[go: up one dir, main page]

JPH0379530B2 - - Google Patents

Info

Publication number
JPH0379530B2
JPH0379530B2 JP19899981A JP19899981A JPH0379530B2 JP H0379530 B2 JPH0379530 B2 JP H0379530B2 JP 19899981 A JP19899981 A JP 19899981A JP 19899981 A JP19899981 A JP 19899981A JP H0379530 B2 JPH0379530 B2 JP H0379530B2
Authority
JP
Japan
Prior art keywords
exhaust gas
filter member
flow path
filter
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19899981A
Other languages
Japanese (ja)
Other versions
JPS58101210A (en
Inventor
Akikazu Kojima
Shigeru Kamya
Hideaki Sasaya
Kyohiko Ooishi
Kyoshi Obata
Kenichiro Takama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Soken Inc
Original Assignee
Nippon Soken Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Soken Inc, Toyota Motor Corp filed Critical Nippon Soken Inc
Priority to JP56198999A priority Critical patent/JPS58101210A/en
Publication of JPS58101210A publication Critical patent/JPS58101210A/en
Publication of JPH0379530B2 publication Critical patent/JPH0379530B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/011Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel
    • F01N13/017Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more purifying devices arranged in parallel the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/031Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start
    • F01N3/032Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters having means for by-passing filters, e.g. when clogged or during cold engine start during filter regeneration only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/14Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having thermal insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Description

【発明の詳細な説明】 本発明は自動車等の内燃機関から排出される排
気ガス中の微粒子を捕集し、これを燃焼せしめて
排気ガスの浄化を行なう排気ガスの微粒子浄化装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a particulate purification device for exhaust gas that collects particulates in exhaust gas emitted from internal combustion engines of automobiles and burns them to purify the exhaust gas. .

内燃機関から排出される排気ガス中に含まれる
カーボン粒子等の微粒子を捕集するために、セラ
ミツクのハニカム構造体やセラミツクの発泡体等
のフイルタ部材を内蔵した微粒子捕集装置が提案
されている。これ等の装置ではフイルタ部材に微
粒子が堆積するにつれてフイルタ部材の通気抵抗
が増加し、機関の出力低下につながるとともに、
堆積微粒子が脱落しフイルタ機能を低下させる。
このため、フイルタ部材に堆積した微粒子を周期
的に除去しフイルタ部材の機能を微粒子捕集前の
状態に再生する必要がある。
In order to collect particulates such as carbon particles contained in exhaust gas emitted from internal combustion engines, particulate collection devices incorporating a filter member such as a ceramic honeycomb structure or ceramic foam have been proposed. . In these devices, as fine particles accumulate on the filter member, the ventilation resistance of the filter member increases, leading to a decrease in engine output, and
Accumulated fine particles fall off and reduce filter function.
Therefore, it is necessary to periodically remove the particulates accumulated on the filter member and restore the function of the filter member to the state before collecting the particulates.

この再生手段として、特開昭56−92318号公報
に開示されているごとく、フイルタ部材の中心に
隔壁を設置して全体を二つに分割し、該フイルタ
部材の排気ガス流入側にその二分割領域に対応し
て独立に加熱手段を設け、かつフイルタ部材の二
分割された部分へ排気ガスの流入を交互に切り替
える流路切替えバルブを、フイルタ部材の排気ガ
ス流入側に設けたものがある。
As disclosed in JP-A No. 56-92318, as a means for this regeneration, a partition wall is installed at the center of the filter member to divide the whole into two, and the two halves are placed on the exhaust gas inflow side of the filter member. There is a type in which a heating means is provided independently corresponding to each region, and a flow path switching valve is provided on the exhaust gas inflow side of the filter member to alternately switch the inflow of exhaust gas to the two divided portions of the filter member.

これは、フイルタ部材の二分割された領域に交
互に排気ガスを導き、フイルタ部材の一方の領域
にて微粒子を捕集し、この一方の領域の再生時に
は流路切替バルブにて該領域に通ずる側の排気ガ
ス通路を閉じて該領域に設置した加熱手段へ通電
し、かつ通電時にはフイルタ部材の他方の領域に
排気ガスを導き、この他方の領域にて微粒子を捕
集するものである。
This system alternately guides exhaust gas into two divided regions of the filter member, collects particulates in one region of the filter member, and when regenerating this one region, communicates with the region using a flow path switching valve. The side exhaust gas passage is closed and electricity is applied to the heating means installed in that area, and when electricity is applied, the exhaust gas is guided to the other area of the filter member, and particulates are collected in this other area.

この従来の手段では、再生時には排気ガスが再
生側へ流入せず、排気ガスによつて加熱手段が冷
されないから加熱効率がよい。
With this conventional means, the exhaust gas does not flow into the regeneration side during regeneration, and the heating means is not cooled by the exhaust gas, so heating efficiency is good.

しかしながら一方において、フイルタ部材は二
分割されているので各領域の断面積が小さくなる
ため、微粒子捕集時、再生時ともに圧力損失が大
きくなる。圧力損失を小さくするには、フイルタ
部材の体格を大きくして二分割された各領域の面
積を大きくすればよいが、それは浄化装置全体の
大型化を招く。
However, on the other hand, since the filter member is divided into two parts, the cross-sectional area of each region becomes small, resulting in a large pressure loss both during particulate collection and during regeneration. In order to reduce the pressure loss, it is possible to increase the size of the filter member and increase the area of each divided region, but this results in an increase in the size of the entire purification device.

本発明は加熱手段の加熱効率が良好であり、か
つ大型化することなく圧力損失の上昇を回避し得
る内燃機関の排気ガス微粒子浄化装置を提供する
ことを目的とするものである。
An object of the present invention is to provide an exhaust gas particulate purification device for an internal combustion engine in which the heating efficiency of the heating means is good and an increase in pressure loss can be avoided without increasing the size.

しかして本発明は、フイルタ部材としては分割
されない1個のフイルタ部材を用い、フイルタ部
材の上流側に、排気ガスを導く排気ガス通路のみ
を分割してフイルタ部材へ流入する排気ガス流路
を分割するとともに、いずれか一方の流路を選択
的に遮断しまたは制限する手段を設け、フイルタ
部材の排気ガス流入側には各流路に対応する位置
にそれぞれ独立に加熱手段を設け、フイルタ部材
再生時、一方の流路からフイルタ部材内に流入し
た排気ガスをフイルタ部材の排気ガス流出側で拡
散させるようにしたことで上記の目的を達成する
ものである。
Therefore, in the present invention, a single filter member that is not divided is used as a filter member, and only the exhaust gas passage that guides the exhaust gas is divided on the upstream side of the filter member, so that the exhaust gas flow path that flows into the filter member is divided. At the same time, a means for selectively blocking or restricting one of the flow paths is provided, and a heating means is provided independently at a position corresponding to each flow path on the exhaust gas inflow side of the filter member, so that the filter member can be regenerated. The above object is achieved by diffusing the exhaust gas that has flowed into the filter member from one of the flow paths on the exhaust gas outflow side of the filter member.

即ち、本発明の装置によれば、排気ガスはフイ
ルタ部材の端面に流入するときには流入面積が制
限されるが、流入後はフイルタ部材全体に拡散し
得るから、圧力損失は極めて少くてすむ。
That is, according to the device of the present invention, when the exhaust gas flows into the end face of the filter member, the inflow area is limited, but after the exhaust gas flows in, it can be diffused throughout the filter member, so that the pressure loss can be extremely small.

以下、本発明を図示の実施例により説明する。 Hereinafter, the present invention will be explained with reference to illustrated embodiments.

第1図は本発明による排気ガス微粒子浄化装置
を装備した内燃機関の排気系の構成図である。1
はデイーゼル機関等の内燃機関、2は排気集合
管、3は排気管、Aは排気管の途中に設けた微粒
子浄化装置である。
FIG. 1 is a configuration diagram of an exhaust system of an internal combustion engine equipped with an exhaust gas particulate purification device according to the present invention. 1
2 is an internal combustion engine such as a diesel engine, 2 is an exhaust manifold, 3 is an exhaust pipe, and A is a particulate purification device provided in the middle of the exhaust pipe.

浄化装置Aはフイルタ部材収納容器4、微粒子
捕集用フイルタ部材5、フイルタ部材5の排気ガ
ス流入側(上流側)端面に密着せしめた加熱手段
たる電気ヒータ6a,6bを具備する。7はフイ
ルタ部材5に排気ガスを導く排気ガス通路をなす
容器4の上流側を二分し、フイルタ部材5へ流入
する排気ガス流路を分割する板状の隔離部材(以
下、隔離板という)、8は分割された流路への排
気ガスの流入を制御する排気ガス流路切替部材
(以下、切替バルブという)である。9はフイル
タ部材5の上流側および下流側の差圧を測定して
圧力損失を検知するための差圧センサ、10はフ
イルタ部材5の下流側の排気ガス温度を検知する
温度センサ、11は機関1の回転数を検知する回
転数センサである。12は、差圧センサ9、温度
センサ10および回転数センサ11の出力により
フイルタ部材5の微粒子堆積程度を演算し、堆積
程度が所定値以上になると電気ヒータ6a,6b
および切替バルブ8を作動させるための出力信号
を発生する制御回路である。13はバツテリ、1
4は制御回路12よりの出力信号を受けて電気ヒ
ータ6a,6bにバツテリ13からの電力を通電
するヒータ作動スイツチ、15は流路切替バルブ
8を制御回路12よりの出力信号を受けて作動さ
せるバルブ作動装置である。
The purification device A includes a filter member storage container 4, a particulate collection filter member 5, and electric heaters 6a and 6b as heating means that are brought into close contact with the exhaust gas inflow side (upstream side) end face of the filter member 5. Reference numeral 7 denotes a plate-shaped separation member (hereinafter referred to as a separation plate) that bisects the upstream side of the container 4, which forms an exhaust gas passage that guides exhaust gas to the filter member 5, and divides the exhaust gas flow path that flows into the filter member 5; Reference numeral 8 denotes an exhaust gas flow path switching member (hereinafter referred to as a switching valve) that controls the inflow of exhaust gas into the divided flow paths. 9 is a differential pressure sensor for measuring the differential pressure on the upstream side and downstream side of the filter member 5 to detect pressure loss; 10 is a temperature sensor for detecting the exhaust gas temperature on the downstream side of the filter member 5; 11 is an engine This is a rotation speed sensor that detects the rotation speed of 1. 12 calculates the degree of particulate accumulation on the filter member 5 based on the outputs of the differential pressure sensor 9, temperature sensor 10, and rotation speed sensor 11, and when the degree of accumulation exceeds a predetermined value, electric heaters 6a, 6b are activated.
and a control circuit that generates an output signal for operating the switching valve 8. 13 is batsuteri, 1
4 is a heater operating switch that receives an output signal from the control circuit 12 and supplies electric power from the battery 13 to the electric heaters 6a and 6b; 15 operates the flow path switching valve 8 in response to an output signal from the control circuit 12; It is a valve actuator.

上記の構成において、切替バルブ8はフイルタ
部材5による微粒子捕集時には中立状態としてお
く。内燃機関1の排気集合管2、排気管3を通つ
て排出される排気ガス中の微粒子はフイルタ部材
5を通過するに伴ない捕集される。捕集が進むに
つれてフイルタ部材5の通気抵抗は次第に上昇す
るが、これを差圧センサ9で検知する。この差圧
は排気ガス温度、エンジン回転数によつても大き
く変動するので、それぞれを温度センサ10およ
び回転数センサ11によつて検知し、これ等の影
響を除去することにより真のフイルタ通気抵抗、
即ち微粒子の堆積程度を知ることができる。そし
て所定の堆積程度に達したときに制御回路12か
らバルブ作動装置15に信号が送られ、切替バル
ブ8が作動して隔離板7で仕切られた一方の流路
への排気ガス流を遮断する。同時に排気ガス流が
遮断された流路域の電気ヒータ6a(または6b)
に通電され、ヒータは赤熱してその周囲に捕集さ
れている微粒子が加熱されて燃焼が開始され、火
炎は後流側へと燃え広がり捕集微粒子が燃焼浄化
される。温度センサ10により再生の終了が確認
されると、切替バルブ8が切替えられて他の流路
へ排気ガス流が導かれ、その流路域の電気ヒータ
6b(または6a)が通電発熱し、付近の捕集微
粒子が着火され、燃焼炎は後流側へと伝播し、微
粒子が燃焼浄化される。なお、一方の流路域の電
気ヒータにより着火されて捕集微粒子が燃焼され
ているとき、異常高温現象の発明または炎の吹き
消されがないように、温度センサ10による検知
温度が所定値以上に達したときには切替バルブ8
は上記一方の流路にも少量の排気ガスが入るよう
に開度が制御され、検知温度の所定値まで低下し
たときは上記一方の流路は完全に遮断するように
制御される。
In the above configuration, the switching valve 8 is kept in a neutral state when the filter member 5 collects particulates. Particulates in the exhaust gas discharged through the exhaust manifold pipe 2 and exhaust pipe 3 of the internal combustion engine 1 are collected as they pass through the filter member 5. As the collection progresses, the ventilation resistance of the filter member 5 gradually increases, and this is detected by the differential pressure sensor 9. Since this differential pressure varies greatly depending on the exhaust gas temperature and engine speed, the temperature sensor 10 and engine speed sensor 11 detect each of these, and by removing these influences, the true filter ventilation resistance can be determined. ,
That is, it is possible to know the degree of accumulation of fine particles. When a predetermined level of accumulation is reached, a signal is sent from the control circuit 12 to the valve actuating device 15, and the switching valve 8 is actuated to cut off the flow of exhaust gas to one flow path partitioned by the separator plate 7. . Electric heater 6a (or 6b) in the flow path area where the exhaust gas flow is blocked at the same time
When the heater is energized, the heater becomes red hot and the particulates collected around it are heated and combustion starts, the flame spreads to the downstream side and the collected particulates are burned and purified. When the end of regeneration is confirmed by the temperature sensor 10, the switching valve 8 is switched to guide the exhaust gas flow to another flow path, and the electric heater 6b (or 6a) in that flow path area is energized and generates heat, causing the nearby The collected particulates are ignited, the combustion flame propagates to the downstream side, and the particulates are burned and purified. In addition, when the collected particulates are ignited by the electric heater in one flow path region and burned, the temperature detected by the temperature sensor 10 must be higher than a predetermined value to prevent an abnormally high temperature phenomenon or the flame from being blown out. When the switching valve 8 is reached,
The opening degree is controlled so that a small amount of exhaust gas can enter the one passage, and the one passage is completely shut off when the detected temperature drops to a predetermined value.

第2図は本発明による排気ガス微粒子浄化装置
の第1の実施例を示すものである。
FIG. 2 shows a first embodiment of the exhaust gas particulate purification device according to the present invention.

筒状の容器4内には円柱状の1個のフイルタ部
材5が収納され、フイルタ部材5はワイヤネツト
41およびシール部材42により弾性的に支持さ
れている。フイルタ部材5は例えばセラミツク発
泡体よりなる。容器4の排気ガス流入側には隔離
板7が設置してあり、フイルタ部材5への排気ガ
ス流路は第1の流路40aと第2の流路40bと
に分割されている。隔離板7の先端位置には切替
バルブ8が回動可能に軸支せしめてあり、この回
動により上記両流路40a,40bは開路、閉路
あるいは開度が制御される。
A cylindrical filter member 5 is housed in the cylindrical container 4, and the filter member 5 is elastically supported by a wire net 41 and a seal member 42. The filter member 5 is made of ceramic foam, for example. A separator plate 7 is installed on the exhaust gas inflow side of the container 4, and the exhaust gas flow path to the filter member 5 is divided into a first flow path 40a and a second flow path 40b. A switching valve 8 is rotatably supported at the tip of the separator 7, and by this rotation, the opening, closing, or opening of the flow paths 40a and 40b is controlled.

フイルタ部材5の上流側の端面には各流路域に
それぞれニクロム線ヒータ6a,6bが設置して
ある。ヒータ6a,6bはこれ等をおおうように
設けたセラミツクハニカム体60a,60bによ
り固定されている。セラミツクハニカム体60
a,60bはヒータ押え部材および保温体として
の役割を果す。
On the upstream end face of the filter member 5, nichrome wire heaters 6a and 6b are installed in each flow path area, respectively. The heaters 6a, 6b are fixed by ceramic honeycomb bodies 60a, 60b provided to cover them. Ceramic honeycomb body 60
a and 60b serve as a heater holding member and a heat insulator.

本実施例装置において、切替バルブ8は先ず中
立位置にあり、排気ガスは両流路40a,40b
よりフイルタ部材5内に流入し、微粒子が捕集さ
れてフイルタ部材5より流出する。
In the device of this embodiment, the switching valve 8 is first in the neutral position, and the exhaust gas flows through both flow paths 40a and 40b.
The particles flow into the filter member 5, where the fine particles are collected and flow out from the filter member 5.

フイルタ部材5の微粒子捕集量が所定値に達す
ると切替バルブ8が回動して第1の流路40aを
閉じる。同時ヒータ6aに通電され、フイルタ部
材5の端面付近に捕集された微粒子が着火する。
そして燃焼は後流側の捕集微粒子へ広がり、主と
してフイルタ部材5の上半部の再生がなされる。
続いて切替バルブ8が回動して第1の流路40a
を開路するとともに第2の流路40bを遮断し、
ヒータ6bが通電されて微粒子を着火し、主とし
てフイルタ部材5の下半部が再生され、これによ
りフイルタ全体が再生されるのである。
When the amount of particles collected by the filter member 5 reaches a predetermined value, the switching valve 8 rotates to close the first flow path 40a. At the same time, the heater 6a is energized, and the particles collected near the end face of the filter member 5 are ignited.
The combustion spreads to the collected fine particles on the downstream side, and mainly the upper half of the filter member 5 is regenerated.
Subsequently, the switching valve 8 rotates to open the first flow path 40a.
while opening the second flow path 40b,
The heater 6b is energized to ignite the particles, and mainly the lower half of the filter member 5 is regenerated, thereby regenerating the entire filter.

しかして上記装置では、一方のヒータ6a、ま
たは6bに通電されているときには通電発熱する
ヒータには排気ガスが流入しないために排気ガス
により冷されることがなく、少量の熱エネルギー
で確実に微粒子を着火させることができる。更に
一方の排気ガス流路、例えば流路40aが閉じら
れてヒータ6aで微粒子が着火燃焼せしめられる
場合、他方の流路40bからは排気ガスがフイル
タ部材5内に流入し、この排気ガスはフイルタ部
材5の後流側へ流れるにつれて広がつてフイルタ
部材5の下流側端面から流出するが、上流側端面
からフイルタ部材5内に流入した直後はヒータ6
a側へ広がる排気ガスは少なく、従つてヒータ6
aにより微粒子が着火され燃焼を開始した直後に
排気ガスによる冷却作用を受けることは少なく、
燃焼開始直後に炎が吹き消されることが防止され
る。更に、排気ガスはフイルタ部材5の端面の半
分からフイルタ部材5内へ流入するが、流入後は
後流側へとフイルタ部材全体に広がつて流出され
るので、フイルタ部材5を同一断面積とした場
合、フイルタ部材全体を二つに区画していずれか
一方のみに排気ガスを流通せしめる従来のものに
比して圧力損失は小さくなる。発明者等の実験に
よれば本発明の上記装置において、一方の流路、
例えば流路40aを完全に遮断して流路40bの
みから排気ガスをフイルタ部材5内に流入せしめ
た場合、フイルタ部材5の端面全体から排気ガス
を流入せしめた場合に比しての圧力損失の増大は
せいぜい30%程度である。これに対しフイルタ部
材5全体を二つに区画して一方の領域のみへ排気
ガスを流入せしめると圧力損失は約2倍となる。
However, in the above device, when one of the heaters 6a or 6b is energized, exhaust gas does not flow into the heater that generates heat when it is energized, so it is not cooled by the exhaust gas, and a small amount of thermal energy is used to reliably generate particles. can be ignited. Furthermore, when one exhaust gas flow path, for example, flow path 40a, is closed and particulates are ignited and burned by the heater 6a, exhaust gas flows into the filter member 5 from the other flow path 40b, and this exhaust gas is passed through the filter member 5. As the member 5 flows downstream, it spreads and flows out from the downstream end face of the filter member 5, but immediately after flowing into the filter member 5 from the upstream end face, the heater 6
There is less exhaust gas spreading to the a side, so the heater 6
Immediately after the particulates are ignited by a and start combustion, they are rarely affected by the cooling effect of the exhaust gas.
This prevents the flame from being blown out immediately after the start of combustion. Furthermore, the exhaust gas flows into the filter member 5 from half of the end face of the filter member 5, but after flowing in, it spreads to the downstream side over the entire filter member and flows out, so the filter member 5 has the same cross-sectional area. In this case, the pressure loss is smaller than in the conventional filter in which the entire filter member is divided into two parts and exhaust gas is allowed to flow through only one of them. According to experiments conducted by the inventors, in the above device of the present invention, one of the channels,
For example, if the flow path 40a is completely blocked and the exhaust gas is allowed to flow into the filter member 5 only from the flow path 40b, the pressure loss will be lower than when the exhaust gas is allowed to flow into the filter member 5 from the entire end face of the filter member 5. The increase is about 30% at most. On the other hand, if the entire filter member 5 is divided into two regions and the exhaust gas is allowed to flow into only one region, the pressure loss will be approximately doubled.

第3図は本発明の第2の実施例を示すものであ
る。この実施例ではフイルタ部材5の上流側の内
部の上記隔離板7の延長位置に隔離板70を設け
上流側の端面近傍位置を区画している。他の構造
は第1の実施例と同じである。本実施例では排気
ガスの流れが遮断された側のヒータにより微粒子
が着火されて後の燃焼の伝播は隔離板70によつ
て排気ガスの影響を全く受けず、着火後の吹き消
されはより確実に防止される。また隔離板70に
より各流路から流入した排気ガスに整流効果が与
えられて微粒子が燃焼している領域への排気ガス
の流入が少なくなるので、上記第1の実施例より
は若干圧力損失は増すが、フイルタ部材の後流側
での炎の吹き消され防止がより効果的になされ
る。
FIG. 3 shows a second embodiment of the invention. In this embodiment, a separator plate 70 is provided at an extended position of the separator plate 7 inside the filter member 5 on the upstream side to define a position near the end face on the upstream side. The other structure is the same as the first embodiment. In this embodiment, after the fine particles are ignited by the heater on the side where the flow of exhaust gas is blocked, the propagation of combustion is not affected by the exhaust gas at all due to the separator 70, and blowing out after ignition is more effective. Definitely prevented. In addition, the separator 70 provides a rectifying effect to the exhaust gas flowing in from each flow path, reducing the amount of exhaust gas flowing into the area where particulates are being burned, so the pressure loss is slightly lower than in the first embodiment. However, the flame is more effectively prevented from being blown out on the downstream side of the filter member.

第4図は第3の実施例を示すもので、切替バル
ブ8はフイルタ部材5の端面に接する位置で軸支
せしめてあり、切替バルブ8が排気ガスの流入流
路を分割する隔離板の作用も兼用する。
FIG. 4 shows a third embodiment, in which the switching valve 8 is pivotally supported at a position in contact with the end face of the filter member 5, and the switching valve 8 acts as a separator that divides the exhaust gas inflow channel. Also serves as

第5図は第4の実施例を示すもので、隔離板7
はその後端がフイルタ部材5の端面よりも内部に
端面の近傍範囲で入り込む位置まで延設してあ
り、ヒータ6a,6bはフイルタ部材5の内部に
埋設してある。フイルタ部材5における微粒子の
捕集量分布はフイルタ部材5の端面よりも若干内
部へ入つた個所で最も多く、従つてヒータ6a,
6bによる微粒子への着火が容易となる。
FIG. 5 shows a fourth embodiment, in which the separator 7
The heaters 6 a and 6 b are embedded inside the filter member 5 , and the rear end thereof extends inside the end face of the filter member 5 in a range near the end face. The distribution of the amount of particles collected in the filter member 5 is greatest at a portion slightly inside the end surface of the filter member 5, and therefore, the amount of particles collected by the heaters 6a,
It becomes easier to ignite the fine particles by 6b.

第6図ないし第8図は第5の実施例を示すもの
で、装置Aは排気集合管1の直下に設置してあ
る。切替バルブ8はフイルタ部材5の排気ガス流
入側の端面に沿い、かつ該端面の直径方向に回転
軸81により軸支してある。電気ヒータ6a,6
bはフイルタ部材5の上記端面側の内部に埋設し
てある。容器4は排気集合管2と排気管3の連結
部に介設され、その中にフイルタ部材5がクツシ
ヨン兼シール材44により弾性的に支持されて収
納されている。本実施例は浄化装置Aの設置場所
として排気集合管2を利用したので、排気管3の
途中に装置を設置する必要がない。また排気管に
おけるよりも排気ガスが高温であるので、微粒子
を着火燃焼させるためのヒータ電力を小さくする
ことができる。
6 to 8 show a fifth embodiment, in which the device A is installed directly below the exhaust manifold pipe 1. FIG. The switching valve 8 is supported by a rotating shaft 81 along the end face of the filter member 5 on the exhaust gas inflow side and in the diametrical direction of the end face. Electric heaters 6a, 6
b is buried inside the filter member 5 on the end surface side. The container 4 is interposed at the joint between the exhaust manifold pipe 2 and the exhaust pipe 3, and a filter member 5 is accommodated therein while being elastically supported by a cushion/sealing material 44. In this embodiment, the exhaust manifold pipe 2 is used as the installation location for the purification device A, so there is no need to install the device in the middle of the exhaust pipe 3. Furthermore, since the exhaust gas is at a higher temperature than in the exhaust pipe, the heater power for igniting and burning the particulates can be reduced.

第9図は第6の実施例を示すもので、フイルタ
部材5を目の細かいセラミツク発泡体5aと目の
粗い5bとにより構成するとともにセラミツク発
泡体5aを排気ガス流入側に配し、セラミツク発
泡体5a内に電気ヒータ6a,6bを設置した点
において第5の実施例の異り、他は実質的に同一
である。20は内燃機関各気筒の排気ガス排出口
である。電気ヒータ6a,6bを埋設した部分の
目を細かくしたことによりヒータまわりの微粒子
捕集量が多くなり、着火が容易である。
FIG. 9 shows a sixth embodiment, in which the filter member 5 is composed of a fine ceramic foam 5a and a coarse ceramic foam 5b, and the ceramic foam 5a is arranged on the exhaust gas inflow side. The fifth embodiment differs from the fifth embodiment in that electric heaters 6a and 6b are installed inside the body 5a, but the rest is substantially the same. Reference numeral 20 indicates an exhaust gas outlet for each cylinder of the internal combustion engine. By making the mesh of the part where the electric heaters 6a and 6b are embedded fine, the amount of particles collected around the heaters increases, and ignition is facilitated.

第10図および第11図は第7の実施例を示す
もので、装置Aは第6の実施例と同様に排気集合
管2の直下に設けてあるが、フイルタ部材5への
排気ガス流入部を各気筒の排出口20と同程度に
絞り、この部分に切替バルブ8が設けてある。こ
れにより切替バルブ8を小型化することができ
る。なお排気ガスの分割構造は第2の実施例(第
3図)と同じである。
10 and 11 show a seventh embodiment, in which the device A is provided directly below the exhaust manifold pipe 2 as in the sixth embodiment, but the exhaust gas inflow portion to the filter member 5 is is narrowed to the same extent as the exhaust port 20 of each cylinder, and a switching valve 8 is provided in this portion. This allows the switching valve 8 to be downsized. Note that the exhaust gas division structure is the same as in the second embodiment (FIG. 3).

第12図および第13図は第8の実施例を示す
もので、排気集合管2の直下に装置Aが設置して
あり、排気集合管2において、各気筒の排出口に
切替バルブが設けてある。フイルタ部材5の排気
流入側には隔離板7,70が設けてあつてフイル
タ部材5への排気ガス流入域は二分されている。
図例は4気筒で、上記流入域の一方へ通じる二つ
の排出口には切替バルブ8a,8bが、流入域の
他方へ通じる排出口には切替バルブ8c,8d
(8dは図示せず)が設けてあり切替バルブ8a,
8bはリンク機構82により、また切替バルブ8
c,8dはリンク機構83により開閉し、切替バ
ルブ8a,8bが開いたときに切替バルブ8c,
8dが閉じるように制御される。このように切替
バルブを排気集合管における各気筒の排気ガス排
出口を利用して設置してもよい。
12 and 13 show an eighth embodiment, in which a device A is installed directly below the exhaust manifold pipe 2, and in the exhaust manifold pipe 2, a switching valve is provided at the exhaust port of each cylinder. be. Separation plates 7 and 70 are provided on the exhaust gas inflow side of the filter member 5, and the exhaust gas inflow area to the filter member 5 is divided into two.
The example shown is a four-cylinder cylinder, with switching valves 8a and 8b at the two exhaust ports leading to one of the inflow areas, and switching valves 8c and 8d at the exhaust ports leading to the other inflow area.
(8d not shown) is provided with a switching valve 8a,
8b is connected to the switching valve 8 by the link mechanism 82.
c and 8d are opened and closed by the link mechanism 83, and when the switching valves 8a and 8b are opened, the switching valves 8c and 8d are opened and closed.
8d is controlled to close. In this way, the switching valve may be installed using the exhaust gas outlet of each cylinder in the exhaust manifold pipe.

以上要するに本発明は内燃機関の排気ガス通路
に単一構造のフイルタ部材を設置するとともにこ
のフイルタ部材で捕集された排気ガス中の微粒子
を加熱手段によつて燃焼せしめる排気ガス微粒子
浄化装置において、フイルタ部材への排気ガスの
流入通路を区画するとともに各通路へ排気ガスを
導く流路切替手段を設け、かつフイルタ部材の上
流側端面には各流路域に独立の加熱手段を設けた
もので、加熱手段が作動する流路域への排気ガス
の流入を遮断または制限することにより加熱手段
は排気ガスによる冷却作用をほとんど受けること
なく、フイルタ部材に捕集された微粒子を確実に
着火せしめることができる。特に本発明ではフイ
ルタ部材自体には全く隔壁を設けず、あるいは上
流側端面の一部のみに隔壁を設けるのみとしたの
で、フイルタ部材再生時、一方の流路からフイル
タ部材の端面に流入した排気ガスは、流入後にフ
イルタ部材全体に拡散し得るから、圧力損失の上
昇が極めて少くてすみ、従つて圧力損失の上昇を
回避するために浄化装置を大型化する必要がな
い。
In summary, the present invention provides an exhaust gas particulate purification device in which a filter member of a single structure is installed in the exhaust gas passage of an internal combustion engine, and particulates in the exhaust gas collected by the filter member are combusted by a heating means. A flow path switching means is provided for dividing the inflow path of exhaust gas into the filter member and guiding the exhaust gas to each path, and an independent heating means is provided for each flow path area on the upstream end face of the filter member. By blocking or restricting the flow of exhaust gas into the flow path area in which the heating means operates, the heating means is hardly affected by the cooling effect of the exhaust gas, and the particulates collected on the filter member are reliably ignited. I can do it. In particular, in the present invention, the filter member itself is not provided with a partition wall at all, or only a part of the upstream end face is provided with a partition wall, so that when the filter member is regenerated, the exhaust gas flowing into the end face of the filter member from one of the channels Since the gas can diffuse throughout the filter member after entering, the increase in pressure loss is extremely small, and therefore there is no need to increase the size of the purification device in order to avoid an increase in pressure loss.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の第1の実施例を
示すもので、第1図は本発明を適用した内燃機関
の排気系の構成図、第2図は微粒子浄化装置の断
面図、第3図は第2の実施例の断面図、第4図お
よび第5図はそれぞれ第3および第4の実施例の
断面図、第6図ないし第8図は第5の実施例を示
すもので、第6図は内燃機関の排気系の構成図、
第7図は装置の一部断面正面図、第8図は第7図
の−線断面図、第9図は第6の実施例の断面
図、第10図は第7の実施例の一部断面正面図、
第11図は第10図のXI−XI線断面図、第12図
は第8の実施例の一部断面正面図、第13図は第
12図の−線断面図である。 A……排気ガス微粒浄化装置、5……フイルタ
部材、6a,6b……加熱手段、7,70……隔
離部材、8……排気ガス流路切替部材。
1 and 2 show a first embodiment of the present invention, FIG. 1 is a configuration diagram of an exhaust system of an internal combustion engine to which the present invention is applied, FIG. 2 is a sectional view of a particulate purification device, FIG. 3 is a sectional view of the second embodiment, FIGS. 4 and 5 are sectional views of the third and fourth embodiments, respectively, and FIGS. 6 to 8 are sectional views of the fifth embodiment. Figure 6 is a configuration diagram of the exhaust system of an internal combustion engine.
Fig. 7 is a partially sectional front view of the device, Fig. 8 is a sectional view taken along the - line in Fig. 7, Fig. 9 is a sectional view of the sixth embodiment, and Fig. 10 is a part of the seventh embodiment. Cross-sectional front view,
11 is a sectional view taken along the line XI-XI in FIG. 10, FIG. 12 is a partially sectional front view of the eighth embodiment, and FIG. 13 is a sectional view taken along the line -- in FIG. 12. A... Exhaust gas particle purification device, 5... Filter member, 6a, 6b... Heating means, 7, 70... Separation member, 8... Exhaust gas flow path switching member.

Claims (1)

【特許請求の範囲】 1 内燃機関の排気ガス通路に設置され内部に多
数の微細連通孔を有する1個のフイルタ部材と、
該フイルタ部材の排気ガス流入側へ排気ガスを導
く排気ガス通路に設置されてフイルタ部材へ流入
する排気ガス流路を分割する隔離部材と、上記排
気ガス通路に設置されて分割された流路への排気
ガスの流入を制御する排気ガス流路切替部材と、
上記分割された流路に対応する位置で上記フイル
タ部材の排気ガス流入側に互いに独立に設置され
てフイルタ部材に捕集された排気ガス中の微粒子
を加熱燃焼せしめる加熱手段とを具備し、分割さ
れた上記排気ガス流路の一方から上記フイルタ部
材内へ流入した排気ガスがフイルタ部材内の排気
ガス流出側で拡散するようになした内燃機関の排
気ガス微粒子浄化装置。 2 上記隔離部材のフイルタ部材側の端部を該フ
イルタ部材の排気ガス流入側面内部の端面近傍位
置に延設した特許請求の範囲第1項記載の内燃機
関の排気ガス微粒子浄化装置。 3 上記隔離部材をフイルタ側の端部を中心に回
動可能として排気ガス流路を切替え制御するよう
になし、上記隔離部材にて上記排気ガス流路切替
部材を兼用せしめた特許請求の範囲第1項記載の
内燃機関の排気ガス微粒子浄化装置。
[Scope of Claims] 1. A filter member installed in an exhaust gas passage of an internal combustion engine and having a large number of fine communication holes therein;
an isolation member installed in the exhaust gas passage that guides exhaust gas to the exhaust gas inflow side of the filter member to divide the exhaust gas passage flowing into the filter member; and an isolation member installed in the exhaust gas passage to divide the exhaust gas passage into the divided passage. an exhaust gas flow path switching member that controls the inflow of exhaust gas;
heating means installed independently on the exhaust gas inflow side of the filter member at positions corresponding to the divided flow paths to heat and burn particulates in the exhaust gas collected by the filter member; An exhaust gas particulate purification device for an internal combustion engine, wherein exhaust gas flowing into the filter member from one of the exhaust gas flow paths is diffused on the exhaust gas outflow side of the filter member. 2. The exhaust gas particulate purification device for an internal combustion engine according to claim 1, wherein the end of the isolation member on the filter member side extends to a position near the end face inside the exhaust gas inflow side of the filter member. 3. The separating member is rotatable around the end on the filter side to switch and control the exhaust gas flow path, and the separating member also serves as the exhaust gas flow path switching member. The exhaust gas particulate purification device for an internal combustion engine according to item 1.
JP56198999A 1981-12-10 1981-12-10 Exhaust gas particle purifier in internal-combustion engine Granted JPS58101210A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56198999A JPS58101210A (en) 1981-12-10 1981-12-10 Exhaust gas particle purifier in internal-combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56198999A JPS58101210A (en) 1981-12-10 1981-12-10 Exhaust gas particle purifier in internal-combustion engine

Publications (2)

Publication Number Publication Date
JPS58101210A JPS58101210A (en) 1983-06-16
JPH0379530B2 true JPH0379530B2 (en) 1991-12-19

Family

ID=16400410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56198999A Granted JPS58101210A (en) 1981-12-10 1981-12-10 Exhaust gas particle purifier in internal-combustion engine

Country Status (1)

Country Link
JP (1) JPS58101210A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4840028A (en) * 1987-03-20 1989-06-20 Matsushita Electric Industrial Co., Ltd. Purifier of diesel particulates in exhaust gas
US20040231323A1 (en) * 2003-05-23 2004-11-25 Fujita Mahoro M. Exhaust system and process for operating the same
JP4834041B2 (en) * 2008-08-04 2011-12-07 本田技研工業株式会社 Exhaust gas purification device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692318A (en) * 1979-12-25 1981-07-27 Toyota Motor Corp Apparatus for capturing fine particles contained in exhaust gas of internal combustion engine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692318A (en) * 1979-12-25 1981-07-27 Toyota Motor Corp Apparatus for capturing fine particles contained in exhaust gas of internal combustion engine

Also Published As

Publication number Publication date
JPS58101210A (en) 1983-06-16

Similar Documents

Publication Publication Date Title
US4558565A (en) Exhaust gas cleaning device for internal combustion engine
KR100269841B1 (en) Exhaust gas purification apparatus for diesel engine
KR19980081020A (en) Exhaust particulate removal device of internal combustion engine
JPS5928009A (en) Fine particles purifying device for exhaust gas from diesel engine
JPS6239246B2 (en)
JPH0379530B2 (en)
JPH0232450B2 (en)
KR19980032928A (en) Exhaust gas filter
JPS58162711A (en) Purifying device of exhaust fine particles for internal- combustion engine
JPH06241022A (en) Exhaust gas purifier
JP2819569B2 (en) Filter device for exhaust gas purification
KR970044284A (en) Diesel vehicle particulate matter removal device
JPS62210212A (en) Exhaust gas particulate removing device for internal combustion engine
JP2560704Y2 (en) Diesel engine exhaust purification system
JP3580563B2 (en) Exhaust gas particulate purification system for internal combustion engine
EP0165922A1 (en) Regenerative filter trap system with apparatus for diverting the exhaust gas flow.
JPH0618028Y2 (en) Reverse-flow regeneration type diesel particulate purification device
JPS5985417A (en) Minute particle removing apparatus for diesel engine
JPH04279715A (en) Exhaust gas purifying device for internal combustion engine
JPH04164112A (en) Exhaust gas purification device
JPH0478809B2 (en)
JPH0430327Y2 (en)
JPS5920510A (en) Purification device for minute particles in diesel engine exhaust
JPH0218273Y2 (en)
JPH02181015A (en) Exhaust gas cleaner employing reverse-flow regeneration method