JPH0380149A - Production of alumina/zirconia sintered body - Google Patents
Production of alumina/zirconia sintered bodyInfo
- Publication number
- JPH0380149A JPH0380149A JP1217890A JP21789089A JPH0380149A JP H0380149 A JPH0380149 A JP H0380149A JP 1217890 A JP1217890 A JP 1217890A JP 21789089 A JP21789089 A JP 21789089A JP H0380149 A JPH0380149 A JP H0380149A
- Authority
- JP
- Japan
- Prior art keywords
- zirconia
- alumina
- sintered body
- temp
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 title claims abstract description 93
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 11
- 238000005245 sintering Methods 0.000 claims abstract description 12
- 238000007731 hot pressing Methods 0.000 claims abstract description 10
- 239000003381 stabilizer Substances 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 7
- 230000001590 oxidative effect Effects 0.000 claims abstract description 7
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 8
- 239000000843 powder Substances 0.000 abstract description 41
- 239000000203 mixture Substances 0.000 abstract description 7
- 239000002994 raw material Substances 0.000 abstract description 7
- 238000002156 mixing Methods 0.000 abstract description 4
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 abstract description 2
- 238000001354 calcination Methods 0.000 abstract 1
- 238000000975 co-precipitation Methods 0.000 abstract 1
- 238000004090 dissolution Methods 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 238000005452 bending Methods 0.000 description 8
- 239000002245 particle Substances 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 5
- 229910010271 silicon carbide Inorganic materials 0.000 description 5
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 description 4
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 229910002804 graphite Inorganic materials 0.000 description 3
- 239000010439 graphite Substances 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Compositions Of Oxide Ceramics (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は耐摩耗性9機械的特性に優れたアル□す・ジル
コニア焼結体の製造法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing an aluminum-zirconia sintered body having excellent wear resistance and mechanical properties.
(従来の技術)
アルミナにジルコニアを添加して、得られるアルミナ・
ジルコニア焼結体の機械的弊性を改善することは、特公
昭59−24751号公報に代表されるように一般に知
られてしる。(Conventional technology) Alumina obtained by adding zirconia to alumina.
Improving the mechanical properties of zirconia sintered bodies is generally known, as typified by Japanese Patent Publication No. 59-24751.
このようなアルミナ・ジルコニア焼結体の製造法は、以
下の2種類に大別できる。Methods for producing such alumina-zirconia sintered bodies can be roughly divided into the following two types.
(1)特開昭61−117153号公報に示されるよう
にアルミナ、ジルコニア、イツトリア等の各粉体を粉砕
、混合、成形して1500〜1650℃の温度で空気中
で常圧焼結する方法。(1) As shown in JP-A-61-117153, powders of alumina, zirconia, ittria, etc. are crushed, mixed, molded, and sintered under normal pressure in air at a temperature of 1500 to 1650°C. .
(2)特開昭61−58857号公報に示されるように
平均粒径が1.0μm以下のアルミナ及びジルコニアを
含む粉体を成形、仮焼後黒鉛製の型に入れ、1500℃
の温度で1時間程度ホットプレスで焼結して緻密化する
方法。(2) As shown in JP-A No. 61-58857, a powder containing alumina and zirconia with an average particle size of 1.0 μm or less is molded, calcined, placed in a graphite mold, and heated to 1500°C.
A method of sintering in a hot press for about 1 hour at a temperature of .
(発明が解決しようとする課題)
しかしながら(1)の方法では、アルミナとジルコニア
とでは焼結温度が異なり(ジルコニアはアルミナよう低
温で焼結する)、単に混合分散した粉体の成形体を焼成
すると焼結温度の違いにより。(Problem to be solved by the invention) However, in method (1), the sintering temperature is different for alumina and zirconia (zirconia is sintered at a lower temperature than alumina), and a compact of mixed and dispersed powder is simply fired. Then, due to the difference in sintering temperature.
アルミナ粒子とジルコニア粒子間にクラックが発生し、
高性能のアル□す・ジルコニア焼結体が得られ々bとい
う欠点がある。この対策として混合をよう均一にするた
め成分を一度溶解し、微細な複合沈殿物を作って焼結温
度を下げる方法が特開昭62−91419号公報に示さ
れ、また比表面積がs Oo On”/kg以上の微細
なアルミナ及びジルコニアを含む粉体全組成物中に焼結
助剤として遷移金属を0.01〜1重量優添加し、14
50〜1500℃の温度で焼結可能とする方法が特開昭
62−59565号公報に示されるが、これらの方法で
は価格、性能の点で問題があう、また成形が困難である
という欠点がある。Cracks occur between alumina particles and zirconia particles,
The disadvantage is that a high-performance aluminum/zirconia sintered body cannot be obtained. As a countermeasure to this problem, Japanese Patent Application Laid-Open No. 62-91419 discloses a method in which the components are dissolved once to make the mixture uniform and the sintering temperature is lowered by forming fine composite precipitates. A transition metal of 0.01 to 1 weight is added as a sintering aid to the entire powder composition containing fine alumina and zirconia of 1.5"/kg or more, and
Japanese Patent Application Laid-Open No. 62-59565 discloses methods that enable sintering at temperatures of 50 to 1500°C, but these methods have problems in terms of cost and performance, and are difficult to mold. be.
一方(2)の方法では、クラックが防止され欠陥のない
高性能の焼結体が得られるが、1500℃以上の高温の
条件下で使用できる型材は黒鉛に限定されてしiい、″
また黒鉛を用いると酸化を防止するために還元性、真空
中又は中性雰囲気中で焼成しなければならないためコス
ト高となる欠点がある。On the other hand, method (2) prevents cracks and provides a high-performance sintered body without defects, but the mold material that can be used at high temperatures of 1500°C or higher is limited to graphite.
Furthermore, when graphite is used, it has to be reduced and fired in a vacuum or neutral atmosphere in order to prevent oxidation, resulting in high costs.
上記に示すように従来の技術では、アルミナにジルコニ
アを添加すれば性能が向上することば知られているが、
アルミナ焼結体のように安価に製造する技術、製造条件
が確立されていないのが現状である。As shown above, in conventional technology, it is known that adding zirconia to alumina improves performance.
Currently, the technology and manufacturing conditions for manufacturing it at a low cost like alumina sintered bodies have not been established.
本発明は上記の欠点のないアルミナ・ジルコニア焼結体
の製造法を提供することを目的とするものである。The object of the present invention is to provide a method for producing an alumina-zirconia sintered body that does not have the above-mentioned drawbacks.
(課題を解決するための手段)
本発明はアルミナ、ジルコニア及びジルコニアの安定化
剤を含む材料をホットプレスで焼結させてアルミナ・ジ
ルコニア焼結体を製造する方法において1弱酸化性雰囲
気中又は大気中で、温度が1100〜1400℃の条件
でホットプレスして焼結させた後9弱酸化性雰囲気中又
は大気中でホットプレス温度より高温で、かつ1500
℃以下の温度で熱処理するアルミナ・ジルコニア焼結体
の製造法に関する。(Means for Solving the Problems) The present invention provides a method for producing an alumina-zirconia sintered body by sintering materials containing alumina, zirconia, and a zirconia stabilizer in a weakly oxidizing atmosphere or in a slightly oxidizing atmosphere. After hot pressing and sintering in the atmosphere at a temperature of 1100 to 1400 ° C.
This invention relates to a method for producing an alumina-zirconia sintered body that is heat-treated at temperatures below ℃.
本発明にかいてジルコニアの安定化剤としては。As a stabilizer for zirconia in the present invention.
セリア、イツトリア等を用いることが好筐しいが。It is best to use ceria, ittoria, etc.
ジルコニアを安定化する効果を有し、かつ正方晶のジル
コニア結晶を生成するものであれば特に制限はない。ジ
ルコニアの含有量は、安定化剤の種類及び添加量によう
適宜選定するものとし、*に制限はないが9機械的、熱
的の特性及びホットプレスの容易さを考慮すれば全組成
物中に15〜30容量多含有することが好筐しい。なお
ジルコニアには不純物としてHf 02が含1れるが使
用に際しでは何ら差し支えない。There is no particular restriction as long as it has the effect of stabilizing zirconia and produces tetragonal zirconia crystals. The content of zirconia shall be appropriately selected depending on the type and amount of the stabilizer. *There is no limit to the content of zirconia, but if mechanical and thermal properties and ease of hot pressing are taken into account, It is preferable to contain 15 to 30 volumes. Although zirconia contains Hf 02 as an impurity, it poses no problem when used.
一方アルミナは、全組成物中に50容量多以上含有され
ることが好筐しい。On the other hand, alumina is preferably contained in the total composition by 50 volumes or more.
アルミナ、ジルコニア及びジルコニアの安定化剤を含む
材料は、粉体の状態でホットプレスしてもよ<、また粉
体を成形した成形体を用いてホットプレスしてもよ←特
に制限はない。The material containing alumina, zirconia, and a zirconia stabilizer may be hot-pressed in the form of powder, or may be hot-pressed using a molded body of powder, with no particular restriction.
アルミナ、ジルコニア及びジルコニアの安定化剤を含む
材料にかいて、粉体を用いる場合は、各酸化物又はホッ
トプレス温度以下の温度で酸化物となる粉体を混合分散
したもの若しくはアルミナ粉と安定化剤が既に固溶され
たジルコニア粉とを混合分散した粉体を用いることが好
ましい。iたこれらの粉体ば1粒径が平均で0.3〜1
.0μmであれば取扱い易さ、特性の点で好壕しく、さ
らに比表面積がs o o o m2/ka以下であれ
ば成形し易いので好ましい。When using powder for materials containing alumina, zirconia, and zirconia stabilizers, mix and disperse each oxide or a powder that becomes an oxide at a temperature below the hot press temperature, or stabilize it with alumina powder. It is preferable to use a powder obtained by mixing and dispersing zirconia powder in which a curing agent is already dissolved. The average particle size of these powders is 0.3 to 1.
.. If it is 0 μm, it is favorable in terms of ease of handling and properties, and if the specific surface area is not more than so o o m2/ka, it is preferred because it is easy to mold.
ホットプレス条件は2%に制限はないがs 02分圧が
I X 102Pa以上の雰囲気中で行うことが好!し
く 、 I X 10”Pa 〜3 X 10’Pa
の範囲の雰囲気中で行えばさらに好ましい。またホット
プレスにおける圧力は2MPa以上であることが好玄し
く、5MPa以上であればさらに好筐しい。The hot pressing conditions are not limited to 2%, but it is preferable to perform it in an atmosphere where the s 02 partial pressure is I x 102 Pa or more! IX 10"Pa ~ 3X 10'Pa
It is more preferable to carry out the reaction in an atmosphere within the range of . Further, it is preferable that the pressure in the hot press is 2 MPa or more, and it is even more preferable that the pressure is 5 MPa or more.
ホットプレス及び熱処理は9弱酸化性雰囲気中又は大気
中で行うことが必要とされ、この雰囲気以外でホットプ
レス及び熱処理を行うと機械的強度が低下するという欠
点が生じる。Hot pressing and heat treatment must be carried out in a weakly oxidizing atmosphere or in the air, and if hot press and heat treatment are carried out in an atmosphere other than this, there will be a drawback that the mechanical strength will be reduced.
ホットプレスの温度は、1100〜1400℃。The temperature of the hot press is 1100 to 1400°C.
好ましくは1250〜1350℃の範囲とされ。Preferably, the temperature is in the range of 1250 to 1350°C.
温度が1100℃未満であると焼結が困難となったり、
型通ジに焼結することができず、1400℃を越えると
型が酸化して摩耗すると共に型と焼結体とが反応し易く
なり、さらには焼結体のジルコニアが粒成長して性能が
低下し、ばらつきが増6一
大するなどの欠点が生じる。If the temperature is less than 1100°C, sintering may become difficult,
It is not possible to sinter through the mold, and if the temperature exceeds 1400°C, the mold oxidizes and wears out, and the mold and sintered body tend to react, and furthermore, the zirconia in the sintered body grows grains and deteriorates its performance. This results in drawbacks such as a decrease in the amount of data and an increase in variation.
熱処理の温度は、ホットプレス温度よう高温で。The heat treatment temperature is at a high temperature such as hot press temperature.
かつ1500℃以下の温度とされ、ホットプレス温度と
同等若しくはそれより低い温度で熱処理すると゛ジルコ
ニアの安定化が得られにくくなう2本発明の目的を遠戚
することができない。また1500℃を越えるとアルミ
ナ・ジルコニア焼結体の粒成長が顕著になう2機械的強
度が劣下するという欠点が生じる。Furthermore, if the heat treatment is carried out at a temperature of 1500° C. or lower, which is equal to or lower than the hot press temperature, it becomes difficult to obtain stabilization of zirconia.The two objects of the present invention cannot be remotely related. Moreover, if the temperature exceeds 1500° C., grain growth of the alumina-zirconia sintered body becomes remarkable, and the mechanical strength deteriorates.
(実施例) 以下本発明の詳細な説明する。(Example) The present invention will be explained in detail below.
実施例1
アルミナ粉(昭和電工製、商品名1608G)75容量
%(67重量ダ)にジルコニア粉(第−希元素化学工業
製、商品名5PZ)29重量多。Example 1 Alumina powder (manufactured by Showa Denko, trade name 1608G) was added in an amount of 75% by volume (67 weight %) and zirconia powder (manufactured by Daiki Genso Kagaku Kogyo, trade name 5PZ) was 29% by weight.
イツトリア粉(日本イツトリウム製、純度99.9%)
0.9重量ダ及びセリア粉(日本イツトリウム製、純度
99.913.1重量ダを混合して得られたジルコニア
成分25容量多を秤量し、ボール□ルで平均粒径が0.
8μmになる筐で湿式粉砕、混合後乾燥してホットプレ
ス原料用粉体を得た。な卦この粉体の比表面積は390
0 m2/kgであった。Ittria powder (manufactured by Nippon Yttria, purity 99.9%)
Weighed 25 volumes of a zirconia component obtained by mixing 0.9 Dah by weight and ceria powder (manufactured by Nippon Yttrium, purity 99.913.1 Dah), and mixed it with a ball to an average particle size of 0.9 Dah.
The powder was wet-pulverized in an 8-μm case, mixed, and then dried to obtain a powder for hot press raw material. The specific surface area of this powder is 390
It was 0 m2/kg.
次に得られた粉体を直径が50INII11(φ)の炭
化珪素質製のホットプレス型に入れ、第1表に示す条件
(ホットプレス温度、圧力+ OR分圧)で30分間保
持してホットプレスを行い、ついで大気中で第1表に示
す温度で熱処理してアルミナ・ジルコニア焼結体を得た
。Next, the obtained powder was placed in a hot press mold made of silicon carbide with a diameter of 50INII11 (φ), and held for 30 minutes under the conditions shown in Table 1 (hot press temperature, pressure + OR partial pressure) to make it hot. It was pressed and then heat treated in the air at the temperatures shown in Table 1 to obtain an alumina-zirconia sintered body.
この後得られたアルミナ・ジルコニア焼結体を切断して
寸法が3X4X40mmの試料を得た。得られた各試料
5本についての曲げ強さを測定し。Thereafter, the obtained alumina-zirconia sintered body was cut to obtain a sample having dimensions of 3 x 4 x 40 mm. The bending strength of each of the five samples obtained was measured.
その平均値を求めた。その結果を第1表に示す。The average value was calculated. The results are shown in Table 1.
な卦曲げ強さはJIS R1601−1981の規格に
基づき測定した。The bending strength was measured based on the standard of JIS R1601-1981.
第 表 *印は本発明に金管れないものを示す。No. table * indicates that the present invention does not include brass.
第1表から明らかなように2本発明に冷るアルミナ・ジ
ルコニア焼結体は9曲げ強さに優れることがわかる。As is clear from Table 1, the alumina-zirconia sintered body of the present invention has excellent bending strength.
実施例2
実施例1で得たホットプレス原料用粉体を直径が501
1n(φ)の炭化珪素質製のホットプレス型に入れ第2
表に示す条件で30分間保持してホットプレスを行い、
ついで大気中で第2表に示す温度で熱処理してアルミナ
・ジルコニア焼結体を得、その後曲げ強さを測定した。Example 2 The hot press raw material powder obtained in Example 1 had a diameter of 50 mm.
Place it in a 1n (φ) hot press mold made of silicon carbide.
Hot press was performed under the conditions shown in the table for 30 minutes.
Then, alumina-zirconia sintered bodies were obtained by heat treatment in the air at the temperatures shown in Table 2, and the bending strength was then measured.
その結果も合わせて第9 2表に示す。Including the results, the 9th It is shown in Table 2.
X印は本発明に含會れないものを示す。An X mark indicates something not included in the present invention.
第2表から明らかなように9本発明になるアルミナ・ジ
ルコニア焼結体は2曲げ強さに優れることがわかる。As is clear from Table 2, the alumina-zirconia sintered body of the present invention has excellent bending strength.
実施例3
アルミナ粉、ジルコニア粉、イツトリア粉及びセリア粉
(いずれも実施例1と同様のもの使用)を第3表に示す
割合に秤量し、粉砕、混合した後大気中で1300℃の
温度で2時間熱処理を行い。Example 3 Alumina powder, zirconia powder, ittria powder, and ceria powder (all used in the same manner as in Example 1) were weighed in the proportions shown in Table 3, pulverized and mixed, and then heated in the air at a temperature of 1300°C. Heat treatment was performed for 2 hours.
ついで平均粒径が0.4μmになるまで粉砕して正1〇
−
方晶結晶と単斜晶結晶とが混在したホットプレス原料用
粉体を得た。なかこの粉体の比表面積は3200m”/
kgであった。The powder was then pulverized until the average particle size became 0.4 μm to obtain a powder for hot press raw material containing a mixture of regular 10-gonal crystals and monoclinic crystals. The specific surface area of Nakako powder is 3200m”/
It was kg.
次に得られた粉体を直径が50肛(φ)の炭化珪素質製
のホットプレス型に入れ、第3表に示す条件で30分間
保持してホットプレスを行い、ついで大気中で第3表に
示す温度で熱処理してアルミナ・ジルコニア焼結体を得
、その後曲げ強さを測定した。その結果も合わせて第3
表に示す。Next, the obtained powder was placed in a hot press mold made of silicon carbide with a diameter of 50 mm (φ), held for 30 minutes under the conditions shown in Table 3, and hot pressed. Alumina-zirconia sintered bodies were obtained by heat treatment at the temperatures shown in the table, and then the bending strength was measured. The results are also included in the third
Shown in the table.
実施例4
アルミナ粉、ジルコニア粉、イツトリア粉及びセリア粉
(いずれも実施例1と同様のもの使用)を第4表に示す
割合に秤量し、以下実施例3と同様の工程を経てホット
プレス原料用粉体を得た。Example 4 Alumina powder, zirconia powder, ittria powder, and ceria powder (all of which were used in the same manner as in Example 1) were weighed in the proportions shown in Table 4, and then subjected to the same steps as in Example 3 to obtain hot press raw materials. A powder for use was obtained.
次に得られた粉体を直径が50mm(φ)の炭化珪素質
製のホットプレスに入れ、第4表に示す条件で30分間
保持してホットプレスを行い、ついで大気中で第4表に
示す温度で熱処理してアルミナ・ジルコニア焼結体を得
、その後曲げ強さを測定した。その結果も合わせて第4
表に示す。Next, the obtained powder was placed in a hot press made of silicon carbide with a diameter of 50 mm (φ), held for 30 minutes under the conditions shown in Table 4, and then hot pressed under the conditions shown in Table 4. Alumina-zirconia sintered bodies were obtained by heat treatment at the indicated temperatures, and the bending strength was then measured. Including the results, the fourth
Shown in the table.
13
4−
第4表から明らかなように9本発明に々るアル□す・ジ
ルコニア焼結体は2曲げ強さに優れることがわかる。13 4- As is clear from Table 4, the aluminum zirconia sintered body according to the present invention has excellent bending strength.
なお比較例として実施例1で得たホットプレス原料用粉
体を直径が50肛(φ)の炭化珪素質製のホットプレス
型に入れ、1450℃の温度でホットプレスを行ったと
ころ、 SiCjlMの型が酸化し、型と焼結体とが反
応した。As a comparative example, the hot press raw material powder obtained in Example 1 was placed in a hot press mold made of silicon carbide with a diameter of 50 holes (φ) and hot pressed at a temperature of 1450°C. The mold was oxidized and the mold and sintered body reacted.
なお各実施例において、ホットプレス時の雰囲気は、N
2と02とを混合して02分圧をp+整したガスをプレ
ス型に装着した電気炉内に導入して使用した。02分圧
はプレス型の近くから吸引したガスをジルコニア酸素セ
ンサで測定して調整した。In each example, the atmosphere during hot pressing was N.
A gas prepared by mixing 02 and 02 and adjusting the 02 partial pressure to p+ was introduced into an electric furnace attached to a press mold and used. The 02 partial pressure was adjusted by measuring the gas sucked in from near the press mold with a zirconia oxygen sensor.
(発明の効果)
本発明の製造法によって得られるアルミナ・ジルコニア
焼結体は、従来の焼成温度より50℃以上低温でホット
プレスすることができ、原料粉は溶解、共沈させた超微
細で高価な粉体を用いることがないので安価にそして量
産性に優れ、筐た機械的強度にも優れ、工業的に極めて
好適なアルミナ・ジルコニア焼結体である。(Effects of the invention) The alumina-zirconia sintered body obtained by the production method of the present invention can be hot-pressed at a temperature of 50°C or more lower than the conventional firing temperature, and the raw material powder is an ultrafine powder obtained by melting and co-precipitating. Since no expensive powder is used, the alumina-zirconia sintered body is inexpensive, excellent in mass production, and has excellent mechanical strength, making it extremely suitable for industrial use.
Claims (1)
含む材料をホツトプレスで焼結させてアルミナ・ジルコ
ニア焼結体を製造する方法において,弱酸化性雰囲気中
又は大気中で,温度が1100〜1400℃の条件でホ
ツトプレスして焼結させた後,弱酸化性雰囲気中又は大
気中でホツトプレス温度より高温で,かつ1500℃以
下の温度で熱処理することを特徴とするアルミナ・ジル
コニア焼結体の製造法。1. In a method of producing an alumina-zirconia sintered body by sintering materials containing alumina, zirconia, and a zirconia stabilizer using a hot press, the material is sintered at a temperature of 1100 to 1400°C in a weakly oxidizing atmosphere or in the air. 1. A method for producing an alumina-zirconia sintered body, which comprises hot pressing and sintering, followed by heat treatment at a temperature higher than the hot pressing temperature and 1500° C. or lower in a weakly oxidizing atmosphere or air.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1217890A JPH0380149A (en) | 1989-08-24 | 1989-08-24 | Production of alumina/zirconia sintered body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1217890A JPH0380149A (en) | 1989-08-24 | 1989-08-24 | Production of alumina/zirconia sintered body |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0380149A true JPH0380149A (en) | 1991-04-04 |
Family
ID=16711370
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1217890A Pending JPH0380149A (en) | 1989-08-24 | 1989-08-24 | Production of alumina/zirconia sintered body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0380149A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593363A (en) * | 1994-11-14 | 1997-01-14 | Nippondenso Co., Ltd. | Drive line apparatus for automotive vehicle |
KR100768434B1 (en) * | 2005-11-28 | 2007-10-19 | 삼목정공주식회사 | Concrete formwork supports and structures of their beams |
-
1989
- 1989-08-24 JP JP1217890A patent/JPH0380149A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5593363A (en) * | 1994-11-14 | 1997-01-14 | Nippondenso Co., Ltd. | Drive line apparatus for automotive vehicle |
KR100768434B1 (en) * | 2005-11-28 | 2007-10-19 | 삼목정공주식회사 | Concrete formwork supports and structures of their beams |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3624219B2 (en) | Polycrystalline SiC molded body, manufacturing method thereof and applied product comprising the same | |
KR100727280B1 (en) | Zirconia Reinforced Alumina ESD Safe Ceramic Parts and Manufacturing Method Thereof | |
JPS6125677B2 (en) | ||
JPS59146981A (en) | Silicon nitride sintered body and manufacture | |
JP4605829B2 (en) | High strength, high hardness alumina ceramics and manufacturing method thereof | |
JPH0380149A (en) | Production of alumina/zirconia sintered body | |
JP3076682B2 (en) | Alumina-based sintered body and method for producing the same | |
CN117658617A (en) | A high optical quality magnesia-aluminum spinel transparent ceramic and its preparation method | |
JP3268020B2 (en) | Method for producing silicon nitride powder | |
JPS61201661A (en) | Partially stabilized zirconia sintered body | |
JPH02263759A (en) | Production of alumina-zirconia sintered body | |
KR20210088361A (en) | Method for Preparing Silicon Nitride Sintered Body and The Silicon Nitride Sintered Body Prepared by The Same | |
JP3121996B2 (en) | Alumina sintered body | |
JPS647030B2 (en) | ||
JPH0696471B2 (en) | Method for manufacturing zirconia ceramics | |
JPH08198664A (en) | Alumina-base sintered body and its production | |
JPS6350308B2 (en) | ||
KR950009441B1 (en) | Method of complex sintering materials of low friction al2o3-zro2 system | |
JPH05844A (en) | Heat resistant conductive sintered body | |
JPS62275067A (en) | Manufacture of silicon nitride sintered body | |
JPH06263410A (en) | Method for increasing beta-fraction of powdery silicon nitride | |
JPH0517210A (en) | Production of alumina-based composite sintered body and the sintered body | |
JP3340025B2 (en) | Alumina sintered body and method for producing the same | |
JPH0687650A (en) | Alumina-based sintered compact and its production | |
JP2981187B2 (en) | Alumina sintered body |