、マルトース以上のオリゴ糖3.
7%、フルクトース0. 3%よりなる全糖濃度60%
のグルコース原料液を第1図に示すフローに準じて擬似
移動層式クロマト分離装置で分離した。Example 1 Oligosaccharide containing 96.0% glucose and maltose 3.
7%, fructose 0. Total sugar concentration 60% consisting of 3%
The glucose raw material solution was separated using a simulated moving bed chromatographic separation device according to the flow shown in FIG.
第1図において単位分離塔1〜8は内径108閣、高さ
1.5mの円筒であり、円筒内にはナトリウム形の強酸
性陽イオン交換樹脂アンバーライ)CG6000 (ロ
ームアンドハース社製)が合計110L充填されている
。各単位分離塔内は60℃に保持された。この擬似移動
層においてグルコース原料液および水の供給量をそれぞ
れ6. 05L/hr、19.8L/hr、 グルコ
ース区分液およびオリゴ糖区分液の抜き出し量をそれぞ
れ11、OL/hr、14.85L/hr、 ゾーン
3の循環流速を45.8L/hr、 固定層流速を8
5.4L/hr、として運転した0本実施例において、
β1、β3およびγの値は下記の通りである。In Figure 1, unit separation columns 1 to 8 are cylinders with an inner diameter of 108 mm and a height of 1.5 m, and inside the cylinder is a sodium-type strongly acidic cation exchange resin Amberly) CG6000 (manufactured by Rohm and Haas). A total of 110L is filled. The inside of each unit separation column was maintained at 60°C. In this pseudo-moving bed, the amounts of glucose raw material solution and water supplied were set at 6. 05L/hr, 19.8L/hr, the extraction amount of the glucose fractionated liquid and the oligosaccharide fractionated liquid is 11, OL/hr, 14.85L/hr, respectively, the circulation flow rate of zone 3 is 45.8L/hr, the fixed bed flow rate 8
In this example, the engine was operated at 5.4L/hr.
The values of β1, β3 and γ are as follows.
β3=0. 536、 β1=0. 433γ =
3.27
定常状態において抜き出されたグルコース区分液とオリ
ゴ糖区分液中の糖組成を表−1に示す。β3=0. 536, β1=0. 433γ =
3.27 Table 1 shows the sugar compositions in the glucose fraction and oligosaccharide fraction extracted under steady state conditions.
なおグルコース区分液中のグルコースの回収率は99.
2%であった。The recovery rate of glucose in the glucose fraction was 99.
It was 2%.
表−1
比較例1
実施例1と同一組成、同一糖濃度のグルコース原料液を
下記条件で実施例1と同様にグルコースの分離を行った
。Table 1 Comparative Example 1 Glucose was separated from a glucose raw material solution having the same composition and sugar concentration as in Example 1 under the following conditions in the same manner as in Example 1.
グルコース原料液供給量 6.05L/hr水供給量
19. 8 L/hrグルコース区
分液抜出量 11. OL/hrオリゴ糖区分液抜出
量 14.85L/hrゾーン3の循環流速 3
9. 4 L/hr固定層流速 100.
8 L/hrβ3=0.391、 β1=0.30
4γ =3.27
定常状態において抜き出されたグルコース区分液とオリ
ゴ糖区分液中の糖組成を表−2に示す。Glucose raw material liquid supply amount 6.05L/hr Water supply amount 19. 8 L/hr Glucose separation liquid withdrawal amount 11. OL/hr Oligosaccharide separation liquid withdrawal amount 14.85L/hr Circulation flow rate in zone 3 3
9. 4 L/hr fixed bed flow rate 100.
8 L/hrβ3=0.391, β1=0.30
4γ = 3.27 Table 2 shows the sugar compositions in the glucose fraction and oligosaccharide fraction extracted under steady state conditions.
なおグルコース区分液中のグルコースの回収率は80.
1%であった。The recovery rate of glucose in the glucose fraction was 80.
It was 1%.
表−2
比較例2
実施例1と同一組成、同一糖濃度のグルコース原料液を
下記条件で実施例1と同様にグルコースの分離を行った
。Table 2 Comparative Example 2 Glucose was separated from a glucose raw material solution having the same composition and sugar concentration as in Example 1 under the following conditions in the same manner as in Example 1.
グルコース原料液供給量 6.05L/hr水供給量
19. 8 L/hrグルコース区
分液抜出量 6. 6 L/、hrオリゴ糖糖分分
液抜出量 19.25L/hrゾーン3の循環流速
38. OL/hr固定層流速 85
. 4 L/hrβ3=0.445、 β1=0.
290γ =3.27
定常状態において抜き出されたグルコース区分液とオリ
ゴ糖区分液中の糖組成を表−3に示す。Glucose raw material liquid supply amount 6.05L/hr Water supply amount 19. 8 L/hr Glucose separation liquid withdrawal amount 6. 6 L/hr Oligosaccharide separation extraction amount 19.25L/hr Zone 3 circulation flow rate
38. OL/hr fixed bed flow rate 85
.. 4 L/hrβ3=0.445, β1=0.
290γ = 3.27 Table 3 shows the sugar compositions in the glucose fraction and oligosaccharide fraction extracted in a steady state.
なおグルコース区分液中のグルコースの回収率は79.
3%であった。The recovery rate of glucose in the glucose fraction was 79.
It was 3%.
表−3
比較例3
実施例1と同一組成、同一糖濃度のグルコース原料液を
下記条件で実施例1と同様にグルコースの分離を行った
。Table 3 Comparative Example 3 Glucose was separated from a glucose raw material solution having the same composition and sugar concentration as in Example 1 under the following conditions in the same manner as in Example 1.
グルコース原料液供給量 8. 8 L/hr水供
給量 16. 5 L/hrグルコー
ス区分液抜出量 11. OL/hrオリゴ糖区分液
抜出量 14. 3 L/hrゾーン3の循環流速
45. 8 L/hr固定層流速
85. 4 L/hrβ3=0.536、 β1
=0.472γ =1. 88
定常状態において抜き出されたグルコース区分液とオリ
ゴ糖区分液中の糖組成を表−4に示す。Glucose raw material liquid supply amount 8. 8 L/hr water supply amount 16. 5 L/hr Glucose separation liquid withdrawal amount 11. OL/hr Oligosaccharide separation liquid withdrawal amount 14. 3 L/hr Circulation flow rate in zone 3 45. 8 L/hr fixed bed flow rate
85. 4 L/hrβ3=0.536, β1
=0.472γ =1. 88 Table 4 shows the sugar compositions in the glucose fraction and oligosaccharide fraction extracted under steady state conditions.
なおグルコース区分液中のグルコースの回収率は87.
7%であった。The recovery rate of glucose in the glucose fraction was 87.
It was 7%.
表−4
〈発明の効果〉
本発明によれば次の効果が得られ、産業上の効果に優れ
たものである。Table 4 <Effects of the Invention> According to the present invention, the following effects can be obtained, and the invention is excellent in industrial effects.
(1)単純な工程により、高純度のグルコースを得るこ
とができる。(1) Highly purified glucose can be obtained through a simple process.
(2〉原料の品質を何ら損なうことなく原゛料中よりグ
ルコースを高回収率で分離、回収できる。(2) Glucose can be separated and recovered from the raw material at a high recovery rate without any loss in quality of the raw material.
(3)試薬を用いることなく分離、回収でき、ランニン
グコストを安〈実施することができる。(3) Separation and recovery can be performed without using reagents, resulting in low running costs.
(4)連続的にまた工業的に実施することができる。(4) It can be carried out continuously and industrially.
第1図は本発明のグルコースの分離に用いた陽イオン交
換体を充填した擬似移動層のフローを示す図面である。
手
続
補
正
書
(自発)
平底2年11月6日FIG. 1 is a diagram showing the flow of a simulated moving bed filled with a cation exchanger used for the separation of glucose according to the present invention. Procedural amendment (voluntary) November 6, 2017
Claims (1)
ゴ糖を含む水溶液を原料とし、水を溶離剤としてグルコ
ースを含む水溶液と前記オリゴ糖を含む水溶液とに連続
的にクロマト分離する方法であって、内部に陽イオン交
換体が充填され、且つ前端と後端とが流体通路により結
合された充填層内に、溶離剤供給部から収着物質抜出部
までの収着物質の脱着帯域、同抜出部から原料供給部ま
での収着物質の濃縮帯域、同供給部から非収着物質抜出
部までの収着物質の吸着帯域および同抜出部から溶離剤
供給部までの非収着物質の回収帯域の四つのゾーンを上
流より上記順序で形成させつつ流体を循環させ、上記供
給部および抜出部の位置を間欠的に下流方向に移動させ
る事より成る擬似移動層による分離法において、収着物
質の濃縮帯域における循環流体の空塔流速の吸着剤の見
掛けの移動速度に対する比率β3を0.4〜0.7とし
、さらに非収着物質の回収帯域における循環流体の空塔
流速の吸着剤の見掛けの移動速度に対する比率β1を0
.3〜0.6とすることを特徴とするグルコースの分離
法。 2、溶離剤供給量の原料供給量に対する比率γを2〜4
とすることを特徴とする請求項1に記載のグルコースの
分離法。[Scope of Claims] 1. A method in which an aqueous solution containing an oligosaccharide having a molecular weight greater than glucose and maltose is used as a raw material and is subjected to continuous chromatographic separation using water as an eluent into an aqueous solution containing glucose and an aqueous solution containing the oligosaccharide. The desorption of the sorbed substance from the eluent supply section to the sorbed substance extraction section is performed in a packed bed filled with a cation exchanger and whose front end and rear end are connected by a fluid passage. a concentration zone for sorbent substances from the extraction section to the raw material supply section, an adsorption zone for sorption substances from the supply section to the non-sorbent material extraction section, and a zone from the extraction section to the eluent supply section. By a pseudo-moving bed, which consists of forming four zones of the recovery zone for non-sorbed substances in the above order from upstream, circulating the fluid, and intermittently moving the positions of the supply section and the extraction section in the downstream direction. In the separation method, the ratio β3 of the superficial flow rate of the circulating fluid in the sorbent concentration zone to the apparent moving velocity of the adsorbent is set to 0.4 to 0.7, and the ratio β3 of the circulating fluid in the non-sorbing substance recovery zone is set to 0.4 to 0.7. The ratio β1 of the superficial flow velocity to the apparent moving velocity of the adsorbent is 0.
.. 3 to 0.6. A method for separating glucose. 2. The ratio γ of the eluent supply amount to the raw material supply amount is 2 to 4.
The method for separating glucose according to claim 1, characterized in that:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21750589A JPH0383991A (en) | 1989-08-25 | 1989-08-25 | Separation of glucose |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP21750589A JPH0383991A (en) | 1989-08-25 | 1989-08-25 | Separation of glucose |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0383991A true JPH0383991A (en) | 1991-04-09 |
Family
ID=16705286
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP21750589A Pending JPH0383991A (en) | 1989-08-25 | 1989-08-25 | Separation of glucose |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0383991A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5391299A (en) * | 1993-02-12 | 1995-02-21 | Organo Corporation | Process for production of starch sugars |
-
1989
- 1989-08-25 JP JP21750589A patent/JPH0383991A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5391299A (en) * | 1993-02-12 | 1995-02-21 | Organo Corporation | Process for production of starch sugars |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
FI98129C (en) | Chromatographic separation procedure | |
US4157267A (en) | Continuous separation of fructose from a mixture of sugars | |
US3531463A (en) | Enrichment and/or separation of an organic compound by adsorption processes | |
EP1106602B1 (en) | Simulated moving bed chromatographic purification of amino acids | |
KR20110076800A (en) | How to separate organic acids and amino acids from fermentation broth | |
CA2345802C (en) | Chromatographic separation process | |
WO2014025560A1 (en) | Mannose production from palm kernel meal using simulated moving bed separation | |
EP3215640B1 (en) | Chromatographic sequential simulated moving bed fractionation method of a feedstock | |
Huang et al. | Enzyme purification and concentration by simulated moving bed chromatography: an experimental study | |
RU2124496C1 (en) | Method of preparing alkali metal citrate | |
JP3277575B2 (en) | Chromatographic separation method | |
JPH0383991A (en) | Separation of glucose | |
CA2834706C (en) | Improved apparatus and circulating fluidized bed system | |
JP3256349B2 (en) | Separation method and apparatus using simulated moving bed | |
US4456774A (en) | Bulk separation of polyhydric alcohols by selective adsorption on zeolitic molecular sieves | |
JPH02124895A (en) | Lactulose isolation method | |
JPH0639206A (en) | Pseudo moving-bed liquid chromatographic separator | |
JPH0639205A (en) | Liquid chromatographic separation device for three-component separation | |
JP2834225B2 (en) | Simulated moving bed chromatographic separator | |
CN115925573B (en) | Purification method of D-calcium pantothenate | |
JPS5838202B2 (en) | Adsorption separation device | |
JP3258513B2 (en) | Method for producing useful substance using simulated moving bed type chromatographic separation operation | |
JPH059080B2 (en) | ||
JP4603114B2 (en) | Method and apparatus for separating a plurality of components contained in a liquid | |
EP0137063B1 (en) | Bulk separation of polyhydric alcohols by selective adsorption on zeolitic molecular sieves |