[go: up one dir, main page]

JPH037959Y2 - - Google Patents

Info

Publication number
JPH037959Y2
JPH037959Y2 JP9938984U JP9938984U JPH037959Y2 JP H037959 Y2 JPH037959 Y2 JP H037959Y2 JP 9938984 U JP9938984 U JP 9938984U JP 9938984 U JP9938984 U JP 9938984U JP H037959 Y2 JPH037959 Y2 JP H037959Y2
Authority
JP
Japan
Prior art keywords
refrigerant
semiconductor device
chamber
container
liquid cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9938984U
Other languages
Japanese (ja)
Other versions
JPS6113948U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP9938984U priority Critical patent/JPS6113948U/en
Publication of JPS6113948U publication Critical patent/JPS6113948U/en
Application granted granted Critical
Publication of JPH037959Y2 publication Critical patent/JPH037959Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は冷媒の浄化機構を備えた半導体装置の
冷却構造に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a cooling structure for a semiconductor device equipped with a refrigerant purification mechanism.

電算機の処理能力を向上する方法としてLSIな
どの半導体装置はこれに構成する単位素子の小形
化が進められていると共に素子数の増大が行われ
ている。
BACKGROUND ART In order to improve the processing power of computers, the unit elements of semiconductor devices such as LSIs are becoming smaller, and the number of elements is increasing.

すなわち単位素子を形成する電極寸法や導体パ
ターン幅は極度に縮小されており、一方素子数は
増大してVLSIが実用化されている。
That is, the electrode dimensions and conductor pattern widths that form unit elements have been extremely reduced, while the number of elements has increased to put VLSI into practical use.

また配線基板への実装方法も改良され、従来は
半導体チツプ毎にハーメチツクパツケージに格納
してあり、これを配線基板に装着しているが、今
後の形態としては複数個のLSIチツプをセラミツ
クなどの多層配線基板に装着してLSIモジユール
を作り、これを取替単位として配線基板に装着す
る実装がとられるに至つている。
In addition, the mounting method on wiring boards has been improved. Conventionally, each semiconductor chip was housed in a hermetic package and mounted on the wiring board, but in the future, multiple LSI chips will be mounted on ceramic chips. It has become common practice to create an LSI module by attaching it to a multilayer wiring board, such as a multilayer wiring board, and then attaching it to the wiring board as a replacement unit.

このように単位素子の小形化と高密度化が進行
するに従つて半導体装置の発熱量も厖大となり、
従来の空冷方法では素子の温度を最高使用温度範
囲内に保持することは不可能になる。
As unit elements become smaller and more dense, the amount of heat generated by semiconductor devices also increases.
Conventional air cooling methods make it impossible to maintain the temperature of the device within the maximum operating temperature range.

すなわち単位チツプの発熱量は最高で3ワツト
程度であつたものが10ワツト程度に達しようとし
ている。
In other words, the maximum amount of heat generated by a unit chip was about 3 watts, but it is about to reach about 10 watts.

これらのことから従来の空冷或いは強制空冷方
式に代つて液冷方式の採用が必要となる。
For these reasons, it is necessary to adopt a liquid cooling system in place of the conventional air cooling or forced air cooling system.

本考案は半導体装置の液冷構造に関するもので
ある。
The present invention relates to a liquid cooling structure for semiconductor devices.

〔従来の技術〕[Conventional technology]

電子機器に対する液冷方式は超電導素子などに
ついて公知であり、冷媒として液体窒素(N2)、
液体ヘリカム(He)などが使用され、ジユア壜
タイプの容器に格納して使用されている。
Liquid cooling methods for electronic devices are well known for superconducting elements, etc., and use liquid nitrogen (N 2 ),
Liquid Helicam (He) is used, and it is stored in a bottle-type container.

然し半導体装置の空冷用としては、高電子移動
度を利用するガリウム砒素トランジスタのような
特殊な用途を別とすればこのような低温を用いる
必要はなく、沸点が80℃以下の非腐食性、非解離
性の溶液であれば何れでもよく、フレオン
(C2Cl3F3、沸点49℃)や各種のフルオロカーボン
例えばC5F12(沸点30℃)、C6F14(沸点56℃)など
が用いられている。
However, for air cooling semiconductor devices, there is no need to use such low temperatures, except for special applications such as gallium arsenide transistors that utilize high electron mobility. Any non-dissociable solution may be used, such as Freon (C 2 Cl 3 F 3 , boiling point 49°C), various fluorocarbons such as C 5 F 12 (boiling point 30°C), C 6 F 14 (boiling point 56°C), etc. is used.

なおフルオロカーボンは各種の構造式のものを
混合して沸点の調節が可能である。
The boiling point of fluorocarbons can be adjusted by mixing fluorocarbons with various structural formulas.

第2図は半導体装置について従来の液冷構造を
示すものである。
FIG. 2 shows a conventional liquid cooling structure for semiconductor devices.

すなわち金属或いはプラスチツク製の液冷容器
1の底面には複数個のケネクタ2が設置されてお
り、半導体装置3を装着した配線基板4をコネク
タ接続するよう構成されている。
That is, a plurality of connectors 2 are installed on the bottom of a liquid cooling container 1 made of metal or plastic, and are configured to connect a wiring board 4 on which a semiconductor device 3 is mounted.

また冷媒5を封入した液冷容器1の上部には凝
縮器6があつて水或いは冷媒により冷却される構
造となつている。
Further, a condenser 6 is placed above the liquid-cooled container 1 in which the refrigerant 5 is sealed, so that the container is cooled by water or the refrigerant.

かかる液冷構造において半導体装置3が回路動
作して温度が上昇し、冷媒5の沸点を越すと、半
導体装置3に接している冷媒5は沸騰するが、こ
の際に気化熱を半導体装置3から奪うために温度
上昇が抑制される。
In such a liquid cooling structure, when the semiconductor device 3 operates in a circuit and its temperature rises and exceeds the boiling point of the refrigerant 5, the refrigerant 5 in contact with the semiconductor device 3 boils, but at this time, the heat of vaporization is transferred from the semiconductor device 3. Temperature rise is suppressed to take away the heat.

ここで沸騰により気化した冷媒の蒸気は凝縮器
6で冷却され液化して滴下し、このサイクルが繰
り返えされる。
Here, the vapor of the refrigerant vaporized by boiling is cooled in the condenser 6, liquefied, and dripped, and this cycle is repeated.

このような液冷装置は現在使用されているが、
この構造の欠点の一つに冷媒の汚れがある。
Although such liquid cooling devices are currently in use,
One of the drawbacks of this structure is the contamination of the refrigerant.

すなわち半導体装置3の配線基板4への装着は
半田付けなどの方法により行われているが、この
装着工程で使用するフラツクスや液冷容器1への
コネクタ設置の際に使用したフラツクスなど浄洗
浄下充分で残留しており、半導体装置3の回路動
作中は冷媒5が高温で容器内を対流しているため
に溶解し、汚染された冷媒5が容器内を循環して
しまうと云う問題がある。
In other words, the semiconductor device 3 is attached to the wiring board 4 by a method such as soldering, but the flux used in this attachment process and the flux used when installing the connector to the liquid cooling container 1 are cleaned and cleaned. However, there is a problem in that when the circuit of the semiconductor device 3 is in operation, the refrigerant 5 dissolves due to convection inside the container at a high temperature, and the contaminated refrigerant 5 circulates inside the container. .

ここで液冷容器1の中に装着してある配線基板
数が少ない場合はさほどでもないが、装着数が増
すに従つて冷媒の汚染は半導体装置3の品質保全
の観点から問題となる。
Although this is not a problem when the number of wiring boards mounted in the liquid cooling container 1 is small, as the number of wiring boards mounted increases, contamination of the refrigerant becomes a problem from the viewpoint of quality maintenance of the semiconductor device 3.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

半導体装置を液冷容器内に設置し冷媒を用いて
冷却する場合の問題点は冷媒が汚染され、これが
著しい場合は品質への影響を考慮しなければなら
なくなることである。
A problem when a semiconductor device is placed in a liquid-cooled container and cooled using a refrigerant is that the refrigerant becomes contaminated, and if this is significant, the impact on quality must be considered.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点は液冷装置が上部に開口部をもち、
半導体装置を内部に装着する浸漬室を中心とし、
この外周に冷媒を貯える予備室を備えると共に、
該予備室の上部に天蓋をもつ密封容器よりなり、
半導体装置の温度上昇により、沸騰して浸漬室よ
り溢流した冷媒が予備室において気化し、天蓋部
で凝縮して浸漬室に帰還する構造をとることを特
徴とする半導体装置の冷却構造をとることにより
解決することができる。
The above problem is that the liquid cooling device has an opening at the top.
Centered around the immersion chamber where semiconductor devices are installed,
In addition to having a preliminary chamber for storing refrigerant on the outer periphery,
It consists of a sealed container with a canopy above the preliminary chamber,
A cooling structure for semiconductor devices is adopted in which the refrigerant boils and overflows from the immersion chamber due to the temperature rise of the semiconductor device, vaporizes in the preliminary chamber, condenses in the canopy, and returns to the immersion chamber. This can be solved by

〔作用〕[Effect]

本考案は液冷容器を二重構造とし、汚染した冷
媒を外周部に設けた予備室に貯えると共に、気化
した冷媒を凝縮して生じた液状冷媒を半導体装置
を装着してある中央の浸漬室に戻す装置構成をと
ることにより冷媒の汚染を防ぐものである。
In this invention, the liquid cooling container has a double structure, and the contaminated refrigerant is stored in the preliminary chamber provided on the outer periphery, and the liquid refrigerant produced by condensing the vaporized refrigerant is stored in the central immersion chamber where the semiconductor device is installed. This prevents contamination of the refrigerant by adopting a device configuration that returns the refrigerant to

〔実施例〕〔Example〕

第1図Aは本考案に係る液冷容器の断面図で同
図Bはこの容器の二重構造を説明する平面図であ
る。
FIG. 1A is a sectional view of a liquid cooling container according to the present invention, and FIG. 1B is a plan view illustrating the double structure of this container.

すなわち本考案に係る液冷容器7は半導体装置
3を装着した配線基板4を設置してある浸漬室8
とこれを取り囲む予備室9との二重構造となつて
おり、この二室を隔てる隔壁10は襞状の金属板
を用いて熱伝導よく構成され、上部中央には開口
部11が設けられている。
That is, the liquid cooling container 7 according to the present invention is an immersion chamber 8 in which a wiring board 4 with a semiconductor device 3 mounted thereon is installed.
It has a double structure with a preliminary chamber 9 surrounding it, and a partition wall 10 separating these two chambers is made of a pleated metal plate with good heat conduction, and an opening 11 is provided in the center of the upper part. There is.

次ぎに開口部11の上には天蓋部12があり、
気化した冷媒は天蓋部12で凝縮し、これに沿つ
て降下して樋部13に溜り、縦樋14を通つて浸
漬室8に戻る構造となつている。
Next, there is a canopy part 12 above the opening 11,
The vaporized refrigerant condenses in the canopy section 12, descends along this, accumulates in the gutter section 13, and returns to the immersion chamber 8 through the vertical gutter 14.

また天蓋部12と液冷容器7との間には冷却水
を流して天蓋部12で凝縮効率を高めている。
Further, cooling water is allowed to flow between the canopy part 12 and the liquid-cooled container 7 to improve condensation efficiency in the canopy part 12.

本考案に係る冷却構造の機構を説明すると次の
ようになる。
The mechanism of the cooling structure according to the present invention will be explained as follows.

浸漬室8には冷媒5が満たされており、コネク
タ2によつて回路接続している半導体装置3が発
熱し温度上昇して冷媒5の沸点を越えると、これ
と接する冷媒5は沸騰が始まり、この際に気化熱
を半導体装置から奪うために温度上昇が抑制され
る。
The immersion chamber 8 is filled with a refrigerant 5, and when the semiconductor device 3 connected to the circuit through the connector 2 generates heat and its temperature rises to exceed the boiling point of the refrigerant 5, the refrigerant 5 in contact with it begins to boil. At this time, temperature rise is suppressed because the heat of vaporization is taken away from the semiconductor device.

ここで半導体装置のチツプ当たりの発熱量は数
ワツトと厖大なために一般に沸騰は猛烈に起こ
り、開口部11から気泡を噴出するが、この際に
冷媒5もかなり汲み出されて予備室9に流れる。
Here, since the amount of heat generated per chip of the semiconductor device is huge, several watts, boiling generally occurs violently and bubbles are ejected from the opening 11, but at this time, a considerable amount of the refrigerant 5 is also pumped out into the preliminary chamber 9. flows.

ここで浸漬室8と予備室9を隔てている隔壁1
0は熱伝導が良く又襞状に接触面積を大きく形成
してあるので予備室9に流れた冷媒5の温度は浸
漬室8の温度とあまり変わらない。
Here, a partition wall 1 separating the immersion chamber 8 and the preliminary chamber 9
Since the refrigerant 5 has good heat conductivity and is formed in a pleated shape with a large contact area, the temperature of the refrigerant 5 flowing into the preliminary chamber 9 is not much different from the temperature of the immersion chamber 8.

ここで冷容器の天蓋部12と浸漬室8は開口部
11のみで接するのに対し、予備室9に流れた冷
媒5は広い面積で対するために蒸発量が多く、気
化したガスは天蓋部12で冷却され、凝縮して液
化し、縦樋14を通つて浸漬室8に戻る。
Here, the canopy part 12 of the cold container and the immersion chamber 8 are in contact only through the opening part 11, whereas the refrigerant 5 that has flowed into the preliminary chamber 9 has a large amount of evaporation due to the contact over a wide area, and the vaporized gas is transferred to the canopy part 12. It is cooled, condensed and liquefied, and returned to the soaking chamber 8 through the downspout 14.

このように開口部11では噴出を、一方予備室
9では蒸発を繰り返していると予備室9の汚染物
は次第に濃縮されてゆくのに対し、浸漬室8の汚
染物含有量は次第に減少してゆく。
As described above, by repeatedly ejecting from the opening 11 and evaporating from the preliminary chamber 9, the contaminants in the preliminary chamber 9 gradually become concentrated, while the contaminant content in the immersion chamber 8 gradually decreases. go.

このように本考案に係る装置を利用すれば不純
物を含む冷媒が装置内を循環すると云う問題をな
くすることができる。
As described above, by using the apparatus according to the present invention, it is possible to eliminate the problem of refrigerant containing impurities circulating within the apparatus.

なお予備室9における冷媒5の汚染度が激しく
なつた場合はコツク15を開いて排出し、等量の
新しい冷媒を注入して交換すればよい。
If the degree of contamination of the refrigerant 5 in the preliminary chamber 9 becomes severe, the tank 15 may be opened to drain the refrigerant, and an equal amount of new refrigerant may be injected to replace the refrigerant.

〔考案の効果〕[Effect of idea]

以上記したように本考案の実施により、冷媒の
汚染の問題がなくなり、半導体装置を清浄な環境
状態に保持することができる。
As described above, by implementing the present invention, the problem of refrigerant contamination is eliminated, and the semiconductor device can be maintained in a clean environment.

なお本考案においては半導体装置を冷却する場
合について説明したが、他の蒸発物を液冷する場
合でも同様に実施することができる。
Although the present invention has been described with reference to the case where a semiconductor device is cooled, the present invention can be implemented in the same manner even when other evaporated substances are liquid-cooled.

【図面の簡単な説明】[Brief explanation of drawings]

第1図Aは本考案に係る液冷容器の側断面図、
同図Bは二重構造を説明する平面図。第2図は従
来の液冷容器の側断面図。である。 図において1,7は液冷容器、2はコネクタ、
3は半導体装置、4は配線基板、5は冷媒、8は
浸漬室、9は予備室、10は隔壁、11は開口
部、12は天蓋部、13は樋部、14は縦樋、で
ある。
FIG. 1A is a side sectional view of a liquid cooling container according to the present invention;
Figure B is a plan view illustrating the double structure. FIG. 2 is a side sectional view of a conventional liquid cooling container. It is. In the figure, 1 and 7 are liquid cooling containers, 2 is a connector,
3 is a semiconductor device, 4 is a wiring board, 5 is a refrigerant, 8 is an immersion chamber, 9 is a preliminary chamber, 10 is a partition, 11 is an opening, 12 is a canopy, 13 is a gutter, and 14 is a downspout. .

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 液冷装置が上部に開口部をもち、半導体装置を
内部に装着する浸漬室を中心とし、この外周に冷
媒を貯える予備室を備えると共に、該予備室の上
部に天蓋をもつ密封容器よりなり、半導体装置の
温度上昇により、沸騰して浸漬室より溢出した冷
媒が予備室において気化し、天蓋部で凝縮して浸
漬室に帰還する構造をとることを特徴とする半導
体装置の冷却構造。
The liquid cooling device has an opening at the top, is centered around an immersion chamber in which a semiconductor device is installed, and is equipped with an auxiliary chamber around the outer periphery of the immersion chamber for storing a refrigerant, and is composed of a sealed container having a canopy above the auxiliary chamber, A cooling structure for a semiconductor device, characterized in that a refrigerant that boils and overflows from an immersion chamber due to an increase in temperature of the semiconductor device vaporizes in a preliminary chamber, condenses in a canopy, and returns to the immersion chamber.
JP9938984U 1984-06-29 1984-06-29 Cooling structure for semiconductor devices Granted JPS6113948U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9938984U JPS6113948U (en) 1984-06-29 1984-06-29 Cooling structure for semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9938984U JPS6113948U (en) 1984-06-29 1984-06-29 Cooling structure for semiconductor devices

Publications (2)

Publication Number Publication Date
JPS6113948U JPS6113948U (en) 1986-01-27
JPH037959Y2 true JPH037959Y2 (en) 1991-02-27

Family

ID=30658896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9938984U Granted JPS6113948U (en) 1984-06-29 1984-06-29 Cooling structure for semiconductor devices

Country Status (1)

Country Link
JP (1) JPS6113948U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022179901A (en) * 2021-05-24 2022-12-06 株式会社オートネットワーク技術研究所 electrical equipment

Also Published As

Publication number Publication date
JPS6113948U (en) 1986-01-27

Similar Documents

Publication Publication Date Title
EP0001123B1 (en) Capsule for cooling semiconductor chips
EP0200221B1 (en) Evaporation cooling module for semiconductor devices
US6820684B1 (en) Cooling system and cooled electronics assembly employing partially liquid filled thermal spreader
US4944344A (en) Hermetically sealed modular electronic cold plate utilizing reflux cooling
US8490418B2 (en) Method and apparatus for cooling electronics with a coolant at a subambient pressure
JPH0744246B2 (en) Heat removal equipment
US12050061B2 (en) Shrouded powder patch
JPH037959Y2 (en)
JPH02114597A (en) Method of cooling electronic device
JPS6285449A (en) Cooling structure for semiconductor devices
JPS62148086A (en) Vapor reflow type soldering device
JPH04147657A (en) Cooling mechanism for electronic component
JPH02129999A (en) Cooling device for electronic elemnt
JPH10209355A (en) Boiling cooler
JPH0317222B2 (en)
JPS63120449A (en) Evaporation and cooling apparatus for integrated circuit element
JPH0320070B2 (en)
JP2828996B2 (en) Semiconductor cooling equipment
JPH0442931Y2 (en)
JPS61128598A (en) Cooling system
JPS6285448A (en) Cooling structure for semiconductor devices
JPH0126543B2 (en)
JPH0534113Y2 (en)
JPS61255042A (en) Heat sink for semiconductor device
RU2066518C1 (en) Electronic device