JPH0377749A - Casting apparatus for lead alloy continuous grid - Google Patents
Casting apparatus for lead alloy continuous gridInfo
- Publication number
- JPH0377749A JPH0377749A JP1213259A JP21325989A JPH0377749A JP H0377749 A JPH0377749 A JP H0377749A JP 1213259 A JP1213259 A JP 1213259A JP 21325989 A JP21325989 A JP 21325989A JP H0377749 A JPH0377749 A JP H0377749A
- Authority
- JP
- Japan
- Prior art keywords
- lead alloy
- molds
- mesh
- mold
- shaped
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000978 Pb alloy Inorganic materials 0.000 title claims abstract description 39
- 238000005266 casting Methods 0.000 title claims description 6
- 238000001816 cooling Methods 0.000 claims abstract description 10
- 230000007246 mechanism Effects 0.000 claims abstract description 10
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 238000005520 cutting process Methods 0.000 claims abstract description 3
- 238000007711 solidification Methods 0.000 claims description 7
- 230000008023 solidification Effects 0.000 claims description 7
- 210000005069 ears Anatomy 0.000 claims description 5
- 238000003825 pressing Methods 0.000 claims description 3
- 238000000926 separation method Methods 0.000 claims 1
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000013078 crystal Substances 0.000 description 6
- 230000007797 corrosion Effects 0.000 description 4
- 238000005260 corrosion Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910001245 Sb alloy Inorganic materials 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 239000002140 antimony alloy Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 239000002142 lead-calcium alloy Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007799 cork Substances 0.000 description 1
- FPAFDBFIGPHWGO-UHFFFAOYSA-N dioxosilane;oxomagnesium;hydrate Chemical compound O.[Mg]=O.[Mg]=O.[Mg]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O FPAFDBFIGPHWGO-UHFFFAOYSA-N 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000006082 mold release agent Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Continuous Casting (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は鉛電池の極板に用いる鉛合金連続格子の鋳造装
置に関するものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a casting apparatus for a continuous grid of lead alloys used for electrode plates of lead batteries.
従来の技術とその課題
従来の鉛合金連続格子には、鉛合金シートに切り0管い
れて展開した構造のエキスバンド格子と、網目状溝を設
けた回転する冷却ドラムに鉛合金溶湯を注湯して冷却、
凝固されるドラム式連I!鋪遺格子とがある。Conventional technology and its challenges Conventional continuous lead alloy grids include expanded grids, which are made by cutting a lead alloy sheet and inserting zero tubes, and pouring molten lead alloy into a rotating cooling drum with mesh grooves. and cool,
Solidified drum type series I! There is a latticework.
前者は、予め鉛合金シートを圧延あるいは連続鋳造によ
って製造せねばならないが、エキスバンド時には格子耳
を形成させるためシートの歩留りが低く高価であり、か
つ格子桟がジグザクに配置されるので電気抵抗が大きい
という欠点があった。In the former method, a lead alloy sheet must be manufactured in advance by rolling or continuous casting, but the yield rate of the sheet is low and it is expensive because the lattice ears are formed during expansion, and the electrical resistance is low because the lattice bars are arranged in a zigzag pattern. It had the disadvantage of being large.
後者は回転ドラム面から冷却されて格子桟の結晶がドラ
ム面から一方向に成長した組織と成るため粒間腐食を生
じやすいこと、かつ回転ドラム面での凝固と注湯との速
度バランスが難しく棧切れや“ばり”が発生しやすいと
いう欠点があった。The latter is cooled from the rotating drum surface and has a structure in which the crystals on the lattice bars grow in one direction from the drum surface, which tends to cause intergranular corrosion, and it is difficult to balance the speeds of solidification and pouring on the rotating drum surface. It had the disadvantage of being prone to breakage and burrs.
なお、第4図に従来のドラム式鋳造格子の結晶塑性を示
すが、同図の左側はドラム面で急令された組織でありド
ラム面から柱状に結晶が内部へ生長している。右側は反
対側で徐冷された組織である。FIG. 4 shows the crystal plasticity of a conventional drum-type cast lattice. The left side of the figure shows a structure that is rapidly formed on the drum surface, with crystals growing inside from the drum surface in a columnar manner. On the right is the tissue that was annealed on the opposite side.
課題を解決するための手段
本発明は互いに反対方向に回転してエンドレスに移動す
る一対の帯状鋳型を用い、鋳型が密接して移動する帯域
の加熱されて高温となった部分で鉛合金溶湯を注湯し、
その後冷却して一定間隔ごとに断面積の小さな継ぎ0部
のある帯状網目状体である鉛合金連続!lfl造格子全
格子することによって、上記欠点を解決するものである
。第5図に本発明になる連続銃遣格子の結晶組成を示す
が、網目状体は全周から均一に冷却された不規則な組織
である。Means for Solving the Problems The present invention uses a pair of belt-shaped molds that rotate in opposite directions and move endlessly, and the molten lead alloy is heated in the heated zone where the molds move closely together. Pour hot water,
After that, it is cooled and becomes a continuous lead alloy, which is a band-like network with small cross-sectional areas at regular intervals. The above-mentioned drawbacks are solved by using the lfl lattice as the entire lattice. FIG. 5 shows the crystal composition of the continuous gun lattice according to the present invention, and the mesh body has an irregular structure uniformly cooled from the entire circumference.
実施例 本発明を好適な実施例を用いて説明する。Example The present invention will be explained using preferred embodiments.
第1図は帯状鋳型を用いた鉛合金i続n遣装置の一実施
例を示す図である。1と2は同一速度でほぼ水平方向に
移動1回転する一対の帯状鋳型であって、両者が密接し
て移動する帯域3から4の間では、上方に開口する網目
状溝が鋳型間に形成される。この帯域において一対の帯
状鋳型の外測から鋳型を押圧するa構5aと5b、 6
aと6bおよび7aと7bとがある。8は鉛合金溶湯の
注湯amで鉛−カルシウム系合金や鉛−アンチモン系合
金のような鉛蓄電池用格子に常用される鉛合金溶湯を一
対の帯状鋳型の網目状溝に連なる上方開口部へ注湯する
注湯機構、9Aと9bは加熱a楕で帯状鋳型における鉛
合金注湯部の近傍に設けられ、該注湯部近傍の鋳型を加
熱する。加熱方法は電熱、蒸気、ガス、赤外線等常用の
手段をもちいることがてきる。FIG. 1 is a diagram showing an embodiment of a lead alloy continuous molding device using a strip-shaped mold. 1 and 2 are a pair of belt-shaped molds that move approximately horizontally at the same speed for one revolution, and between zones 3 and 4 where they move closely together, a mesh groove that opens upward is formed between the molds. be done. A structure 5a and 5b, 6 which press the mold from the outside measurement of a pair of band-shaped molds in this zone.
There are a and 6b and 7a and 7b. 8 is a pouring am of molten lead alloy, which pours molten lead alloy such as lead-calcium alloy or lead-antimony alloy, which is commonly used for grids for lead-acid batteries, into the upper opening connected to the mesh grooves of a pair of band-shaped molds. The pouring mechanisms 9A and 9b for pouring molten metal are provided in the vicinity of the lead alloy pouring part in the strip mold with heating a-ovals, and heat the mold in the vicinity of the pouring part. As the heating method, commonly used means such as electric heat, steam, gas, and infrared rays can be used.
10^と10bは冷却機構で、鉛合金注湯部の後で帯状
鋳型を冷却する。冷却方法は水冷、空冷等常用の手段を
用いることができる。10^ and 10b are cooling mechanisms that cool the strip mold after the lead alloy pouring section. As the cooling method, commonly used means such as water cooling and air cooling can be used.
鉛合金の凝固温度は鉛−カルシウム系で約320℃、鉛
−アンチモン系で約250℃であるが、注湯時の鉛合金
は450〜350℃が望ましい、注湯部の近傍の帯状鋳
型の温度は前記の鉛合金の凝固温度に近いもの、すなわ
ち鉛−カルシウム系の場合は280〜330℃、鉛−ア
ンチモン系合金の場合は210〜260°Cがそれぞれ
望ましい、これは注湯後の溶湯冷却速度を小さくして鉛
合金が帯状鋳型の網目状溝内にゆきわたって充填される
効果がある。The solidification temperature of lead alloys is approximately 320°C for lead-calcium systems and approximately 250°C for lead-antimony systems, but it is desirable for lead alloys to have a solidification temperature of 450 to 350°C during pouring. The temperature is preferably close to the solidification temperature of the lead alloy, i.e., 280 to 330°C for lead-calcium alloys and 210 to 260°C for lead-antimony alloys. This has the effect of lowering the cooling rate so that the lead alloy is thoroughly filled into the mesh grooves of the strip mold.
この溶湯は次の帯域で冷却されて凝固するが、この時に
は網目状溝を形成する鋳型壁面の全周からほぼ均一な速
度で冷却されることが重要である。This molten metal is cooled and solidified in the next zone, but at this time it is important that it is cooled at a substantially uniform rate from the entire circumference of the mold wall forming the mesh grooves.
これは第5図に示すように鉛合金の結晶組織が不規則か
つ微細となり耐食性に優れた格子を得る効果があり、従
来の連続n遺における格子では第4図に示したように結
晶が一方向に伸びていて耐食性に劣っていたものが、基
本的に改良されている。As shown in Figure 5, this has the effect of making the crystal structure of the lead alloy irregular and fine, resulting in a lattice with excellent corrosion resistance. What used to be inferior in corrosion resistance due to its elongated structure has been fundamentally improved.
一対の帯状鋳型は互に反対方向に回転、移動して点4で
離反し、凝固した鉛合金の帯状網目状体11が引き出さ
れる。この網目状体11には一定間隔で水平方向に対し
て断面積の小さな継目部12a。The pair of band-shaped molds rotate and move in opposite directions to separate from each other at a point 4, and the solidified lead alloy band-shaped mesh body 11 is drawn out. This mesh body 11 has joints 12a having a small cross-sectional area in the horizontal direction at regular intervals.
12b 、 12cが垂直方向に設けられており、該継
目部の間に下方に耳13a 、 13bが突出して設け
られており、かつ上部は余分な鉛合金帯14があるが、
この鉛合金14はスリッター15で切除される。12b, 12c are provided in the vertical direction, ears 13a, 13b are provided protruding downward between the joints, and there is an extra lead alloy band 14 at the top.
This lead alloy 14 is cut off by a slitter 15.
帯状鋳型が密接して移動する帯域にあっては、該鋳型間
には上方に開口する網目状溝が形成され、かつ継目部や
格子耳に相当する溝や凹所が形成されているのは当然の
ことである。継目部は鉛合金溶湯が帯状鋳型内で水平方
向に移動してしまうことを抑制するために重要である。In a zone where band-shaped molds move closely together, mesh grooves opening upward are formed between the molds, and grooves and recesses corresponding to joints and lattice ears are formed. Of course. The joint is important for preventing the molten lead alloy from moving horizontally within the strip mold.
これは網目状溝内に溶湯をゆきわたって充填するために
必要である。This is necessary in order to thoroughly fill the mesh grooves with the molten metal.
網目状溝や格子耳部には常法にしたがってコルク粉末、
水ガラス、カーボン、滑石粉末等の離型剤を塗布するの
が望ましい、しかし、帯状鋳型の温度を十分に鉛合金の
凝固温度に近くするがまたは凝固温度以上に高温に保つ
場合には離型剤を省略することもできる。Apply cork powder to the mesh grooves and lattice ears according to the usual method.
It is desirable to apply a mold release agent such as water glass, carbon, talc powder, etc., but if the temperature of the strip mold is kept sufficiently close to, but above, the solidification temperature of the lead alloy, mold release The agent can also be omitted.
帯状鋳型1及び2は可撓性金属からなる一連の板状ある
いは1枚ないし複数枚の格子ごとに板状体を接続したも
のが好ましい、これは帯状鋳型をエンドレスに移動1回
転させるためにある曲率で鋳型を曲げる必要があるため
である。2枚の帯状鋳型には少なくとも 1枚は網目状
溝を片開表面に形成しておく、これには彫刻またはプレ
スによる。The strip molds 1 and 2 are preferably a series of flexible metal plates or one or more grids connected to each other, and this is for the purpose of endlessly moving the strip molds one rotation. This is because it is necessary to bend the mold according to the curvature. At least one of the two band-shaped molds has a mesh groove formed on one side of the mold by engraving or pressing.
また厚内のブロック状鋳型を連結してもよいが、加熱や
冷却の速度を大きくするために肉厚には限度がある。Although block-shaped molds within the same thickness may be connected, there is a limit to the wall thickness in order to increase the heating and cooling speed.
帯状鋳型を押圧する@ f45a、 5b、 6a、
6b、 7a及び7bは、網目状溝を鋳型間に確実に形
成させるために必要であるが、帯状鋳型を移動させるた
めの駆動力を与える機能を併せて持たせることができる
。Pressing the strip mold @ f45a, 5b, 6a,
6b, 7a, and 7b are necessary in order to reliably form the mesh groove between the molds, but they can also have the function of providing a driving force for moving the band-shaped mold.
以上のように製造された帯状の連続格子は必要に応じて
加温、放置によって時効硬化した後、常法にしたがって
ペースト充填、切断によって未化成の極板となる。ペー
スト充填に際しては薄く組織の疎な紙、不織布あるいは
ガラスマットを極板面に当接あるいは付着させることが
できる。なお、帯状の連続格子はそのまま切断して1枚
づつの格子とすることもできる。The strip-shaped continuous lattice produced as described above is aged if necessary by heating and standing, and then filled with paste and cut according to a conventional method to become an unformed electrode plate. When filling the paste, a thin, loosely textured paper, nonwoven fabric, or glass mat can be brought into contact with or adhered to the electrode plate surface. Note that the strip-shaped continuous lattice can also be cut into individual lattices.
発明の効果
本発明により得た格子及びそれを用いた鉛蓄電池には次
のような効果がある。Effects of the Invention The grid obtained by the present invention and the lead-acid battery using the same have the following effects.
(1)凝固温度に近い高温の鋳型に注湯するので、鉛合
金溶湯を鋳型内の網目状溝内に途切れずに充填させるこ
とができる。したがって棧切れの無い格子が得られる。(1) Since the molten metal is poured into the mold at a high temperature close to the solidification temperature, the molten lead alloy can be filled seamlessly into the mesh grooves in the mold. Therefore, a grid with no gaps can be obtained.
(2) IN面積の小さな継目が一定間隔ごとに垂直に
配置されているので、注湯部の下部鋳型内に溶湯を途切
れずに充填させることができる。(2) Since the joints with a small IN area are arranged vertically at regular intervals, it is possible to fill the lower mold of the pouring section with molten metal without interruption.
(3) ll11目状清の上部に後で切除する余分な空
間があり、ここに溶湯を溜めることができるので、網目
状溝内に途切れずに充填させることができるとともに、
鋳巣の多い上部を切除するので、鋳造欠陥の無い格子が
得られる。(3) There is an extra space at the top of the mesh groove that will be cut out later, and the molten metal can be stored here, so the mesh groove can be filled without interruption.
Since the upper part with many casting cavities is removed, a lattice without casting defects can be obtained.
(4)上記(1)〜(3〕の網目状溝を細くしても鉛合
金溶湯が途切れずに充填できるので、薄くかつ軽量の網
状連続格子を得ることができる。(4) Even if the mesh grooves in (1) to (3) above are made thinner, the molten lead alloy can be filled without interruption, so a thin and lightweight continuous mesh lattice can be obtained.
(5)l/4目状清内に充填された鉛合金溶湯は、その
周囲の鋳型面からほぼ均一に冷却されて凝固するので、
微細な結晶粒となり耐食性の良好な格子が得られる。(5) The molten lead alloy filled in the 1/4 mesh is cooled almost uniformly from the surrounding mold surface and solidified.
A lattice with fine crystal grains and good corrosion resistance can be obtained.
(6)格子耳が最下端部にあり、比重の大きな鉛合金溶
湯は下方で最も密に充填できるので、格子耳のa造欠陥
がない。(6) Since the lattice lugs are located at the lowermost end and the molten lead alloy having a large specific gravity can be filled most densely at the bottom, there are no defects in the lattice lugs.
第1図は帯状鋳型を用いた鉛合金連続鋳型装置の上面図
、第2図は該装置の要部縦断面図、第3図は該装置によ
って製造される帯状網目状体である。
第4図は従来のドラム式連続鋳格子の合金組成を示した
図(顕微鏡写真)、第5図は本発明により得た格子の合
金組成を示した図(顕微鏡写真)である。
1.2・・・帯状鋳型
5a、5b、6a、6b、7a、7b−@型を押圧する
ll!i楕9a、9b・・・加熱機構、 10a、1
0b・・・冷却機構12a、12b、12c −・・継
目部1噂二 丁 囚
′lIr3 図
ノa
弄
Z
呂
第4図
第5図FIG. 1 is a top view of a lead alloy continuous molding device using a strip-shaped mold, FIG. 2 is a vertical cross-sectional view of the main part of the device, and FIG. 3 is a strip-like mesh body manufactured by the device. FIG. 4 is a diagram (microscopic photograph) showing the alloy composition of a conventional drum-type continuous casting grid, and FIG. 5 is a diagram (microscopic photograph) showing the alloy composition of the lattice obtained according to the present invention. 1.2... Band-shaped molds 5a, 5b, 6a, 6b, 7a, 7b-@Press the mold! i Oval 9a, 9b...Heating mechanism, 10a, 1
0b...Cooling mechanism 12a, 12b, 12c...Joint part 1 Rumor 2
Claims (1)
型において、該鋳型間に上方に開口する網目状溝が形成
されるように密接して移動する帯域があり、この帯域に
おいては一対の帯状鋳型の外側から押圧する機構、該網
目状溝に連なる上方開口部への鉛合金溶湯の注湯機構、
帯状鋳型における該鉛合金注湯部近傍の加熱機構と注湯
後の冷却機構とを有するとともに、該網目状溝に一定間
隔で水平方向に対して断面積の小さな継目部が垂直方向
に形成されており、かつ帯状鋳型の離反部から引出され
た垂直方向の継目部と継目部の間で下方に突出する格子
耳とを所定の間隔ごとに有する帯状の鉛合金綱目状体の
上方の余分な凝固部を切除する機構を有することを特徴
とした、互いに反対方向に回転してエンドレスに移動す
る一対の帯状鋳型を用いた鉛合金連続格子の鋳造装置。 2、鉛合金注湯部の帯状鋳型の温度が鉛合金の凝固温度
に近く、鉛合金綱目状体は全周からほぼ均一な速度で冷
却される請求項1記載の鉛合金連続格子の鋳造装置。[Scope of Claims] 1. In a pair of band-shaped molds that move and rotate almost horizontally at the same speed, there is a band that moves closely so as to form a mesh groove opening upward between the molds, In this zone, there is a mechanism for pressing from the outside of a pair of band-shaped molds, a mechanism for pouring molten lead alloy into an upper opening connected to the mesh grooves,
The belt-shaped mold has a heating mechanism near the lead alloy pouring part and a cooling mechanism after pouring, and joints having a small cross-sectional area with respect to the horizontal direction are formed in the mesh groove at regular intervals in the vertical direction. The upper part of the strip-shaped lead alloy mesh body has vertical seams pulled out from the separation part of the strip mold and lattice ears protruding downward between the seams at predetermined intervals. 1. A lead alloy continuous lattice casting device using a pair of belt-shaped molds that rotate in opposite directions and move endlessly, characterized by having a mechanism for cutting out solidified portions. 2. The lead alloy continuous grid casting apparatus according to claim 1, wherein the temperature of the strip mold in the lead alloy pouring part is close to the solidification temperature of the lead alloy, and the lead alloy mesh body is cooled at a substantially uniform rate from the entire circumference. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1213259A JPH0377749A (en) | 1989-08-18 | 1989-08-18 | Casting apparatus for lead alloy continuous grid |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1213259A JPH0377749A (en) | 1989-08-18 | 1989-08-18 | Casting apparatus for lead alloy continuous grid |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0377749A true JPH0377749A (en) | 1991-04-03 |
Family
ID=16636135
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1213259A Pending JPH0377749A (en) | 1989-08-18 | 1989-08-18 | Casting apparatus for lead alloy continuous grid |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0377749A (en) |
-
1989
- 1989-08-18 JP JP1213259A patent/JPH0377749A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
HU218189B (en) | Method and apparatus for producing cast metal strip | |
JPH0377749A (en) | Casting apparatus for lead alloy continuous grid | |
JPS63166711A (en) | Production of polycrystalline silicon ingot | |
JP3752297B2 (en) | Silicon casting | |
CN111648113B (en) | Self-cooling anti-melting cut-off knife | |
JPS5913219Y2 (en) | Mold for casting polycrystalline silicon ingots | |
US3485291A (en) | Method of casting by directional solidification | |
JPH024983B2 (en) | ||
RU2093305C1 (en) | Method for production of castings by directional crystallization | |
JPH1192284A (en) | Production of silicon ingot having polycrystal structure solidified in one direction | |
US2746106A (en) | Method for producing flat printing plates | |
JPH0142339Y2 (en) | ||
UA63735C2 (en) | Method for manufacturing of current taps for lead-acid accumulators | |
JPS63174277A (en) | Manufacture of electrode plate grid for use in lead storage battery | |
JP2006150391A (en) | Apparatus for casting lattice substrate for lead storage battery | |
JPH10137895A (en) | Die for casting, and casting method | |
CN206799794U (en) | A kind of polycrystalline silicon ingot or purifying furnace side plate | |
JPS5945068A (en) | Cooling method in ingot making device with semi- continuous casting mold | |
JPS6145958Y2 (en) | ||
JPS605965Y2 (en) | Insulation device for continuous casting equipment | |
JP3379141B2 (en) | Lead storage battery grid continuous casting machine | |
EP0009028A1 (en) | Improvements in or relating to casting metal ingots | |
SU1042882A1 (en) | Apparatus for casting by oriented crystallization | |
JP3412435B2 (en) | Manufacturing method of lead-acid battery grid | |
JPS6120112B2 (en) |