[go: up one dir, main page]

JPH0379348B2 - - Google Patents

Info

Publication number
JPH0379348B2
JPH0379348B2 JP21380981A JP21380981A JPH0379348B2 JP H0379348 B2 JPH0379348 B2 JP H0379348B2 JP 21380981 A JP21380981 A JP 21380981A JP 21380981 A JP21380981 A JP 21380981A JP H0379348 B2 JPH0379348 B2 JP H0379348B2
Authority
JP
Japan
Prior art keywords
caprolactam
reaction
optically active
amino
monoalkylamino
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21380981A
Other languages
Japanese (ja)
Other versions
JPS58116468A (en
Inventor
Haruyo Sato
Shinzo Imamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP21380981A priority Critical patent/JPS58116468A/en
Publication of JPS58116468A publication Critical patent/JPS58116468A/en
Publication of JPH0379348B2 publication Critical patent/JPH0379348B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳现な説明】 分野 本発明は新芏な、光孊掻性なα−モノアルキル
アミノ−ε−カプロラクタムおよびその補造法に
関する。
DETAILED DESCRIPTION OF THE INVENTION (Field) The present invention relates to a novel optically active α-monoalkylamino-ε-caprolactam and a method for producing the same.

光孊掻性なα−モノアルキルアミノ−ε−カプ
ロラクタムは光孊分割剀ずしお有甚な化合物であ
る。
Optically active α-monoalkylamino-ε-caprolactam is a compound useful as an optical resolution agent.

背景技術 医薬、蟲薬ずしお䜿甚される化合物、アミノ
酞、脂肪酞等においおは−䜓又は䜓の
光孊掻性䜓が効果を奏する堎合が倚く、そのた
め、それらの補造過皋における、光孊分割剀によ
る光孊掻性䜓ぞの分割が重芁な圹割を担う堎合が
少なくない。
(Background technology) For compounds used as medicines and agricultural chemicals, amino acids, fatty acids, etc., optically active forms of (-) form or (+) form are often effective, and therefore, optical resolution in the manufacturing process of these substances is often effective. In many cases, separation into optically active forms by agents plays an important role.

塩基性化合物の光孊分割剀ずしおは酒石酞、リ
ンゎ酞等の安䟡なものが甚いられおいるが、酞性
化合物の光孊分割に必芁な塩基性分割剀ずしお
は、わずかにキニヌネブルシン、゚プドリン
などの倩然物やプネチルアミンなどが知られお
いるにすぎず、しかもこれらは高䟡なものが倚
い。
As optical resolving agents for basic compounds, inexpensive ones such as tartaric acid and malic acid are used, but as basic resolving agents necessary for optical resolution of acidic compounds, natural agents such as quinine, brucine, and efuedrin are used. The only known substances are phenethylamine and phenethylamine, and these are often expensive.

目的 そこで、本発明者らは、比范的安䟡に補造可胜
な光孊掻性原料を甚いお安䟡な塩基性分割剀ずな
りうる新芏な光孊掻性化合物を提䟛するこずを目
的ずしお鋭意怜蚎した結果、本発明に到達した。
たた、本発明者らは、かかる新芏な光孊掻性化合
物の補造法を提䟛するこずを目的ずしお鋭意怜蚎
した結果、原料の光孊掻性を保持したたた䞀玚ア
ミンを遞択的にモノアルキル化する方法を芋出し
た。その方法によ぀お本発明の新芏な光孊掻性化
合物の補造ができるこずを芋出し本発明に到達し
た。
(Purpose) Therefore, the present inventors conducted extensive studies with the aim of providing a novel optically active compound that can be used as an inexpensive basic resolving agent using optically active raw materials that can be produced at a relatively low cost. invention has been achieved.
Furthermore, as a result of intensive studies aimed at providing a method for producing such novel optically active compounds, the present inventors discovered a method for selectively monoalkylating primary amines while retaining the optical activity of the raw materials. Ta. The inventors have discovered that the novel optically active compound of the present invention can be produced by this method, and have arrived at the present invention.

構成 すなわち本発明は、次の䞀般匏 匏䞭、はメチル基、゚チル基、又はプロピ
ル基を瀺す で衚わされる光孊掻性なα−モノアルキルアミノ
−ε−カプロラクタムおよびその塩である。
(Structure) That is, the present invention has the following general formula () (In the formula, R represents a methyl group, an ethyl group, or a propyl group.) These are optically active α-monoalkylamino-ε-caprolactams and salts thereof.

たた、本発明は光孊掻性なα−アミノ−ε−カ
プロラクタムずベンズアルデヒドずを反応させお
次匏 で衚わされる光孊掻性なα−プニルメチレンア
ミノ−ε−カプロラクタムを埗、次いで該α−フ
゚ニルメチレンアミノ−ε−カプロラクタムをア
ルキル化剀ず反応せしめた埌、酞の存圚䞋加氎分
解するこずを特城ずする次の䞀般匏 匏䞭、はメチル基、゚チル基、又はプロピ
ル基を瀺す で衚わされる光孊掻性なα−モノアルキルアミノ
−ε−カプロラクタムの補造法である。
In addition, the present invention also provides the following formula () by reacting optically active α-amino-ε-caprolactam with benzaldehyde. An optically active α-phenylmethyleneamino-ε-caprolactam represented by is obtained, the α-phenylmethyleneamino-ε-caprolactam is reacted with an alkylating agent, and then hydrolyzed in the presence of an acid. The following general formula () is characterized by (In the formula, R represents a methyl group, an ethyl group, or a propyl group.) This is a method for producing optically active α-monoalkylamino-ε-caprolactam.

特城 本発明の第の特城は新芏物質ずしおの光孊掻
性なα−モノアルキルアミノ−ε−カプロラクタ
ムにあり、この化合物は造塩胜力、結晶性、安定
性、操䜜性などの優れた分割剀ずしお有甚であ
る。
(Characteristics) The first feature of the present invention is optically active α-monoalkylamino-ε-caprolactam as a new substance. It is useful as a drug.

たた、本発明の第の特城は、α−アミノ−ε
−カプロラクタムのN〓䜍を遞択的にモノアルキ
ル化する方法にある。α−モノアルキルアミノ−
ε−カプロラクタムは、α−アミノ−ε−カプロ
ラクタムのN〓䜍をモノアルキル化した化合物で
あるが、N〓䜍の遞択的モノアルキル化条件はた
だ知られおいない。䜕故ならα−アミノ−ε−カ
プロラクタムをアルキル化する堎合、アルキル化
される䜍眮がケ所あり倚くの生成物を副生する
可胜性があるので䞀般的アルキル化条件は適甚で
きないからである。
Further, the second feature of the present invention is α-amino-ε
- A method for selectively monoalkylating the N-position of caprolactam. α-monoalkylamino-
ε-caprolactam is a compound obtained by monoalkylating the N-position of α-amino-ε-caprolactam, but the conditions for selective monoalkylation of the N-position are not yet known. This is because when α-amino-ε-caprolactam is alkylated, general alkylation conditions cannot be applied because there are four positions to be alkylated and many products may be produced as by-products.

しかも、䞀般に玚アミノ基をアルキル化する
堎合モル比のコントロヌルなどの手段をこうじお
も原料である玚アミンず目的物である玚アミ
ンおよび副生物である玚アミンの混合物が生成
し、分離が非垞に困難である。たたラクタムの官
胜基は比范的容易にメチル化され−メチル誘導
䜓又は−メチル誘導䜓を䞎えるこずがよく知ら
れおいる。
Furthermore, in general, when primary amino groups are alkylated, a mixture of the primary amine as a raw material, the secondary amine as the target product, and the tertiary amine as a by-product is produced even if measures such as controlling the molar ratio are used. , very difficult to separate. It is also well known that the functional groups of lactams are relatively easily methylated to give N-methyl or O-methyl derivatives.

しかるに、本発明の方法によれば驚くべきこず
には、前蚘の副反応を完党に制埡でき、α−アミ
ノ−ε−カプロラクタムのN〓䜍に぀のアルキ
ル基、特に遞択的導入が困難であるず考えられる
䜎玚アルキル基を遞択的に極めお収率よく導入で
きる。
However, according to the method of the present invention, it is surprisingly possible to completely control the above-mentioned side reactions, and it is difficult to selectively introduce one alkyl group into the N-position of α-amino-ε-caprolactam. It is possible to selectively introduce lower alkyl groups, which are considered to be effective, in extremely high yields.

さらに本発明の第の特城は、α−アミノ−ε
−カプロラクタムのN〓䜍を遞択的にモノアルキ
ル化する際原料の光孊掻性を完党に保持したたた
反応が行なえるので、光孊掻性なα−アミノ−ε
−カプロラクタム−䜓又は䜓から
光孊掻性なα−モノアルキルアミノ−ε−カプロ
ラクタム−䜓又は䜓を極めお収率
よく埗るこずができる。
Furthermore, the third feature of the present invention is α-amino-ε
- When selectively monoalkylating the N-position of caprolactam, the reaction can be carried out while completely retaining the optical activity of the raw material, so the optically active α-amino-ε
Optically active α-monoalkylamino-ε-caprolactam ((-) form or (+) form) can be obtained in extremely high yield from -caprolactam ((-) form or (+) form).

構成の説明 以䞋、本発明を具䜓的に説明するが、はじめに
本発明の方法に぀いお述べ、次に本発明の化合物
に぀いお述べる。
(Description of Structure) The present invention will be specifically explained below. First, the method of the present invention will be described, and then the compound of the present invention will be described.

たず原料を甚意する。 First, prepare the raw materials.

本発明方法の原料である前蚘匏で衚わさ
れる光孊掻性なα−プニルメチレンアミノ−ε
−カプロラクタムは、光孊掻性なα−アミノ−ε
−カプロラクタムずベンズアルデヒドずを反応せ
しめるこずによ぀お埗る。
Optically active α-phenylmethyleneamino-ε represented by the above formula (), which is a raw material for the method of the present invention
-Caprolactam is an optically active α-amino-ε
- Obtained by reacting caprolactam with benzaldehyde.

ここで甚いる光孊掻性なα−アミノ−ε−カプ
ロラクタムはいかなる方法で補造したものも䜿甚
できる。䟋えば、α−クロル−ε−カプロラクタ
ムのアミノ化特公昭46−23747号公報、α−ニ
トロ−ε−アミノカプロラクタムの還元スむス
囜特蚱第375720号明现曞、α−アミノシクロヘ
キサノンオキシムのベツクマン転䜍特公昭41−
18089号公報、リゞン䜎玚アルキル゚ステルの脱
アルコヌル環化特公昭46−37352号公報など
皮々の補法が知られおおり、これらのいずれの方
法で補造されたα−アミノ−ε−カプロラクタム
でも䜿甚可胜である。
The optically active α-amino-ε-caprolactam used here can be produced by any method. For example, amination of α-chloro-ε-caprolactam (Japanese Patent Publication No. 46-23747), reduction of α-nitro-ε-aminocaprolactam (Swiss Patent No. 375720), Becman of α-aminocyclohexanone oxime. Dislocation (Tokuko Showa 41-
Various production methods are known, including dealcoholization cyclization of lysine lower alkyl ester (Japanese Patent Publication No. 18089), and α-amino-ε-caprolactam produced by any of these methods. Available for use.

光孊掻性なα−アミノ−ε−カプロラクタムは
いかなる方法で埗たものも䜿甚可胜であり、䟋え
ば前述の方法によ぀お補造したα−アミノ−ε−
カプロラクタムを適圓な光孊分割剀によ぀お光孊
分割しお埗るこずもできる。
Optically active α-amino-ε-caprolactam obtained by any method can be used. For example, α-amino-ε-caprolactam produced by the method described above can be used.
Caprolactam can also be obtained by optical resolution using a suitable optical resolution agent.

本発明のもう䞀方の原料であるベンズアルデヒ
ドは、埓来より呚知の方法で補造できる。
Benzaldehyde, which is another raw material of the present invention, can be produced by a conventionally known method.

次に、光孊掻性なα−アミノ−ε−カプロラク
タムずベンズアルデヒドずを反応させおα−プ
ニルメチレンアミノ−ε−カプロラクタム以䞋
シフ塩基ず略称するを補造する。
Next, optically active α-amino-ε-caprolactam and benzaldehyde are reacted to produce α-phenylmethyleneamino-ε-caprolactam (hereinafter abbreviated as Schiff base).

ここで甚いるアルデヒドは、 (1) ラセミ化を防ぐため䜎枩でもシフ塩基を圢成
する胜力を持぀掻性なアルデヒドであるこず、 (2) 䞀皮の保護基ずしおの利甚なので、目的達成
埌回収し、くり返し䜿甚できる安定なアルデヒ
ドであるこず、 (3) 続くアルキル化のステツプで他の副反応を起
こす危険性を持たないこず、䟋えばアルデヒド
基のずなりに掻性氎玠を持たないこず などの条件を満足させる必芁があり、ベンズアル
デヒドを甚いる。
The aldehyde used here is (1) an active aldehyde that has the ability to form a Schiff base even at low temperatures to prevent racemization, and (2) it is used as a type of protecting group, so it can be recovered and used repeatedly after the purpose is achieved. (3) The aldehyde must be stable and usable; (3) It must satisfy conditions such as not having the risk of causing other side reactions in the subsequent alkylation step, such as not having an active hydrogen next to the aldehyde group. , and uses benzaldehyde.

甚いるベンズアルデヒドの量は、光孊掻性なα
−アミノ−ε−カプロラクタムモルに察しお
1.0〜10.0モル、奜たしくは1.1〜2.5モルである。
The amount of benzaldehyde used is determined by the optically active α
-Amino-ε-caprolactam per mole
The amount is 1.0 to 10.0 mol, preferably 1.1 to 2.5 mol.

シフ塩基の補造方法ずしおは䞀般的なものが採
甚できる。シフ塩基圢成反応は次匏に瀺す
ごずく平衡反応なので発生する氎を䜕らかの方法
で陀去する工倫が䞀般に行なわれおいる。
As a method for producing Schiff base, a general method can be adopted. Since the Schiff base formation reaction is an equilibrium reaction as shown in the following equation (), it is generally devised to remove the generated water by some method.

−NH2OHC−R′−CH−R′H2
 具䜓的には (1) ベンれン、トル゚ン等の溶媒を甚いお生成す
る氎を共沞陀去する、 (2) モレキナラヌシヌブ等の脱氎剀を共存させ
る、 (3) 氎ず混ざらない溶媒を甚いお発生する氎を局
分離しお陀く などの方法があり、本発明の方法ずしおはいずれ
も採甚できる。
R−NH 2 +OHC−R′R−N=CH−R′+H 2 O
() Specifically, (1) azeotropic removal of water produced using a solvent such as benzene or toluene, (2) coexistence of a dehydrating agent such as molecular sieve, and (3) a solvent that is immiscible with water. There are methods such as layer separation and removal of the generated water using a method, and any of these methods can be adopted as the method of the present invention.

ここで甚いる溶媒は、䞊述のごずく発生する氎
の陀去方法ずしおいかなる方法を採甚するかによ
぀おも異なるが、奜たしくは氎に䞍溶な溶媒、特
にベンれン、トル゚ン等の芳銙族炭化氎玠溶媒が
より奜たしく甚いられる。溶媒の䜿甚量は原料の
光孊掻性なα−アミノ−ε−カプロラクタムの
2.0〜30重量倍である。
The solvent used here varies depending on the method used to remove the generated water as described above, but preferably a water-insoluble solvent, especially an aromatic hydrocarbon solvent such as benzene or toluene. Preferably used. The amount of solvent used depends on the optically active α-amino-ε-caprolactam raw material.
2.0 to 30 times the weight.

反応枩床は30〜110℃、奜たしくは50〜80℃で
ある。反応時間は反応枩床によ぀おも異なるが、
䞀般に0.1〜2.0時間である。
The reaction temperature is 30-110°C, preferably 50-80°C. The reaction time varies depending on the reaction temperature, but
Generally 0.1-2.0 hours.

特に、原料の光孊掻性を保持し぀぀反応を進
め、ラセミ化を起こさせないためには、できるだ
け枩和な条件を採甚する必芁がある。安党な条件
的目安ずしお次匏に瀺した反応枩床ず反応
時間の関係を守ればよい。
In particular, in order to proceed with the reaction while maintaining the optical activity of the raw materials and to prevent racemization, it is necessary to employ conditions as mild as possible. As a safe guideline, the relationship between reaction temperature and reaction time shown in the following equation () may be observed.

反応時間hr 反応枩床℃ すなわち80℃で行なう堎合は時間以内に反応
を終了すればラセミ化は起こらない。勿論本発明
の反応は非垞に速いので、この条件で十分反応を
終了するこずができる。その際、反応枩床、反応
時間はそれぞれ70〜90℃、〜0.5時間のうちか
ら遞択するこずが奜たしい。
T: Reaction time (hr) t: Reaction temperature (°C) That is, when carried out at 80°C, racemization will not occur if the reaction is completed within 1 hour. Of course, since the reaction of the present invention is very fast, the reaction can be sufficiently completed under these conditions. At that time, the reaction temperature and reaction time are preferably selected from 70 to 90°C and 2 to 0.5 hours, respectively.

シフ塩基圢成反応は䞀般に酞觊媒によ぀お加速
されるが、本発明では特に觊媒を甚いなくずも十
分に目的を達成するこずができる。
Although the Schiff base formation reaction is generally accelerated by an acid catalyst, the purpose of the present invention can be sufficiently achieved without the use of a catalyst.

かくしお埗られたシフ塩基を含有する反応混合
物からシフ塩基を単離し、あるいは単離するこず
なく反応混合物をそのたた、あるいは反応混合物
を濃瞮した濃瞮物をアルキル化反応に䟛する。反
応混合物からシフ塩基を単離する方法ずしおは任
意の方法が採甚できるが、反応混合物䞭に他の副
生物がほずんど存圚しないため、反応混合物から
溶媒を陀去するこずによ぀お単離する方法が最も
簡䟿である。
The Schiff base is isolated from the Schiff base-containing reaction mixture thus obtained, or the reaction mixture as it is without isolation, or the reaction mixture is concentrated and subjected to an alkylation reaction. Any method can be used to isolate Schiff's base from the reaction mixture, but since there are almost no other by-products in the reaction mixture, isolation by removing the solvent from the reaction mixture is preferable. It is the simplest.

続くアルキル化反応においおは、シフ塩基をア
ルキル化剀ず反応させる。
In the subsequent alkylation reaction, the Schiff base is reacted with an alkylating agent.

ここで䜿甚するアルキル化剀ずしおは、特に制
限はされないが、枩和な条件䞋で円滑にアルキル
化できる詊薬ずしお、䟋えばペり化メチル、ペり
化゚チル、ペり化プロピル、臭化メチル、臭化゚
チル、臭化プロピル等のハロゲン化アルキル、ゞ
メチル硫酞、ゞ゚チル硫酞、ゞプロピル硫酞等の
ゞアルキル硫酞などが奜たしく甚いられる。アル
キル化剀の䜿甚量は、シフ塩基に察しお1.0〜5.0
倍モル、奜たしくは1.0〜2.0倍モルである。
The alkylating agent used here is not particularly limited, but examples of reagents that can be smoothly alkylated under mild conditions include methyl iodide, ethyl iodide, propyl iodide, methyl bromide, ethyl bromide, Alkyl halides such as propyl bromide, dialkyl sulfates such as dimethyl sulfate, diethyl sulfate, and dipropyl sulfate are preferably used. The amount of alkylating agent used is 1.0 to 5.0 to Schiff base.
twice the molar amount, preferably 1.0 to 2.0 times the molar amount.

この工皋で泚意すべきこずは加氎分解反応の䜵
発である。埓぀お反応系䞭ぞの氎の混入を防ぐ䞀
般的察策が必芁である。
What should be noted in this step is the simultaneous occurrence of hydrolysis reactions. Therefore, general measures are required to prevent water from entering the reaction system.

たた、光孊掻性な最終生成物を取埗する堎合に
は、ラセミ化反応をも䜵発しないよう泚意するこ
ずが必芁である。ラセミ化反応は、前述のシフ塩
基補造工皋で瀺した反応枩床ず反応時間ずの条件
的目安の前蚘匏の関係を満たし぀぀、その
際の反応枩床ず反応時間の各々の前蚘範囲から遞
択した条件を採甚するこずにより、䜵発防止が可
胜である。勿論、目的の反応は目安の条件内で達
成するこずができる。その他の条件は、ハロゲン
化アルキルやゞアルキル硫酞をアルキル化剀に甚
いる䞀般的条件を適甚するこずができる。
Furthermore, when obtaining an optically active final product, care must be taken not to cause a racemization reaction as well. The racemization reaction is selected from the above-mentioned ranges for the reaction temperature and reaction time while satisfying the relationship of the conditional guideline formula () between the reaction temperature and reaction time shown in the Schiff base production process described above. By adopting these conditions, it is possible to prevent their occurrence. Of course, the desired reaction can be achieved within the intended conditions. As for other conditions, general conditions using an alkyl halide or a dialkyl sulfate as an alkylating agent can be applied.

かくしお、䟋えば次匏で瀺される反応䞭
間䜓が塩の圢態で生成する。
In this way, for example, a reaction intermediate represented by the following formula () is produced in the form of a salt.

この反応䞭間䜓は単離するこずなく、反
応混合物をそのたたあるいは反応混合物を適宜濃
瞮しお加氎分解反応に䟛する。
This reaction intermediate (2) is not isolated, but is subjected to a hydrolysis reaction in the reaction mixture as it is or after appropriately concentrating the reaction mixture.

この反応は、反応に十分な氎ず觊媒量、0.01〜
5.0モル、奜たしくは0.5〜3.0モルの酞があれば、
宀枩で0.1〜時間で終了する。反応速床を速め
るため若干の加熱条件䞋、䟋えば30〜50℃で実斜
するこずもできる。觊媒ずしお塩酞、硫酞、モノ
メチル硫酞などの鉱酞や酢酞、シナり酞などの有
機酞が奜たしく甚いられる。
This reaction requires sufficient water and catalyst amount, 0.01~
With 5.0 moles of acid, preferably 0.5 to 3.0 moles,
The process is completed in 0.1 to 1 hour at room temperature. In order to accelerate the reaction rate, the reaction can also be carried out under slight heating conditions, for example at 30 to 50°C. As the catalyst, mineral acids such as hydrochloric acid, sulfuric acid, and monomethyl sulfuric acid, and organic acids such as acetic acid and oxalic acid are preferably used.

かくしお前蚘反応䞭間䜓は加氎分解さ
れ、光孊掻性なα−モノアルキルアミノ−ε−カ
プロラクタムずベンズアルデヒドが生成する。
The reaction intermediate () is thus hydrolyzed to produce optically active α-monoalkylamino-ε-caprolactam and benzaldehyde.

反応埌は目的物である光孊掻性なα−モノアル
キルアミノ−ε−カプロラクタムが塩の圢で存圚
しおいるので、䟋えばベンれン、クロロホルム等
の氎に溶けない有機溶媒で抜出すればベンズアル
デヒドを有機局に容易に分離するこずができる。
氎局に残぀た目的物は䞭和埌抜出するか、あるい
はそのたたむオン亀換凊理するなど䞀般的なアミ
ンの単離法を枩和な条件で適甚するこずができ
る。
After the reaction, the optically active α-monoalkylamino-ε-caprolactam, which is the target substance, exists in the form of a salt, so if it is extracted with a water-insoluble organic solvent such as benzene or chloroform, the benzaldehyde can be separated from the organic layer. can be easily separated.
The target product remaining in the aqueous layer can be extracted after neutralization, or can be directly subjected to ion exchange treatment, or other general amine isolation methods can be applied under mild conditions.

埗られた光孊掻性なα−モノアルキルアミノ−
ε−カプロラクタムは、䟋えば酢酞゚チル−シク
ロヘキサンの混合溶媒等の有機溶媒により再結晶
せしめるこずにより粟補できる。
The optically active α-monoalkylamino-
ε-caprolactam can be purified, for example, by recrystallization from an organic solvent such as a mixed solvent of ethyl acetate and cyclohexane.

埗られた光孊掻性なα−モノアルキルアミノ−
ε−カプロラクタムは䜓、−䜓ずもに
癜色結晶である。この化合物はアミノ基の䞀方の
氎玠のみが遞択的に䜎玚アルキル化されおおり、
特に酞性化合物の光孊分割剀ずしお有甚である。
The optically active α-monoalkylamino-
Both the (+) and (-) forms of ε-caprolactam are white crystals. In this compound, only one hydrogen of the amino group is selectively lower-alkylated,
It is particularly useful as an optical resolution agent for acidic compounds.

以䞋、実斜䟋により本発明を説明する。 The present invention will be explained below with reference to Examples.

実斜䟋  −−α−プニルメチレンアミノ−ε−カ
プロラクタム21.60.1モルおよび蒞留粟補
したゞメチル硫酞37.80.3モルを200mlのフ
ラスコに仕蟌み、撹拌しながら90℃で20分間反応
させた。反応終了埌、氷氎で冷华したのち氎100
mlを加えお均䞀溶液ずした。芏定塩酞氎溶液
100mlを加えお曎に時間撹拌した。
Example 1 21.6 g (0.1 mol) of (-)-α-phenylmethyleneamino-ε-caprolactam and 37.8 g (0.3 mol) of dimethyl sulfate purified by distillation were placed in a 200 ml flask and heated at 90°C for 20 minutes with stirring. Made it react. After the reaction is complete, cool with ice water and add 100% water.
ml was added to make a homogeneous solution. 1N hydrochloric acid aqueous solution
100 ml was added and further stirred for 1 hour.

反応混合物をクロロホルム50mlで回抜出した
のち、氎局をむオン亀換暹脂䞉菱化成補ダむダ
むオンPK220H型 200mlに通液し䞭性ずなる
たでよく掗浄した。アンモニア氎溶液で溶出
し、枛圧濃瞮しお粗−−α−モノメチルアミ
ノ−ε−カプロラクタム13.5を埗た。収率は
94.8であ぀た。曎に酢酞゚チル−シクロヘキサ
ンの混合溶媒で再結晶しお粟−−α−モノメ
チルアミノ−ε−カプロラクタムを埗た。䞀方、
クロロホルム局を枛圧濃瞮したのち枛圧蒞留しお
ベンズアルデヒド9.2を回収した。
After the reaction mixture was extracted twice with 50 ml of chloroform, the aqueous layer was passed through an ion exchange resin (Diaion PK220H type, manufactured by Mitsubishi Kasei, 200 ml) and thoroughly washed until neutral. It was eluted with a 5% ammonia aqueous solution and concentrated under reduced pressure to obtain 13.5 g of crude (-)-α-monomethylamino-ε-caprolactam. The yield is
It was 94.8%. Further, it was recrystallized from a mixed solvent of ethyl acetate and cyclohexane to obtain purified (-)-α-monomethylamino-ε-caprolactam. on the other hand,
The chloroform layer was concentrated under reduced pressure and then distilled under reduced pressure to recover 9.2 g of benzaldehyde.

埗られた−−α−モノメチルアミノ−ε−
カプロラクタムの物性は次のずおりであ぀た。
The obtained (-)-α-monomethylamino-ε-
The physical properties of caprolactam were as follows.

元玠分析C7H14N2ずしお    分析倀 59.07 9.94 19.75 蚈算倀 59.12 9.92 19.70 融点 100〜101℃ 2H栞磁気共鳎スペクトルD2溶媒 1.4〜2.2ppm6H 2.4ppm3H 3.3〜3.7ppm3H 旋光床 〔α〕23.5 D −39.443.9 1N・HCl aq −45.453.9 H2 実斜䟋  500mlのフラスコに−α−アミノ−ε−カ
プロラクタム25.60.20モル、ベンズアルデ
ヒド25.40.24モルおよびベンれン300mlを
仕蟌み、共沞脱氎装眮を装着しお加熱した。還流
開始埌30分間反応させたのち枛圧でベンれンを留
去した。
Elemental analysis (as C7H14N2O ) C% H% N% Analytical value 59.07 9.94 19.75 Calculated value 59.12 9.92 19.70 Melting point 100-101℃ 2H nuclear magnetic resonance spectrum ( D2O solvent) 1.4-2.2ppm ( 6H) 2.4ppm (3H) 3.3-3.7ppm (3H) Optical rotation [α] 23.5 D -39.44 (C = 3.9 1N HCl aq) -45.45 (C = 3.9 H 2 O) Example 2 In a 500 ml flask ( +)-α-Amino-ε-caprolactam 25.6 g (0.20 mol), benzaldehyde 25.4 g (0.24 mol) and benzene 300 ml were charged, and an azeotropic dehydration device was installed and heated. After the reaction started for 30 minutes, benzene was distilled off under reduced pressure.

濃瞮物にゞメチル硫酞75.60.60モルを加
え、80℃で25分間反応させた。反応終了埌実斜䟋
ず同様に加氎分解反応および単離を行ない粗
−α−モノメチルアミノ−ε−カプロラクタ
ム27.8を埗た。収率は97.9であ぀た。埗られ
た粗生成物を、さらに酢酞゚チルで再結晶しお粟
−α−モノメチルアミノ−ε−カプロラクタ
ムを埗た。
75.6 g (0.60 mol) of dimethyl sulfate was added to the concentrate, and the mixture was reacted at 80° C. for 25 minutes. After the reaction was completed, hydrolysis reaction and isolation were carried out in the same manner as in Example 1 to obtain 27.8 g of crude (+)-α-monomethylamino-ε-caprolactam. The yield was 97.9%. The obtained crude product was further recrystallized from ethyl acetate to obtain purified (+)-α-monomethylamino-ε-caprolactam.

埗られた−α−モノメチルアミノ−ε−
カプロラクタムの物性は次のずおりであ぀た。
The obtained (+)-α-monomethylamino-ε-
The physical properties of caprolactam were as follows.

元玠分析C7H14N2ずしお    分析倀 59.08 9.94 19.81 蚈算倀 59.12 9.92 19.70 融点 100〜101℃ 2H栞磁気共鳎スペクトルD2溶媒 1.4〜2.2ppm6H 2.4ppm3H 3.3〜3.7ppm3H 旋光床 〔α〕23.5 D 39.544.1 1N・HCl aq 44.083.9 H2 実斜䟋  −−α−プニルメチレンアミノ−ε−カ
プロラクタム21.60.1モル、−プロピルブ
ロマむド27.50.12モルおよびベンれン100
mlを300mlのフラスコに仕蟌み時間加熱還流し
た。反応終了埌氷氎で冷华したのち芏定塩酞氎
溶液100mlを加えお時間撹拌した。
Elemental analysis (as C7H14N2O ) C% H% N% Analytical value 59.08 9.94 19.81 Calculated value 59.12 9.92 19.70 Melting point 100-101℃ 2H nuclear magnetic resonance spectrum ( D2O solvent) 1.4-2.2ppm ( 6H) 2.4ppm (3H) 3.3-3.7ppm (3H) Optical rotation [α] 23.5 D +39.54 (C = 4.1 1N HCl aq) +44.08 (C = 3.9 H 2 O) Example 3 (-) -α-phenylmethyleneamino-ε-caprolactam 21.6 g (0.1 mol), n-propyl bromide 27.5 g (0.12 mol) and benzene 100
ml was placed in a 300 ml flask and heated under reflux for 5 hours. After the reaction was completed, the mixture was cooled with ice water, 100 ml of a 2N aqueous hydrochloric acid solution was added, and the mixture was stirred for 1 hour.

次いで実斜䟋ず同様に単離を行ない粗−
−α−モノプロピルアミノ−ε−カプロラクタム
14.7を埗た。収率は86.5であ぀た。さらに枛
圧蒞留し、沞点106℃0.18mmHgの留分ずしお粟
−−α−モノプロピルアミノ−ε−カプロラク
タムを埗た。
Then, isolation was carried out in the same manner as in Example 1 to obtain crude (-)
-α-monopropylamino-ε-caprolactam
14.7g was obtained. The yield was 86.5%. Further vacuum distillation was performed to obtain purified (-)-α-monopropylamino-ε-caprolactam as a fraction with a boiling point of 106°C/0.18mmHg.

埗られた−−α−モノプロピルアミノ−ε
−カプロラクタムの物性は次のずおりであ぀た。
The obtained (-)-α-monopropylamino-ε
-The physical properties of caprolactam were as follows.

元玠分析C9H18N2ずしお    分析倀 63.64 10.52 16.44 蚈算倀 63.49 10.66 16.45 沞点 106℃0.18mmHg 2H栞磁気共鳎スペクトルD2溶媒 0.9〜1.2ppm3H 1.5〜2.4ppm8H 2.9〜3.5ppm4H 4.1〜4.5ppm1H 旋光床 〔α〕22.0 D −42.552.5 H2 実斜䟋  実斜䟋においお、原料ずしお−α−フ
゚ニルメチレンアミノ−ε−カプロラクタム21.6
を甚いお反応を行ない粗−α−モノプロ
ピルアミノ−ε−カプロラクタム14.8を埗た。
収率は87.1であ぀た。実斜䟋ず同様にしお枛
圧蒞留しお粟−α−モノプロピルアミノ−
ε−カプロラクタムを埗た。
Elemental analysis ( as C9H18N2O ) C% H% N% Analytical value 63.64 10.52 16.44 Calculated value 63.49 10.66 16.45 Boiling point 106℃/0.18mmHg 2H nuclear magnetic resonance spectrum ( D2O solvent) 0.9-1.2ppm (3H) 1.5-2.4ppm (8H) 2.9-3.5ppm (4H) 4.1-4.5ppm (1H) Optical rotation [α] 22.0 D -42.55 (C = 2.5 H 2 O) Example 4 In Example 3, the raw materials As(+)-α-phenylmethyleneamino-ε-caprolactam 21.6
14.8 g of crude (+)-α-monopropylamino-ε-caprolactam was obtained.
The yield was 87.1%. Distilled under reduced pressure in the same manner as in Example 3 to obtain purified (+)-α-monopropylamino-
ε-caprolactam was obtained.

埗られた−α−モノプロピルアミノ−ε
−カプロラクタムの物性は次のずおりであ぀た。
The obtained (+)-α-monopropylamino-ε
-The physical properties of caprolactam were as follows.

元玠分析C9H18N2ずしお    分析倀 63.37 10.71 16.52 蚈算倀 63.49 10.66 16.45 沞点 106℃0.18mmHg 2H栞磁気共鳎スペクトルD2溶媒 0.9〜1.2ppm3H 1.5〜2.4ppm8H 2.9〜3.5ppm4H 4.1〜4.5ppm1H 旋光床 〔α〕22.0 D 42.322.6 H2 実斜䟋  −α−プニルメチレンアミノ−ε−カ
プロラクタム2.90.01モルおよび蒞留粟補
したゞ゚チル硫酞7.70.05モルを100mlのフ
ラスコに仕蟌み、90℃で20分間撹拌した。
Elemental analysis ( as C9H18N2O ) C% H% N% Analytical value 63.37 10.71 16.52 Calculated value 63.49 10.66 16.45 Boiling point 106℃/0.18mmHg 2H nuclear magnetic resonance spectrum ( D2O solvent) 0.9-1.2ppm (3H) 1.5-2.4ppm (8H) 2.9-3.5ppm (4H) 4.1-4.5ppm (1H) Optical rotation [α] 22.0 D +42.32 (C = 2.6 H 2 O) Example 5 (+) - α 2.9 g (0.01 mol) of -phenylmethyleneamino-ε-caprolactam and 7.7 g (0.05 mol) of diethyl sulfate purified by distillation were placed in a 100 ml flask and stirred at 90°C for 20 minutes.

反応終了埌氷氎で冷华したのち氎10mlを加え、
さらに時間撹拌した。反応混合物をクロロホル
ム20mlで回抜出したのち、氎局を実斜䟋ず同
様に凊理しお粗−α−モノ゚チルアミノ−
ε−カプロラクタム1.4を埗た。収率は89.7
であ぀た。さらに枛圧蒞留し沞点127℃0.2mm
Hgの留分ずしお粟−α−モノ゚チルアミノ
−ε−カプロラクタム0.9を埗た。
After the reaction is complete, cool with ice water and add 10ml of water.
The mixture was further stirred for 1 hour. After the reaction mixture was extracted twice with 20 ml of chloroform, the aqueous layer was treated in the same manner as in Example 1 to obtain crude (+)-α-monoethylamino-
1.4 g of ε-caprolactam was obtained. Yield is 89.7%
It was hot. Further distillation under reduced pressure has a boiling point of 127℃/0.2mm.
0.9 g of purified (+)-α-monoethylamino-ε-caprolactam was obtained as a Hg fraction.

埗られた−α−モノ゚チルアミノ−ε−
カプロラクタムの物性は次のずおりであ぀た。
The obtained (+)-α-monoethylamino-ε-
The physical properties of caprolactam were as follows.

元玠分析C8H16N2ずしお    分析倀 61.37 10.56 17.71 蚈算倀 61.50 10.32 17.93 沞点 127℃0.2mmHg 2H栞磁気共鳎スペクトルD2溶媒 1.1〜1.4ppm3H 1.4〜2.4ppm6H 2.7〜3.5ppm4H 4.0〜4.4ppm1H 旋光床 〔α〕21.5 D 40.822.0 H2 実斜䟋  実斜䟋においお、原料ずしお−−α−フ
゚ニルメチレンアミノ−ε−カプロラクタム2.9
を甚いお反応を行ない粗−−α−モノ゚チ
ルアミノ−ε−カプロラクタム1.35を埗た。収
率は86.6であ぀た。実斜䟋ず同様にしお枛圧
蒞留し、粟−−α−モノ゚チルアミノ−ε−
カプロラクタムを埗た。
Elemental analysis ( as C8H16N2O ) C% H% N% Analytical value 61.37 10.56 17.71 Calculated value 61.50 10.32 17.93 Boiling point 127℃/0.2mmHg 2H nuclear magnetic resonance spectrum ( D2O solvent) 1.1-1.4ppm (3H) 1.4-2.4ppm (6H) 2.7-3.5ppm (4H) 4.0-4.4ppm (1H) Optical rotation [α] 21.5 D +40.82 (C = 2.0 H 2 O) Example 6 In Example 5, As a raw material (-)-α-phenylmethyleneamino-ε-caprolactam 2.9
1.35 g of crude (-)-α-monoethylamino-ε-caprolactam was obtained. The yield was 86.6%. Distilled under reduced pressure in the same manner as in Example 5 to obtain purified (-)-α-monoethylamino-ε-
Obtained caprolactam.

埗られた−−α−モノ゚チルアミノ−ε−
カプロラクタムの物性は次のずおりであ぀た。
The obtained (-)-α-monoethylamino-ε-
The physical properties of caprolactam were as follows.

元玠分析C8H16N2ずしお    分析倀 61.77 10.41 19.82 蚈算倀 61.50 10.32 17.93 沞点 127℃0.2mmHg 2H栞磁気共鳎スペクトルD2溶媒 1.1〜1.4ppm3H 1.4〜2.4ppm6H 2.7〜3.5ppm4H 4.0〜4.4ppm1H 旋光床 〔α〕21.5 D −40.792.0 H2 実斜䟋  ±−α−プニルメチレンアミノ−ε−カ
プロラクタム21.60.1モルおよび蒞留粟補
したゞメチル硫酞37.80.3モルを200mlのフ
ラスコに仕蟌み、撹拌しながら90℃で30分間反応
させた。
Elemental analysis ( as C8H16N2O ) C% H% N% Analytical value 61.77 10.41 19.82 Calculated value 61.50 10.32 17.93 Boiling point 127℃/0.2mmHg 2H nuclear magnetic resonance spectrum ( D2O solvent) 1.1-1.4ppm (3H) 1.4~2.4ppm (6H) 2.7~3.5ppm (4H) 4.0~4.4ppm (1H) Optical rotation [α] 21.5 D −40.79 (C=2.0 H 2 O) Example 7 (±) −α− 21.6 g (0.1 mol) of phenylmethyleneamino-ε-caprolactam and 37.8 g (0.3 mol) of dimethyl sulfate purified by distillation were placed in a 200 ml flask, and reacted with stirring at 90° C. for 30 minutes.

反応終了埌、実斜䟋ず同様にしおα−メチル
アミノ−ε−カプロラクタム12.8を埗た。
After the reaction was completed, 12.8 g of α-methylamino-ε-caprolactam was obtained in the same manner as in Example 1.

Claims (1)

【特蚱請求の範囲】  次の䞀般匏 匏䞭、はメチル基、゚チル基、又はプロピ
ル基を瀺す で衚わされる光孊掻性なα−モノアルキルアミノ
−ε−カプロラクタムおよびその塩。  光孊掻性なα−アミノ−ε−カプロラクタム
ずベンズアルデヒドずを反応させお次匏 で衚わされる光孊掻性なα−プニルメチレンア
ミノ−ε−カプロラクタムを埗、次いで該α−フ
゚ニルメチレンアミノ−ε−カプロラクタムをア
ルキル化剀ず反応せしめた埌、酞の存圚䞋加氎分
解するこずを特城ずする次の䞀般匏 匏䞭、はメチル基、゚チル基たたはプロピ
ル基を瀺す で衚わされる光孊掻性なα−モノアルキルアミノ
−ε−カプロラクタムの補造法。
[Claims] First-order general formula () (In the formula, R represents a methyl group, an ethyl group, or a propyl group.) An optically active α-monoalkylamino-ε-caprolactam and a salt thereof. 2 React optically active α-amino-ε-caprolactam with benzaldehyde to form the following formula () An optically active α-phenylmethyleneamino-ε-caprolactam represented by is obtained, the α-phenylmethyleneamino-ε-caprolactam is reacted with an alkylating agent, and then hydrolyzed in the presence of an acid. The following general formula () is characterized by (In the formula, R represents a methyl group, an ethyl group, or a propyl group.) A method for producing optically active α-monoalkylamino-ε-caprolactam.
JP21380981A 1981-12-28 1981-12-28 Optically active alpha-monoalkylamino-beta-caprolactam and preparation of alpha-monoalkylamino-epsilon-capro-lactam Granted JPS58116468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21380981A JPS58116468A (en) 1981-12-28 1981-12-28 Optically active alpha-monoalkylamino-beta-caprolactam and preparation of alpha-monoalkylamino-epsilon-capro-lactam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21380981A JPS58116468A (en) 1981-12-28 1981-12-28 Optically active alpha-monoalkylamino-beta-caprolactam and preparation of alpha-monoalkylamino-epsilon-capro-lactam

Publications (2)

Publication Number Publication Date
JPS58116468A JPS58116468A (en) 1983-07-11
JPH0379348B2 true JPH0379348B2 (en) 1991-12-18

Family

ID=16645391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21380981A Granted JPS58116468A (en) 1981-12-28 1981-12-28 Optically active alpha-monoalkylamino-beta-caprolactam and preparation of alpha-monoalkylamino-epsilon-capro-lactam

Country Status (1)

Country Link
JP (1) JPS58116468A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0798802B2 (en) * 1984-07-13 1995-10-25 東レ株匏䌚瀟 Process for producing optically active indoline-2-carboxylic acid

Also Published As

Publication number Publication date
JPS58116468A (en) 1983-07-11

Similar Documents

Publication Publication Date Title
JPH05148206A (en) Preparation of monoester-monoamide, monoacid- monoamide and bisamide of once and twice substituted malonic acid, compound prepared by the process
CZ374297A3 (en) Process for preparing (s)-3-(aminomethyl)-5-methylhexanoic acid
US9000205B2 (en) Process for the preparation of 2-cyanophenylboronic acid and esters thereof
JPH06145088A (en) Method of producing 9,9-bis(4-hydroxyphenyl)fluorene
JPH0379348B2 (en)
US6630595B2 (en) Method for producing maleimides
JP2587336B2 (en) Method for producing bevantrol hydrochloride
EP0090203B1 (en) Process for preparing p.chlorophenoxyacetyl-piperonylpiperazine
KR920007232B1 (en) Bevantolol preparation
EP0437566B1 (en) Phenyl-glycine derivatives
JP2859791B2 (en) Method for producing 4-bromomethylbiphenyl compound
JP3640319B2 (en) Method for producing benzamide derivative
JP3477631B2 (en) Purification method of 1,3-bis (3-aminopropyl) -1,1,3,3-tetraorganodisiloxane
JP2767295B2 (en) Method for producing indole-3-carbonitrile compound
JP3257779B2 (en) Method for producing tartanyl acids
EP0449546B1 (en) Process for the preparation of m-aminophenols from resorcinol
JPS6054948B2 (en) Method for producing aromatic amines from α,β↓-unsaturated cycloaliphatic ketoxime
JP2917495B2 (en) Method for producing optically active 1,2-propanediamine
JPH10505602A (en) How to make selegiline
JPS59225147A (en) Preparation of o-substituted-hydroxylamine
JPH08208587A (en) Method for purifying N, O-dialkylhydroxamic acid and O-alkylhydroxamic acid
JP2526413B2 (en) Alkylenediphenyldisulfonylfluoride and method for synthesizing the same
JP4521090B2 (en) Process for producing 1,1,1-trifluoro-2-aminoalkane
JPH01272556A (en) 4-allyl-2,6-diethylaniline and production thereof
JPS6317869A (en) Production of 2-lower alkyl-4-amino-5-formylpyrimidine