JPH0381641A - Method and device for measuring hardness characteristic of material - Google Patents
Method and device for measuring hardness characteristic of materialInfo
- Publication number
- JPH0381641A JPH0381641A JP14434189A JP14434189A JPH0381641A JP H0381641 A JPH0381641 A JP H0381641A JP 14434189 A JP14434189 A JP 14434189A JP 14434189 A JP14434189 A JP 14434189A JP H0381641 A JPH0381641 A JP H0381641A
- Authority
- JP
- Japan
- Prior art keywords
- vibrator
- oscillation
- hardness
- self
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 8
- 239000000463 material Substances 0.000 title abstract description 12
- 230000010355 oscillation Effects 0.000 claims abstract description 31
- 238000001514 detection method Methods 0.000 claims abstract description 13
- 239000000126 substance Substances 0.000 claims description 6
- 238000005259 measurement Methods 0.000 abstract description 17
- 239000000919 ceramic Substances 0.000 abstract description 4
- 239000013078 crystal Substances 0.000 abstract description 2
- 108010010803 Gelatin Proteins 0.000 description 7
- 229920000159 gelatin Polymers 0.000 description 7
- 235000019322 gelatine Nutrition 0.000 description 7
- 235000011852 gelatine desserts Nutrition 0.000 description 7
- 239000008273 gelatin Substances 0.000 description 6
- 239000004033 plastic Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002559 palpation Methods 0.000 description 2
- 230000003321 amplification Effects 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000009774 resonance method Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 210000001519 tissue Anatomy 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/38—Concrete; Lime; Mortar; Gypsum; Bricks; Ceramics; Glass
- G01N33/388—Ceramics
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、物質の硬さ特性測定方法及び装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method and apparatus for measuring hardness properties of substances.
1゜
〔従来の技術〕
センサーは企業のFA化や計測の急速な進歩と共に種々
のものが開発され実用に供されている。斯かるセンサー
の中、触覚センサーは産業上重要な位置を占め、しかも
その需要は年々増加している。1゜ [Prior Art] Various types of sensors have been developed and put into practical use with the introduction of factory automation in companies and rapid progress in measurement. Among these sensors, tactile sensors occupy an important position in industry, and the demand for them is increasing year by year.
而して、従来触覚センサーとしては、一般に半導体ひず
みゲージや導電性感圧ゴム等を利用したものが知られて
いる。Conventional tactile sensors generally utilize semiconductor strain gauges, conductive pressure-sensitive rubber, and the like.
然しなから、斯かる従来の触覚センサーは、主に接触覚
や接触圧の知覚を目的としたもので、物質の有する硬さ
や柔らかさの度合、すなわち硬さ特性を知覚することは
極めて困難なのが実状であった。However, such conventional tactile sensors are mainly intended for sensing the sense of touch and contact pressure, and it is extremely difficult to perceive the degree of hardness or softness of a material, that is, the hardness characteristics. was the actual situation.
そこで、本発明者は斯かる実状に於て、物質の硬さ特性
を極めて容易かつ確実に知覚し得る方法及び装置を開発
すべく種々研究を重ねた結果、振動子の共振特性を利用
した自励発振回路に於ける発振周波数又は発S電圧を計
測すれば、極めて良い勝凍が得られることを見い出し、
本発明を完成した。Therefore, in this situation, the inventor of the present invention has conducted various researches to develop a method and device that can extremely easily and reliably perceive the hardness characteristics of materials, and as a result, has developed a self-resonance method that utilizes the resonance characteristics of a vibrator. He discovered that extremely good results could be obtained by measuring the oscillation frequency or oscillation S voltage in the excitation oscillation circuit.
The invention has been completed.
すなわち、本発明方法は対物接触振動子に取り付けた振
動検出用素子の出力信号を増幅した後、当該振動子に強
制帰還せしめて構成される自励発振回路に於ける発振周
波数又は発振電圧を計測することを特徴とする物質の硬
さ特性測定方法であり、また本発明装置は振動検出用素
子を有する対物接触振動子をその節に於て適宜基体に取
り付けたセンサー部及び当該振動検出用素子の出力信号
を増幅して対物接触振動子に強制帰還せしめる増幅回路
部を備えた自励発振回路部と、当該自励発振回路部の発
振周波数又は(及び)発振電圧を計測する計測部とから
成ることを特徴とする物質の硬さ特性測定装置である。That is, the method of the present invention amplifies the output signal of a vibration detection element attached to an object contact vibrator, and then measures the oscillation frequency or oscillation voltage in a self-excited oscillation circuit configured by forcing feedback to the vibrator. It is a method for measuring hardness characteristics of a substance, and the device of the present invention comprises a sensor section in which an object contact vibrator having a vibration detection element is attached to a substrate at its node, and the vibration detection element. a self-excited oscillation circuit section equipped with an amplification circuit section that amplifies the output signal of and forcibly returns it to the object contact vibrator; and a measurement section that measures the oscillation frequency or (and) oscillation voltage of the self-excited oscillation circuit section. This is an apparatus for measuring the hardness characteristics of a substance, which is characterized by:
以下本発明装置の実施例を示す図面並びに測定例を挙げ
て本発明を更に説明する。The present invention will be further explained below with reference to drawings showing examples of the apparatus of the present invention and measurement examples.
1はセンサー部で、振動検出用素子12を有する対物接
触振動子11を、その節に於て基体14に取り付けて構
成せられている。Reference numeral 1 denotes a sensor section, which is constructed by attaching an object contact vibrator 11 having a vibration detection element 12 to a base body 14 at its node.
ここに対物接触振動子11としては、例えば圧電セラミ
ック振動子や水晶振動子が好ましいものとして挙げられ
、その形状は板状体、柱状体の如何を問わない。尚、こ
の対物接触振動子11の対物接触部にプラスチック製の
尖端状接触端子11aを付設すれば、振動ホーンとして
機能し、振動振幅を増大せしめることができるのでより
効果的である。Here, as the object contact vibrator 11, for example, a piezoelectric ceramic vibrator or a crystal vibrator is mentioned as a preferable one, and its shape does not matter whether it is a plate-shaped body or a columnar body. It is more effective to attach a pointed contact terminal 11a made of plastic to the object contact portion of the object contact vibrator 11, since it functions as a vibration horn and can increase the vibration amplitude.
また、振動検出用素子12としては、例えば圧電セラミ
ック素子、圧電型加速度ピックアップ、高分子圧電フィ
ルム等が挙げられ、その形状は対物接触振動子11に対
応せしめて、板状、筒状等適宜選定される。尚、この振
動検出用素子12の対物接触振動子11への具体的取り
付は法は貼着等その如何を問わない。Examples of the vibration detection element 12 include a piezoelectric ceramic element, a piezoelectric acceleration pickup, a polymer piezoelectric film, etc., and its shape can be appropriately selected such as a plate shape or a cylindrical shape in accordance with the object contact vibrator 11. be done. The vibration detection element 12 may be specifically attached to the object contact vibrator 11 by any method such as adhesion.
対物接触振動子11の基体14への取り付けは、対物接
触振動子11を固有振動に近い状態で基体14に支持固
定し得るものが好ましく、例えば金属杆、プラスチック
杆、ゴムひも等の支持部材13を介して固定する方法、
あるいは基体14内に溶融合成樹脂を充填して固化固定
せしめる方法等が挙げられる。The attachment of the object contact vibrator 11 to the base body 14 is preferably one that can support and fix the object contact vibrator 11 to the base body 14 in a state close to natural vibration, for example, a support member 13 such as a metal rod, a plastic rod, or a rubber string How to fix via,
Alternatively, a method may be used in which the base body 14 is filled with a molten synthetic resin and solidified and fixed.
基体14の形態は、対物接触振動子11の振動を保持保
全し得るものであれば、枠体、半容器体、完全容器体等
その如何を問わない。The form of the base body 14 may be any form, such as a frame, a half container, a complete container, etc., as long as it can maintain and maintain the vibration of the object contact vibrator 11.
2は増幅回路部で、フィルター、増幅器等から構成され
、その入力部が振動検出用素子12に接続されていると
共に、その出力部が対物接触振動子11に接続せられ、
全体として自励発振回路部Pを構成しているものである
。Reference numeral 2 denotes an amplifier circuit section, which is composed of a filter, an amplifier, etc., and its input section is connected to the vibration detection element 12, and its output section is connected to the object contact vibrator 11.
The self-excited oscillation circuit section P is configured as a whole.
3は計測部で、センサー部1の発振周波数又は(及び〉
発振電圧を計測する周波数測定器31又は(及び〉電圧
測定器32が、増幅回路部2と対物接触振動子11間に
接続設置せられているものである。3 is a measuring section, which measures the oscillation frequency of the sensor section 1 or (and
A frequency measuring device 31 or (and) a voltage measuring device 32 for measuring the oscillation voltage is connected and installed between the amplifier circuit section 2 and the object contact vibrator 11.
測定例1
′1lIJ1図に示した本発明装置〔但し、対物接触振
動子として圧電セラミック素子(PZT:縦20mm。Measurement Example 1 The device of the present invention shown in Figure '1lIJ1 [However, a piezoelectric ceramic element (PZT: 20 mm in length) was used as the object contact vibrator.
横5關、厚さ1圓)、接触端子としてプラスチック板、
振動検出用素子として圧電型加速度ピックアップ(1,
0g) 、支持部材としてゴムひもを使用〕を用い、厚
さ30叩の各種濃度のゼラチンに対する周波数変化を測
定した。この測定結果を第5図に示す。尚、周波数変化
は次式により求めた。(width: 5 mm, thickness: 1 mm), plastic plate as a contact terminal,
Piezoelectric acceleration pickup (1,
0g), a rubber cord was used as a support member], and the frequency change was measured for gelatin of various concentrations with a thickness of 30 mm. The measurement results are shown in FIG. Incidentally, the frequency change was determined by the following formula.
△f=f、−f。Δf=f, -f.
△r;周波数変化値
r、:接触時局波数
fo:無接触時局波数
因に、ゼラチンは一般に濃度が大きくなると硬さが増す
が、第5図から明らかな如く、本発明装置による測定結
果も濃度が大きいゼラチンはど硬く判別していることが
認められる。実際に触診によってこれらのゼラチンの硬
さを比較したところ、はぼ同様の傾向が得られた。Δr: Frequency change value r,: Contact current wave number fo: Non-contact current wave number Generally, gelatin becomes harder as its concentration increases, but as is clear from FIG. 5, the measurement results using the device of the present invention It is also observed that gelatin with a high concentration is judged to be hard. When the hardness of these gelatins was actually compared by palpation, similar trends were obtained.
測定例2
測定例1と同一の本発明装置を用い、濃度15%及び3
0%の各種属さのゼラチンに対する周波数変化を測定例
1と同様に測定した。この測定結果を第6図に示す。Measurement Example 2 Using the same device of the present invention as in Measurement Example 1, the concentrations were 15% and 3.
Frequency changes for 0% gelatin of various types were measured in the same manner as in Measurement Example 1. The measurement results are shown in FIG.
因に、第6図から明らかな如く、濃度15%及び30%
の何れに於いてもゼラチンの厚さに比例して周波数変化
が大きくなり、ゼラチンの硬さに対して良好に硬さ特性
を判別していることが認められる。Incidentally, as is clear from Figure 6, the concentrations of 15% and 30%
In either case, the frequency change increases in proportion to the thickness of gelatin, and it is recognized that the hardness characteristics can be discriminated well with respect to the hardness of gelatin.
本発明装置は以上の如く構成せられるものであるから、
振動検出用素子12の出力信号を増幅回路部2により増
幅した後、対物接触振動子11に帰還せしめれば、当該
振動子11が振動して、振動検出用素子12及び支持部
材13の影響を含めて自励発振するので、このときの発
振周波数又は発振電圧を計測部3で計測する。Since the device of the present invention is configured as described above,
If the output signal of the vibration detection element 12 is amplified by the amplifier circuit section 2 and then fed back to the object contact vibrator 11, the vibrator 11 will vibrate and the influence of the vibration detection element 12 and the support member 13 will be reduced. Since self-excited oscillation occurs, the measurement unit 3 measures the oscillation frequency or oscillation voltage at this time.
発振周波数並びに発振電圧は、対物接触振動子11に接
触する物質の硬さに比例して変化するので、無接触時の
計測値と接触時の計測値の差をとれば、物質の硬さ特性
を測定することができる。The oscillation frequency and oscillation voltage change in proportion to the hardness of the material that comes into contact with the object contact vibrator 11, so if you take the difference between the measured value when there is no contact and the measured value when there is contact, you can determine the hardness characteristics of the material. can be measured.
また、予め増幅回路部2の出力を調整し、計測値の差が
零となる物質を定めておくことにより、当該物質を基準
とする硬さ特性を測定することができる。Further, by adjusting the output of the amplifier circuit section 2 in advance and determining a material for which the difference in measured values is zero, it is possible to measure the hardness characteristics using the material as a reference.
以上従って、本発明によれば硬さ特性を周波数や電圧の
変化により測定するため、分解能に優れ、−穀物質はも
とより皮膚や筋肉など微妙な硬さ特性を有する生体組織
等の硬さ特性も極めて効果的に測定することができる。Therefore, according to the present invention, since the hardness characteristics are measured by changes in frequency and voltage, the resolution is excellent, and it is possible to measure the hardness characteristics of not only grains but also living tissues such as skin and muscles that have delicate hardness characteristics. It can be measured very effectively.
更に、本発明は自励発振を利用するものであるため、接
触する物質が変わる度にいちいち発振器を操作して発振
周波数を探す必要がなく、取り扱いが極めて簡便で、リ
アルタイムでの硬さ特性測定が可能である。Furthermore, since the present invention utilizes self-oscillation, there is no need to operate an oscillator to search for the oscillation frequency every time the contact material changes, making it extremely easy to handle and allowing hardness characteristics to be measured in real time. is possible.
また、本発明はコンピューターとのインターフェイスが
容易で、しかも小型化し易いと共に、その測定結果は人
間の触診による物質の硬さ特性知覚と非常に良く対応し
ているものであるため、ロボット工学、医療分野、化粧
品分野、食品分野等多方面に於ける適用実施が可能であ
る。In addition, the present invention is easy to interface with a computer, is easy to miniaturize, and the measurement results correspond very well to the perception of hardness characteristics of materials by human palpation, so it is useful in robotics, medical science, etc. It can be applied in many fields such as cosmetics, food, etc.
第1図及び第2図はそれぞれ第1及び第2の実施例を示
す概略斜視説明図、第3図及び第4図はそれぞれ第3及
び第4の実施例を示す概略一部切欠斜視説明図、第5図
は測走例1の測定結果を示す図、第6図は測定例2の測
定結果を示す図である。
以上1 and 2 are schematic perspective explanatory views showing the first and second embodiments, respectively, and FIGS. 3 and 4 are schematic partially cutaway perspective explanatory views showing the third and fourth embodiments, respectively. , FIG. 5 is a diagram showing the measurement results of Measurement Example 1, and FIG. 6 is a diagram showing the measurement results of Measurement Example 2. that's all
Claims (1)
信号を増幅した後、当該振動子に強制帰還せしめて構成
される自励発振回路に於ける発振周波数又は発振電圧を
計測することを特徴とする物質の硬さ特性測定方法。 2、振動検出用素子を有する対物接触振動子をその節に
於て適宜基体に取り付けたセンサー部及び当該振動検出
用素子の出力信号を増幅して対物接触振動子に強制帰還
せしめる増幅回路部を備えた自励発振回路部と、当該自
励発振回路部の発振周波数又は(及び)発振電圧を計測
する計測部とから成ることを特徴とする物質の硬さ特性
測定装置。[Claims] 1. Oscillation frequency or oscillation voltage in a self-excited oscillation circuit configured by amplifying the output signal of a vibration detection element attached to an object contact vibrator and then forcing feedback to the vibrator. A method for measuring hardness characteristics of a substance, characterized by measuring the hardness of a substance. 2. A sensor section in which an object-contact vibrator having a vibration detection element is attached to a base at appropriate points, and an amplifier circuit section that amplifies the output signal of the vibration detection element and forcibly returns it to the object-contact vibrator. What is claimed is: 1. A hardness characteristic measuring device for a substance, comprising: a self-excited oscillation circuit; and a measuring section that measures the oscillation frequency and/or oscillation voltage of the self-excited oscillation circuit.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63-277966 | 1988-11-02 | ||
JP27796688 | 1988-11-02 | ||
JP11569389 | 1989-05-09 | ||
JP1-115693 | 1989-05-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0381641A true JPH0381641A (en) | 1991-04-08 |
Family
ID=26454160
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14434189A Pending JPH0381641A (en) | 1988-11-02 | 1989-06-07 | Method and device for measuring hardness characteristic of material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0381641A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08261915A (en) * | 1995-03-20 | 1996-10-11 | Olympus Optical Co Ltd | Tactile sensor probe and tactile sensor |
WO2004073522A1 (en) * | 2003-02-20 | 2004-09-02 | Nihon University | Catheter sensor for measuring hardness |
WO2007083546A1 (en) * | 2006-01-19 | 2007-07-26 | National University Corporation Toyohashi University Of Technology | Tactile sensor device |
US9608619B2 (en) | 2005-07-11 | 2017-03-28 | Peregrine Semiconductor Corporation | Method and apparatus improving gate oxide reliability by controlling accumulated charge |
US9680416B2 (en) | 2004-06-23 | 2017-06-13 | Peregrine Semiconductor Corporation | Integrated RF front end with stacked transistor switch |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126839A (en) * | 1984-07-16 | 1986-02-06 | Kawasaki Steel Corp | Measuring method of hardness |
-
1989
- 1989-06-07 JP JP14434189A patent/JPH0381641A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6126839A (en) * | 1984-07-16 | 1986-02-06 | Kawasaki Steel Corp | Measuring method of hardness |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08261915A (en) * | 1995-03-20 | 1996-10-11 | Olympus Optical Co Ltd | Tactile sensor probe and tactile sensor |
WO2004073522A1 (en) * | 2003-02-20 | 2004-09-02 | Nihon University | Catheter sensor for measuring hardness |
US9680416B2 (en) | 2004-06-23 | 2017-06-13 | Peregrine Semiconductor Corporation | Integrated RF front end with stacked transistor switch |
US9608619B2 (en) | 2005-07-11 | 2017-03-28 | Peregrine Semiconductor Corporation | Method and apparatus improving gate oxide reliability by controlling accumulated charge |
WO2007083546A1 (en) * | 2006-01-19 | 2007-07-26 | National University Corporation Toyohashi University Of Technology | Tactile sensor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Grimes et al. | Magnetoelastic sensors for remote query environmental monitoring | |
Su et al. | A bimorph based dilatometer for field induced strain measurement in soft and thin free standing polymer films | |
JPH0381641A (en) | Method and device for measuring hardness characteristic of material | |
JP4287200B2 (en) | Hardness measurement device using ultrasonic vibration | |
Frobenius et al. | A microminiature solid-state capacitive blood pressure transducer with improved sensitivity | |
WO2001074500A2 (en) | Sonic transducer and feedback control method thereof | |
Brand et al. | Micromachined viscosity sensor for real-time polymerization monitoring | |
JPH10314122A (en) | Sensor incorporating vibration exciter for measuring dynamic characteristic of biological surface part | |
Johnson et al. | An acoustically driven Kelvin probe for work‐function measurements in gas ambient | |
JP3257563B2 (en) | Hardness measuring device and hardness measuring probe | |
JP2007093573A (en) | Biosensor measuring system, viscosity measuring method, and micromass measuring method | |
JPH01189583A (en) | Tactile sensor using vibrator | |
KR101046539B1 (en) | sensor | |
KR101842350B1 (en) | The measurement apparatus for capacitive membrane sensor using mechanical resonance characteristics of membrane and the method thereof | |
JP2913025B2 (en) | Pressure sensing method and pressure sensor | |
JPH09196686A (en) | Angular velocity sensor | |
JPH0356834A (en) | Pig for measuring magnetostrictive stress of cylindrical material | |
SU1597687A1 (en) | Device for measuring hardness | |
JPH0544615B2 (en) | ||
JPS6491029A (en) | Force transducer | |
JPH05322731A (en) | Method and device for sensing hardness of substance | |
JP2004085289A (en) | Vibration type sensor detection circuit | |
JPS6410141A (en) | Pressure sensor | |
KR100763022B1 (en) | No-power and wireless sensors using magnetic field disturbance detection by ultrasonic spatial vibration and sensing system using the sensors | |
SU410269A1 (en) |