[go: up one dir, main page]

JPH0377710A - Control device for rolling mill - Google Patents

Control device for rolling mill

Info

Publication number
JPH0377710A
JPH0377710A JP1211402A JP21140289A JPH0377710A JP H0377710 A JPH0377710 A JP H0377710A JP 1211402 A JP1211402 A JP 1211402A JP 21140289 A JP21140289 A JP 21140289A JP H0377710 A JPH0377710 A JP H0377710A
Authority
JP
Japan
Prior art keywords
tension
rolling
payoff reel
value
calculation means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1211402A
Other languages
Japanese (ja)
Other versions
JP2542698B2 (en
Inventor
Yoshiro Seki
義朗 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1211402A priority Critical patent/JP2542698B2/en
Publication of JPH0377710A publication Critical patent/JPH0377710A/en
Application granted granted Critical
Publication of JP2542698B2 publication Critical patent/JP2542698B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/48Tension control; Compression control
    • B21B37/52Tension control; Compression control by drive motor control
    • B21B37/54Tension control; Compression control by drive motor control including coiler drive control, e.g. reversing mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

PURPOSE:To enable an optimum control corresponding to change quickly by controlling a rolling reduction divergence with the addition of the proportional arithmetic value of a tension detected value to the integrated arithmetic output of a plate thickness deviation and controlling a payoff reel driving motor with the addition of the integrated arithmetic value of a plate thickness deviation to the integrated arithmetic output of the tension deviation. CONSTITUTION:The material 22 to be rolled wound on a payoff reel 21 is taken up on a tension reel through a pinch roll 23 and rolling mill 24. A rolling reduction divergence control device 26 controls it in a desired plate thickness by making a drawing down force variable. A current control device 29 controls a payoff reel driving motor 30 so as to make the tension of the material 22 to be rolled at a specific value. The drawing down force is controlled by adding the tension deviation detected by a tension detector 33 to an arithmetic means 45 via an adding means 44. The plate thickness deviation is inputted to an adding means 57 from an arithmetic means 41 and the number of rotations of the payoff reel driving motor 30 is controlled.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、被圧延材を所望の板厚に圧延する圧延機の制
御装置に係わり、特に操作量と制御量との相互干渉を回
避する圧延機の制御装置に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a control device for a rolling mill that rolls a material to be rolled to a desired thickness, and particularly relates to a control device for a rolling mill that rolls a material to be rolled to a desired thickness, and particularly relates to a control device for a rolling mill that rolls a material to be rolled to a desired thickness. The present invention relates to a control device for a rolling mill that avoids mutual interference.

(従来の技術) 従来、例えば単スタンドの4段圧延機においては、第3
図に示すように圧延ライン系、圧延機後方張力制御系お
よび圧延機出側板厚制御系等によって構成されている。
(Prior art) Conventionally, for example, in a single-stand four-high rolling mill, the third
As shown in the figure, it is composed of a rolling line system, a rolling mill rear tension control system, a rolling mill outlet plate thickness control system, etc.

前記圧延ライン系は、ペイオフリール1に巻装された被
圧延材2がピンチロール3を通って4段圧延機4に導入
され、ここで所定の圧下刃で圧延されて所望の板厚に形
成された後、テンションリール5によって巻き取られる
構成となっている。
In the rolling line system, a material to be rolled 2 wound around a payoff reel 1 passes through pinch rolls 3 and is introduced into a four-high rolling mill 4, where it is rolled with predetermined rolling blades and formed into a desired thickness. After that, it is wound up by a tension reel 5.

また、圧延機後方張力制御系は、ペイオフリール1と圧
延機4との間の材料張力目標値t BRI!Pと材料張
力検出器6で検出された張力検出値taとの張力偏差が
張力−電流変換器7に導入され、ここで張力偏差に応じ
たベリオフリール駆動電動機電流を得た後、電動機電流
制御装置8に供給される。この電動機電流制御装置8で
はペイオフリール駆動電動機9の操作に必要な電流に応
じたトルクを求めた後、これをペイオフリール1を介し
て被圧延材2に作用させることにより被圧延材2に所定
の張力を与えるものである。従って、被圧延材2は圧、
延操業時にはペイオフリール1とピンチロール3の作用
により張力が加えられる。10はペイオフリール駆動電
動機回転速度検出器、11はビンチロール周速検出器で
ある。
Further, the rolling mill rear tension control system controls the material tension target value t BRI! between the payoff reel 1 and the rolling mill 4. The tension deviation between P and the tension detection value ta detected by the material tension detector 6 is introduced into the tension-current converter 7, where a Beriofreel drive motor current corresponding to the tension deviation is obtained, and then the motor current control device 8. This motor current control device 8 determines the torque corresponding to the current required to operate the payoff reel drive motor 9, and then applies this torque to the rolled material 2 via the payoff reel 1 to provide a predetermined torque to the rolled material 2. It provides tension. Therefore, the rolled material 2 is
During extended operation, tension is applied by the action of the payoff reel 1 and the pinch roll 3. 10 is a payoff reel drive motor rotation speed detector, and 11 is a vinyl roll circumferential speed detector.

一方、圧延機出側板厚$1till系は、圧延機出側板
厚目標値h RBPと圧延機出側板厚検出器13からの
板厚検出値りとの偏差を比例・積分調節演算手段14に
導入し、ここで比例・積分調節演算を行って圧延II4
の圧下開度修正量を得た後、圧下開度制御装置15にて
前記圧下開度修正量にしたがって圧下開度を修正する。
On the other hand, in the rolling mill outlet side plate thickness $1till system, the deviation between the rolling mill outlet side plate thickness target value hRBP and the plate thickness detection value from the rolling mill outlet side plate thickness detector 13 is introduced into the proportional/integral adjustment calculation means 14. Then, perform proportional/integral adjustment calculations to obtain rolling II 4.
After obtaining the reduction opening correction amount, the reduction opening degree is corrected by the reduction opening degree control device 15 in accordance with the reduction opening correction amount.

16は圧下開度検出器である。このようにして圧下開度
修正量が被圧延材2に作用し、被圧延材2の圧延機出側
板厚が所望の板厚に修正される。
16 is a reduction opening degree detector. In this way, the reduction opening degree modification amount acts on the material to be rolled 2, and the thickness of the material to be rolled 2 on the exit side of the rolling machine is corrected to a desired thickness.

(発明が解決しようとする課題) しかし、以上のような圧延機の制御装置は、出鋼板厚と
圧下開度、或いは張力とペイオフリールの電流制御とい
った如く、いわゆる制御対象が1人力1出力系で構成さ
れているので、次のような問題点があった。すなわち、
第2図(b)に示すように時刻0秒で張力目標値t B
RRPが1 kg/■2ステップ変化し、また同図(a
)では時刻10秒後に圧延機出側板厚目標値h REF
が0.1■変化したとき、同図(C)の如きペイオフリ
ール駆動電動機9の駆動電流が一定であるにも拘らず、
同図(d)の如き圧下開度修正量が大きく変化し、張力
1.は時刻0秒から目標値t BREFに向かって上昇
しながら目標値を越えて減衰振動を行いながら変化し、
そのときの圧延機出側板厚りも振動し、張力制御と板厚
制御との間に大きく相互干渉が生じる。また、10秒後
の出鋼板厚目標値h R1!Pの変化に対し、圧下開度
修正量が大きく変化して張力tBが張力目標値t BR
BPを大きく越えて変化し、これが板厚変化となって現
われる。従って、この場合にも板厚と張力とは振動的で
あり、前述同様に張力制御と板厚制御との間に大きく相
互干渉が生じる。このように従来装置は1人力1出力系
と見なして作られているので、相互干渉を抑制すること
が難しく、精度の高い板厚制御が実現できなかった。
(Problem to be Solved by the Invention) However, the control device for a rolling mill as described above is a system in which the so-called control object is a single-manpower, single-output system, such as the tapped plate thickness and rolling opening, or tension and payoff reel current control. Since it is composed of , there were the following problems. That is,
As shown in Fig. 2(b), the tension target value tB is reached at time 0 seconds.
RRP changes by 1 kg/■2 steps, and the same figure (a
), the rolling mill exit plate thickness target value h REF is set after 10 seconds.
When changes by 0.1■, even though the drive current of the payoff reel drive motor 9 is constant as shown in the same figure (C),
As shown in (d) of the same figure, the amount of correction of the reduction opening changes greatly, and the tension is 1. increases from time 0 seconds toward the target value tBREF, exceeds the target value, and changes while performing damped oscillation.
At this time, the plate thickness at the exit side of the rolling machine also vibrates, and a large mutual interference occurs between tension control and plate thickness control. Also, the target value h R1 of the tapped plate thickness after 10 seconds! In response to a change in P, the reduction opening correction amount changes greatly, and the tension tB changes to the tension target value tBR.
The change greatly exceeds the BP, and this appears as a change in plate thickness. Therefore, in this case as well, the plate thickness and tension are oscillatory, and similar to the above, there is significant mutual interference between tension control and plate thickness control. As described above, since the conventional apparatus is manufactured with the assumption that it is a single-manpower, single-output system, it is difficult to suppress mutual interference, and highly accurate plate thickness control cannot be realized.

本発明は上記実情に鑑みてなされたもので、操作量と制
御量間の相互干渉を確実に抑制し得、振動をなくして制
御応答を高めうる圧延機の制御装置を提供することを目
的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a control device for a rolling mill that can reliably suppress mutual interference between manipulated variables and controlled variables, eliminate vibrations, and improve control response. do.

[発明の構成コ (課題を解決するための手段) 先ず、請求項1に対応する本発明による圧延機の制御装
置は上記課題を解決するために、圧延スタンドの圧下開
度を制御する圧下開度制御装置とペイオフリールを・駆
動するペイオフリール駆動電動機とを有する圧延ライン
系において、圧延機出側板厚目標値と圧延機出側板厚検
出値との板厚偏差を積分演算するとともにこの積分演算
出力に少なくとも被圧延材の張力検出値に係わる信号の
比例演算値を加算し、得られた加算信号を受けて前記圧
下開度制御装置で前記圧延スタンドの圧下開度を制御す
る圧下開度制御手段と、張力目標値と被圧延材の張力検
出値との張力偏差を積分演算するとともにこの積分演算
出力に少なくとも記板厚偏差の積分演算値を加算し、得
られた加算信号を用いて前記ペイオフリール駆動電動機
を制御して前記ペイオフリールを駆動するペイオフリー
ル駆動制御手段とを備えた構成である。
[Configuration of the Invention (Means for Solving the Problems) First, in order to solve the above problems, the rolling mill control device according to the present invention corresponding to claim 1 has a rolling opening for controlling the rolling opening of the rolling stand. In a rolling line system having a degree control device and a payoff reel drive motor that drives a payoff reel, the thickness deviation between the target thickness at the exit side of the rolling machine and the detected thickness at the exit side of the rolling machine is integrally calculated. Rolling opening control that adds a proportional calculation value of a signal related to at least a detected tension value of the material to be rolled to the output, and controls the rolling opening of the rolling stand with the rolling opening control device in response to the obtained added signal. means, integrally calculates the tension deviation between the tension target value and the detected tension value of the rolled material, adds at least the integral calculation value of the recorded plate thickness deviation to this integral calculation output, and uses the obtained addition signal to calculate the The payoff reel drive control means controls a payoff reel drive motor to drive the payoff reel.

請求項2に対応する発明は、請求項1に対応する発明を
より具体化した下位概念に相当する発明であって、圧延
機出側板厚制御系として、圧延機出側板厚目標値と圧延
機出側板厚検出値との板厚偏差を積分演算する第1の積
分演算手段と、ペイオフリールと圧延機との間の被圧延
材の張力検出値と制御開始時のペイオフリールと圧延機
との間の被圧延材の張力検出値との張力偏差を比例演算
する第1の比例演算手段と、圧延機の圧下開度検出値と
制御開始時での圧下開度検出値との圧下開度偏差を比例
演算する第2の比例演算手段と、これら第1の積分演算
手段および第1.第2の比例演算手段の各出力を合成し
て圧下開度目標値修正量として前記圧下開度制御装置に
与えて前記圧延スタンドの圧下開度を制御する手段とを
設け、圧延機後方張力制御系として、張力目標値と被圧
延材の張力検出値との張力偏差に基づいて積分演算を行
う第2の積分演算手段と、前記板厚偏差に基づいて積分
演算を行う第3の積分演算手段と、前記ペイオフリール
と圧延機との間の被圧延材の張力検出値と制御開始時の
ペイオフリールと圧延機との間の被圧延材の張力検出値
との張力偏差に基づいて比例演算を行う第3の比例演算
手段と、前記ペイオフリール駆動電動機の回転速度検出
値と制御開始時での回転速度検出値との回転速度偏差に
基づいて比例演算を行う第4の比例演算手段と、これら
第2の積分演算手段、第3の積分演算手段、第3の比例
演算手段および第4の比例演算手段の各出力を合成して
電流目標値修正量としてペイオフリール駆動電動機電流
制御装置に与えて前記ペイオフリール駆動電動機を制御
する手段とを設けたものである。
The invention corresponding to claim 2 is an invention corresponding to a subordinate concept that is more specific to the invention corresponding to claim 1, and includes a rolling mill exit side plate thickness control system that controls a rolling machine exit side plate thickness target value and a rolling machine exit side plate thickness control system. A first integral calculating means for calculating integrally the plate thickness deviation from the output side plate thickness detection value, and a tension detection value of the rolled material between the payoff reel and the rolling mill and the difference between the payoff reel and the rolling machine at the start of control. a first proportional calculation means for proportionally calculating the tension deviation between the tension detection value of the rolled material and the rolling opening deviation between the rolling mill's rolling opening detection value and the rolling opening detection value at the start of the control; a second proportional calculation means for proportional calculation, these first integral calculation means and the first. and means for controlling the rolling opening of the rolling stand by combining the respective outputs of the second proportional calculation means and applying it to the rolling opening control device as a rolling opening target value correction amount, and controlling the rolling mill rear tension. As a system, a second integral calculation means performs an integral calculation based on the tension deviation between the tension target value and the tension detection value of the rolled material, and a third integral calculation means performs an integral calculation based on the plate thickness deviation. and a proportional calculation is performed based on the tension deviation between the detected tension value of the rolled material between the payoff reel and the rolling mill and the detected tension value of the rolled material between the payoff reel and the rolling mill at the start of the control. a fourth proportional calculation means for performing a proportional calculation based on a rotational speed deviation between a rotational speed detection value of the payoff reel drive motor and a rotational speed detection value at the time of starting control; The respective outputs of the second integral calculation means, the third integral calculation means, the third proportional calculation means, and the fourth proportional calculation means are combined and applied to the payoff reel drive motor current control device as a current target value correction amount. and means for controlling the payoff reel drive motor.

(作 用) 従って、本発明は以上のような手段を講じたことにより
、例えば圧延機出側板厚目標値が増加方向に変化したと
き、その圧延機出側板厚検出値との板厚偏差が第1の積
分演算手段によって積分演算された後、この積分演算値
が第1の比例演算手段による張力検出要素および第2の
比例演算手段による圧下開度検出要素に加わって圧下開
度目標値修正量を上げて圧延機出側板厚を大きくしてい
くが、このとき前記板厚偏差が第3の積分演算手段にて
積分して張力制御系である第2の積分演算手段に加わっ
てペイオフリール駆動電動機電流目標値修正量を一時的
に下げるので、その修正量を受けてペイオフリール駆動
電動機電流制御装置がペイオフリール駆動電動機を介し
てペイオフリールを制御するために被圧延材の張力が一
時的に下がる。その結果、圧延機出側の被圧延材の板厚
は徐々に上昇する一時遅れ応答に近似する特性をもって
板厚目標値に整定する。
(Function) Therefore, by taking the above-mentioned measures, the present invention, for example, when the rolling mill exit side plate thickness target value changes in the increasing direction, the thickness deviation from the rolling machine exit side plate thickness detection value is reduced. After the integral calculation is performed by the first integral calculation means, this integral calculation value is added to the tension detection element by the first proportional calculation means and the reduction opening detection element by the second proportional calculation means to correct the reduction opening target value. At this time, the plate thickness deviation is integrated by the third integral calculation means and added to the second integral calculation means which is a tension control system, and is then added to the payoff reel. Since the drive motor current target value correction amount is temporarily lowered, the payoff reel drive motor current control device controls the payoff reel via the payoff reel drive motor in response to the correction amount, so the tension of the rolled material is temporarily lowered. down to. As a result, the thickness of the rolled material on the exit side of the rolling mill is set to the target thickness value with characteristics similar to a temporary delay response that gradually increases.

一方、張力目標値が例えば増加方向に変化したとき、そ
の張力偏差を第2の積分演算手段にて積分演算して前記
電流目標値修正量を上げていき、ペイオフリール駆動電
動機電流制御装置がペイオフリール駆動電動機を介して
ペイオフリールへのトルクを上げて被圧延材を上げてい
くが、このとき第1の比例演算手段による被圧延材の張
力検出要素を圧下開度制御系に加えて圧下開度目標値修
正量を徐々に上げていくので、被圧延材の張力が徐々に
1次遅れに近似する特性をもって変化するが、圧延機出
側板厚は何ら変化させずに制御できる。
On the other hand, when the tension target value changes, for example, in an increasing direction, the tension deviation is integrally calculated by the second integral calculation means to increase the current target value correction amount, and the payoff reel drive motor current control device The material to be rolled is raised by increasing the torque to the payoff reel via the reel drive motor, but at this time, the tension detection element of the material to be rolled by the first proportional calculation means is added to the rolling opening control system to control the rolling opening. Since the target value correction amount is gradually increased, the tension of the rolled material gradually changes with a characteristic approximating a first-order lag, but the thickness at the exit side of the rolling machine can be controlled without changing at all.

(実施例) 以下、本発明の詳細な説明するに先立ち、制御対象を2
人力2出力系としてとらえて、線形最適制御の逆問題か
ら制御系の構成を考えてみる。
(Example) Before giving a detailed explanation of the present invention, two controlled objects will be described below.
Considering it as a human-powered two-output system, let's consider the configuration of the control system from the inverse problem of linear optimal control.

なお、線形最適制御の逆問題とは状態フィードバックの
うちで評価関数を最小化するという意味で最適なものを
見つけ出すことをいう。
Note that the inverse problem of linear optimal control refers to finding the optimal state feedback in the sense of minimizing the evaluation function.

そこで、圧下開度制御装置とペイオフリール駆動電動機
電流制御装置とを含む圧延設備、つまり制御対象の数学
モデルとしては(1)式〜(14)式で表わせる。具体
的には、制御対象の状態方程式は、 dX/dt讃A◆X+B◆U    ・・・(1)y−
c−x              ・・・(2)で表
わせる。上式においてXは状態変数ベクトル、A、B、
Cは係数マトリクス、Uは入力ベクトル、Yは出力ベク
トルである。但し、 X−[△So   Np   ts]  T     
−(6)U−[ΔS O,RIP   △I p、 *
gp ]  ”   −(7)Y−[h    t、]
”           ・・・ (8)Fr  −−
((RP  ’g”H−B)/ (G2 ・ JP))
          ・・・ (9)F2 −  (E
/L)  ・ VMo−KBM(M/ (M十〇)) 
     ・・−(10)F3 −  (E  −Rp
)/  (L  −Gg)   ・・・(11〉F 4
 −  (E  −K p7・ K BH−VMO)/
(L−M)              ・・・(12
〉F 、−M/  (M + Q )        
     ・・・(13〉F6 =Kpt/M    
             ・・・(14)但し、上記
(3)式〜(14)式において、T)IPc :圧下開
度制御装置の時定数、F1〜F6 :係数、φ:ペリオ
フリール駆動電動機のトルク係数、Jp :ペイオフリ
ールの慣性モーメント、ΔSo:圧下開度検出値、NP
:ベリオフリール駆動電動機の回転速度検出値、tB:
ベリオフリールと圧延機との間の被圧延材の張力検出値
、[]丁のT:幅値行列、ΔS O,RIP :圧下開
度制御装置の圧下開度目標値修正量、△IP、R1!P
:ペリオフリール駆動電動機電流制御装置の電流目標値
修正量、h:圧延機出側板厚検出値、R1:ペイオフリ
ール・コイル径、g:重力加速度、H:被圧延材の圧延
機入側板厚、B:被圧延材の板幅、C8:ペイオフリー
ルのギヤ比、E:材料ヤング率、L:ペイオフリールか
ら圧延機間での距離、V MO:圧延機入側材料速度設
定値、KB、、:圧延機出側板厚変化による圧延機後進
率変化係数、M:圧延機のミル定数、Q:被圧延材の塑
性係数、K PT :圧延機後方張力変化による荷重変
化係数である。
Therefore, a mathematical model of the rolling equipment, that is, the controlled object, including the reduction opening degree control device and the payoff reel drive motor current control device can be expressed by equations (1) to (14). Specifically, the state equation of the controlled object is: dX/dt A◆X+B◆U ... (1) y-
c−x ... can be expressed as (2). In the above equation, X is a state variable vector, A, B,
C is a coefficient matrix, U is an input vector, and Y is an output vector. However, X-[△So Np ts] T
-(6)U-[ΔS O, RIP ΔI p, *
gp]” -(7)Y-[h t,]
” ... (8)Fr --
((RP 'g"H-B) / (G2 ・ JP))
... (9) F2 − (E
/L) ・VMo-KBM(M/ (M10))
...-(10)F3-(E-Rp
) / (L - Gg) ... (11>F 4
- (E -K p7・KBH-VMO)/
(LM) ... (12
〉F, -M/ (M + Q)
...(13>F6 =Kpt/M
...(14) However, in the above equations (3) to (14), T) IPc: time constant of the reduction opening control device, F1 to F6: coefficient, φ: torque coefficient of the perio reel drive motor, Jp: Moment of inertia of payoff reel, ΔSo: detection value of roll-down opening, NP
:Detected rotational speed value of Beriofreel drive motor, tB:
Detected tension of the material to be rolled between the belliofreel and the rolling mill, [ ] T: Width value matrix, ΔS O, RIP: Adjustment amount of the rolling opening target value of the rolling opening controller, ΔIP, R1! P
: Amount of current target value correction of the periodic reel drive motor current control device, h: Detected value of plate thickness on the exit side of the rolling mill, R1: Payoff reel coil diameter, g: Gravitational acceleration, H: Plate thickness of the material to be rolled on the input side of the rolling machine, B : Width of the material to be rolled, C8: Gear ratio of the payoff reel, E: Young's modulus of the material, L: Distance from the payoff reel to the rolling mill, V MO: Set value of material speed at the entrance of the rolling mill, KB, : A coefficient of change in the backward movement rate of the rolling mill due to a change in plate thickness on the exit side of the rolling mill, M: Mill constant of the rolling mill, Q: Plasticity coefficient of the material to be rolled, K PT : A coefficient of change in load due to a change in tension at the rear of the rolling mill.

ところで、一般に、線形最適制御は評価関数を最小にす
る状態フィードバックを行うものであるが、周知のよう
に評価関数と制御性能との関係が明確でないために実用
化が困難であるが、線形最適制御の逆問題では状態フィ
ードバックのうちで評価関数を最小化するという意味で
最適なものを見つけることにある。
By the way, in general, linear optimal control performs state feedback to minimize the evaluation function, but as is well known, it is difficult to put it into practical use because the relationship between the evaluation function and control performance is not clear. Inverse control problems involve finding the optimal state feedback in the sense of minimizing the evaluation function.

そこで、det (CIIB)、det (C3・A−
B)≠0Sdet  (C2eA aB)−0、dat
(CzA2・B)≠0なる条件に注意して制御定数K。
Therefore, det (CIIB), det (C3・A-
B)≠0Sdet (C2eA aB)-0, dat
Control constant K, paying attention to the condition that (CzA2・B)≠0.

に係わる関係式は、 d U/ d  t  =   Kn  −Xo   
       ・・・(15)で表わされ、この制御定
数KDは適当な正則行列Vと圧定対角行列Σ−旧ag 
(σ1.σ2)および適当な行列Fを用いて、 D −V−1−Σ−V−[F  1]  −r−’  −(
1B)で表現される。但し、上記拡大状態ベクトルXD
は、 Xo  =  [dX”/dt     (Y−R)”
 ]  ”   ・・・(17)となる。(17)式に
おいてRは基準を表わす。
The relational expression related to d U/ d t = Kn −Xo
...(15), and this control constant KD is expressed by an appropriate regular matrix V and a fixed diagonal matrix Σ-old ag
(σ1.σ2) and an appropriate matrix F, D −V−1−Σ−V−[F 1] −r−′ −(
1B). However, the above expanded state vector XD
is, Xo = [dX"/dt (Y-R)"
] ”...(17) In equation (17), R represents a reference.

そこで、前記(1)式、(2)式の状態方程式で表わし
た制御対象に上記の理論を応用すると、制御定数KDは
、 ・・・(19) で表わすことができる。但し、 K、、”−T、、C・・・(20〉 K 13−  ((M”Q) ・Kpr−THpc )
 /M2− (21)K 14−1(M”Q)/M) 
 ” WAac ” T HPC−(22)K2□−−
(Jp/φ)        ・・・(23)K 23
−− (WAtc ・Jp ・h ・L)/(Rp 4
・φ)・・・(24) K 24−  (WAcc ’Jp ”Glt・Kan
4uo)/(Rp・φ)・・・(25) K  25−  (VAtc  ” Jp  ・GE 
 4)/(4・Rp  ・E□1)・・・(26) である。ここで、W AGCは板厚制御の目標交叉角周
波数、WATcは張力制御の目標交叉角周波数である。
Therefore, when the above theory is applied to the controlled object expressed by the state equations of equations (1) and (2), the control constant KD can be expressed as follows. However, K,,"-T,,C...(20> K 13- ((M"Q) ・Kpr-THpc)
/M2- (21)K 14-1(M”Q)/M)
"WAac" T HPC-(22)K2□--
(Jp/φ) ... (23) K 23
-- (WAtc ・Jp ・h ・L)/(Rp 4
・φ)...(24) K 24- (WAcc 'Jp "Glt・Kan
4uo)/(Rp・φ)...(25) K 25- (VAtc ” Jp・GE
4)/(4・Rp・E□1) (26). Here, W AGC is the target cross angle frequency for plate thickness control, and WATc is the target cross angle frequency for tension control.

これら(20)式〜(26)式の係数の内、THPC+
 M* GE +  Er L+  gは定数であるの
で、制御装置のメモリに予め記憶しておく必要がある。
Among the coefficients of these equations (20) to (26), THPC+
Since M* GE + Er L+ g is a constant, it is necessary to store it in the memory of the control device in advance.

また、Q、 Kpt、 KBH,VMO,H,Bハ被圧
延材毎に変化する係数であるので、上位計算機或いはオ
ペレータによって設定するかまたは被圧延材毎の上記係
数を予めメモリに記憶しておく。また、ペイオフリール
駆動電動機のトルク係数φ、ペイオフリール・コイル半
径RPおよびペイオフリールの慣性モーメン)Jpは被
圧延材の圧延中に常時変化する係数であるので演算によ
って求める。
In addition, Q, Kpt, KBH, VMO, H, and B are coefficients that change for each rolled material, so they should be set by the host computer or operator, or the above coefficients for each rolled material should be stored in memory in advance. . In addition, the torque coefficient φ of the payoff reel drive motor, the payoff reel coil radius RP, and the moment of inertia of the payoff reel (Jp) are coefficients that constantly change during rolling of the material to be rolled, so they are determined by calculation.

このペイオフリール駆動電動機のトルク係数φは回転速
度、定格容量、定格電流等から求められ、ペイオフリー
ル−コイル半径R,は、ペイオフリールの出側に設けた
ピンチロールの周速、ペイオフリール駆動電動機の回転
速度、ペイオフリールのギヤ比および円周率等を用いて
求められる。さらに、ペイオフリールの慣性モーメント
Jpはペイオフリールのギヤ比、円周率、被圧延材の密
度、被圧延材の板幅、ペイオフリール・コイル半径、ペ
イオフリールのマンドレル半径、ペイオフリールの機械
分慣性モーメント等から求められる。
The torque coefficient φ of the payoff reel drive motor is determined from the rotational speed, rated capacity, rated current, etc., and the payoff reel coil radius R, is the circumferential speed of the pinch roll provided on the exit side of the payoff reel, and the payoff reel drive motor It is determined using the rotational speed of , the gear ratio of the payoff reel, the circumference, etc. Furthermore, the moment of inertia Jp of the payoff reel is determined by the gear ratio of the payoff reel, pi, the density of the material to be rolled, the width of the material to be rolled, the payoff reel coil radius, the mandrel radius of the payoff reel, and the mechanical inertia of the payoff reel. Determined from moment etc.

次に、制御対象について線形最適制御の逆問題の理論を
生かしながら得られた制御定数等を用いて実現した本発
明装置の一実施例について第1図を参照して説明する。
Next, an embodiment of the apparatus of the present invention will be described with reference to FIG. 1, which is realized using control constants etc. obtained while making use of the theory of the inverse problem of linear optimal control for a controlled object.

先ず、本発明に係わる制御装置を適用する圧延ライン系
は、従来と同様にペイオフリール21に巻装された被圧
延材22がピンチロール23,4段圧延機24を通って
テンションリール(図示せず)に巻き取られるようにな
っている。
First, in a rolling line system to which the control device according to the present invention is applied, a material to be rolled 22 wound around a payoff reel 21 is passed through a pinch roll 23 and a four-high rolling mill 24, as in the conventional case, and then passed through a tension reel (not shown). It is designed so that it can be wound up.

前記圧延機24側では、圧下開度目標値修正量ΔS O
,RF!Pを受けて圧下開度制御装置26が圧下刃を可
変して圧延機出側の板厚を所望の板厚に制御する構成と
なっている。27は圧下開度検出器、28は圧延機出側
板厚検出器である。
On the rolling mill 24 side, the rolling opening target value correction amount ΔS O
,RF! In response to P, the rolling opening degree control device 26 changes the rolling blade to control the thickness of the plate at the exit side of the rolling machine to a desired thickness. 27 is a reduction opening degree detector, and 28 is a rolling machine outlet side plate thickness detector.

一方、前記ペイオフリール21側においては、電流目標
値修正量△IP、RIIFに基づいてペイオフリール駆
動電動機電流制御装置29が必要な駆動電流をペイオフ
リール駆動電動機30に与え、これによってペイオフリ
ール駆動電動機30からトルクを発生しペイオフリール
21を介して被圧延材22に作用させて張力を制御する
構成となっている。31はペイオフリール駆動電動機回
転速度検出器、32はピンチロール周速検出器、33は
被圧延材22の張力検出器である。
On the other hand, on the payoff reel 21 side, the payoff reel drive motor current control device 29 applies a necessary drive current to the payoff reel drive motor 30 based on the current target value correction amount ΔIP, RIIF, and thereby the payoff reel drive motor Torque is generated from 30 and applied to the rolled material 22 via the payoff reel 21 to control tension. 31 is a payoff reel drive motor rotational speed detector, 32 is a pinch roll circumferential speed detector, and 33 is a tension detector for the rolled material 22.

次に、本発明装置の要旨となる制御装置40について説
明する。すなわち、この制御装置は、圧下開度制御装置
26への圧下開度目標値修正量ΔS O,R1!Fを得
るために、圧延機出側板厚目標値h REFと前記板厚
検出器28からの板厚検出値りとの板厚偏差を求める偏
差演算手段41、この板厚偏差を受けて積分演算を行う
第1の積分演算手段42、張力検出器33で得られた張
力検出値tBと#御開始時での張力検出器33からの張
力検出値t BOとの偏差を受けて比例演算を行う第1
の比例演算手段43、両演算手段42.43の出力を加
算する加算手段44、圧下開度検出器27の圧下開度検
出値S0と制御開始時での圧下開度検出値S。、0との
偏差を受けて比例演算を行う第2の比例演算手段 45、この比例演算手段45の出力と加算手段44の出
力とを加算して前記圧下開度目標値修正量を得る加算手
段46等よりなり、ここで得られた圧下開度目標値修正
量を圧下開度制御装置26に供給する構成である。
Next, the control device 40, which is the gist of the device of the present invention, will be explained. That is, this control device controls the reduction opening degree target value correction amount ΔS O,R1! to the reduction opening degree control device 26! In order to obtain F, a deviation calculation means 41 calculates a thickness deviation between the target thickness h REF at the exit side of the rolling machine and the thickness detection value from the plate thickness detector 28, and an integral calculation is performed in response to this thickness deviation. The first integral calculation means 42 performs a proportional calculation based on the deviation between the tension detection value tB obtained by the tension detector 33 and the tension detection value tBO from the tension detector 33 at the start of # control. 1st
, a proportional calculation means 43, an addition means 44 for adding the outputs of both calculation means 42 and 43, a reduction opening detection value S0 of the reduction opening degree detector 27, and a reduction opening detection value S at the time of starting control. , a second proportional calculation means 45 which performs a proportional calculation in response to the deviation from 0, and an addition means which adds the output of the proportional calculation means 45 and the output of the addition means 44 to obtain the reduction opening target value correction amount. 46, etc., and is configured to supply the reduction opening degree target value correction amount obtained here to the reduction opening degree control device 26.

次に、ペイオフリール駆動電動機電流制御装置29への
電流目標値修正量△I P、 R1!Pを得るために、
ペイオフリール駆動電動機30のトルク係数φを求める
トルク係数fA算手段51.ペイオフリール・コイル半
径RPを求めるペイオフリール半径演算手段52、ペイ
オフリール21の慣性モーメントJpを求める慣性モー
メント演算手段53等の他、被圧延材22の張力目標値
t BREPと張力検出器33からの張力検出値tBと
の張力偏差を得る偏差演算手段54、この張力偏差に基
づいて積分演算を行う第2の積分演算子段55、前記板
厚偏差に基づいて積分演算を行う第3の積分演算手段5
6、これら両積分演算手段55.56の出力を加算する
加算手段57、前記張力検出器33の張力検出値tBと
制御開始時の張力検出値t a。
Next, the current target value correction amount ΔI P, R1! to the payoff reel drive motor current control device 29 is determined. In order to obtain P,
Torque coefficient fA calculating means 51 for determining the torque coefficient φ of the payoff reel drive motor 30. In addition to the payoff reel radius calculation means 52 for calculating the payoff reel coil radius RP, the inertia moment calculation means 53 for calculating the inertia moment Jp of the payoff reel 21, and the like, the tension target value t BREP of the rolled material 22 and the tension value from the tension detector 33 are calculated. A deviation calculation means 54 for obtaining a tension deviation from the tension detection value tB, a second integral operator stage 55 for performing an integral calculation based on this tension deviation, and a third integral calculation unit 55 for performing an integral calculation based on the plate thickness deviation. Means 5
6. Adding means 57 for adding the outputs of both the integral calculation means 55 and 56, the tension detection value tB of the tension detector 33 and the tension detection value ta at the start of control.

との偏差に基づいて比例演算を行う第3の比例演算手段
58、前記加算手段57の出力と第3の比例演算手段5
8の出力とを加算する加算手段59、回転速度検出器3
1の回転速度検出値N、と制御開始時の回転速度検出値
N、oとの偏差に基づいて比例演算を行う第4の比例演
算手段60、前記加算手段59の出力と第4の比例演算
手段60の出力とを加算して電流目標値修正量を得る加
算手段61等よりなり、ここで得られた電流目標値修正
量△IP、RRPをペイオフリール駆動電動機電流制御
装置29に供給する構成である。
A third proportional calculation means 58 performs a proportional calculation based on the deviation between the output of the addition means 57 and the third proportional calculation means 5.
Adding means 59 for adding the output of 8 and the rotation speed detector 3
a fourth proportional calculation means 60 that performs a proportional calculation based on the deviation between the detected rotational speed value N of 1 and the detected rotational speed N, o at the time of control start; the output of the addition means 59 and a fourth proportional calculation; The addition means 61 and the like add the output of the means 60 to obtain the current target value correction amount, and supply the current target value correction amounts ΔIP and RRP obtained here to the payoff reel drive motor current control device 29. It is.

次に、以上のように構成された装置の作用を説明する。Next, the operation of the device configured as above will be explained.

制御装置40においては、制御開始に先立って図示され
ていないが予めメモリに圧延機出側板厚目標値hREF
、被圧延材22の張力検出値t BRBPが格納され、
また制aSrA始の必要な時にペイオフリール21と圧
延$124との間の被圧延材張力検出器33から張力検
出値t 80、圧下開度検出器27から圧下開度検出値
SO,Osペイオフリール駆動電動機回転速度検出器3
1から回転速度検出値N13等を取り込んで前述同様に
メモリに格納する。
In the control device 40, prior to starting the control, a target value hREF of the strip thickness on the exit side of the rolling mill is stored in the memory (not shown) in advance.
, the detected tension value tBRBP of the rolled material 22 is stored,
In addition, when it is necessary to start control aSrA, a tension detection value t80 is sent from the rolled material tension detector 33 between the payoff reel 21 and the rolling $124, and a rolling opening detection value SO, Os is sent from the rolling opening degree detector 27. Drive motor rotation speed detector 3
The detected rotational speed value N13 and the like are fetched from 1 and stored in the memory in the same manner as described above.

以上のようにして必要な値を設定した後、被圧延材22
の圧延操業時、偏差演算手段41では板厚目標値h R
EPから圧延機出側板厚検出器28の板厚検出値りを減
算して板厚偏差を得た後、第1の積分演算手段42に導
入し、ここでは板厚偏差に前記(22)式で得られた係
数に14を乗じて、+ (M+Q) /Ml ・WAG
(”THpc ・J(hRzp −h) dt・・・(
27) なる演算式により積分演算値を得て加算手段44に導入
する。このとき、この加算手段44には第2の比例演算
手段43から制御開始時の張力検出器33の張力検出値
t BOより同じく張力検出器33の現時点の張力検出
値taを減算して得られた張力偏差に前記(21)式で
求めた係数に、3を乗じることにより、 −+(M+Q)・KPT・Tspc /M21  ・(
tB−tao)・・・(28) なる演算式で求めた比例演算値が入力されているので、
この加算手段44では当該比例演算値と前記第1の積分
演算手段42の出力とを加算して次の加算手段46へ導
入する。さらに、この加算手段46では、第2の比例演
算手段45から制御開始時の圧下開度検出器27の圧下
開度検出値So、。より現時点の圧下開度検出器27の
圧下開度検出値Soを減算して得られた開度偏差に前記
(20)式の係数に1.を乗じて、 TRPC(△So−ΔS o、 o )    = (
29)なる演算式で求めた比例演算値が導入されている
ので、この加算手段46では当該比例演算値に加算手段
44の出力を加算して圧下開度目標値修正量ΔS O,
REFを得Nこの修正量ΔS O,RIIPを受けて圧
下開度制御装置26で圧延機24の圧下刃を制御する。
After setting the necessary values as described above, the rolled material 22
During the rolling operation, the deviation calculation means 41 calculates the plate thickness target value h R
After subtracting the plate thickness detection value of the plate thickness detector 28 on the exit side of the rolling mill from EP to obtain the plate thickness deviation, the plate thickness deviation is introduced into the first integral calculation means 42, where the plate thickness deviation is calculated using the above-mentioned formula (22). Multiply the coefficient obtained by 14 to get + (M+Q) /Ml ・WAG
(”THpc ・J(hRzp −h) dt...(
27) Obtain an integral calculation value using the calculation formula and introduce it into the addition means 44. At this time, the addition means 44 receives a value obtained by subtracting the current tension detection value ta of the tension detector 33 from the tension detection value t BO of the tension detector 33 at the time of starting control from the second proportional calculation means 43. By multiplying the coefficient obtained by the above equation (21) to the tension deviation obtained by 3, -+(M+Q)・KPT・Tspc/M21・(
tB-tao)...(28) Since the proportional calculation value obtained by the calculation formula is input,
This addition means 44 adds the proportional calculation value and the output of the first integral calculation means 42 and introduces the result to the next addition means 46. Furthermore, in this addition means 46, the second proportional calculation means 45 calculates the roll-down opening detection value So of the roll-down opening degree detector 27 at the time of starting the control. Then, the coefficient of the equation (20) is 1. TRPC(△So−ΔS o, o) = (
29) Since the proportional calculation value obtained by the calculation formula is introduced, the addition means 46 adds the output of the addition means 44 to the proportional calculation value to obtain the reduction opening target value correction amount ΔS O,
REF is obtained.Receiving this correction amount ΔSO,RIIP, the rolling blade of the rolling mill 24 is controlled by the rolling opening degree control device 26.

したがって、この圧下開度目標値修正量ΔS O,R[
LPは1 △S O,REF ”−THPC(ΔSo−ΔSo、o) −I (M+Q)  ・Rp丁・Tspc  /M21
’(ta  −tso)”I(M+Q)/MIWAcc
 ・THpc 4(hasp −h) dt・・・(3
0) なる演算式で表わせる。
Therefore, this reduction opening target value correction amount ΔS O,R[
LP is 1 △SO, REF ”-THPC (ΔSo-ΔSo, o) -I (M+Q) ・Rp d・Tspc /M21
'(ta -tso)''I(M+Q)/MIWAcc
・THpc 4(hasp-h) dt...(3
0) It can be expressed by the following arithmetic expression.

一方、ペイオフリール21による張力制御系にあっては
、各演算手段55.56,58.60の係数に2.、 
K2.、 K2.、 K22を得るために使用するパラ
メータφ+RP+JPを演算によって求める必要がある
。すなわち、トルク係数演算手段51ではペイオフリー
ル駆動電動機回転速度検出器31の回転速検出値N P
 sペイオフリール電動機30の定格容量、定格電流等
を用いてトルク係数φを求め、またペイオフリール・コ
イル半径演算手段52にてピンチロール周速検出器32
のビンチロール周速検出値、ペイオフリール駆動電動機
回転速度、ペイオフリールギヤ比、円周率等を用いてペ
イオフリール・コイル半径Rp ヲ求め、さらに慣性モ
ーメント演算手段53にて被圧延材の密度、ペイオフリ
ールのマンドレル半径、ペイオフリールの機械分慣性モ
ーメント、ペイオフリールフィル半径、ペイオフリール
のギヤ比、被圧延材の板幅、円周率等を用いてペイオフ
リール21の慣性モーメントJ、を求める。
On the other hand, in the tension control system using the payoff reel 21, the coefficients of each calculation means 55.56 and 58.60 are 2. ,
K2. , K2. , K22, it is necessary to calculate the parameters φ+RP+JP. That is, the torque coefficient calculation means 51 calculates the rotational speed detection value N P of the payoff reel drive motor rotational speed detector 31.
s The torque coefficient φ is determined using the rated capacity, rated current, etc. of the payoff reel motor 30, and the pinch roll circumferential speed detector 32 is determined by the payoff reel coil radius calculation means 52.
The payoff reel coil radius Rp is calculated using the detected value of the circumferential speed of the vinyl roll, the rotational speed of the payoff reel drive motor, the payoff reel gear ratio, the pi, etc., and the density of the material to be rolled is determined by the moment of inertia calculating means 53. The moment of inertia J of the payoff reel 21 is determined using the mandrel radius of the payoff reel, the mechanical moment of inertia of the payoff reel, the fill radius of the payoff reel, the gear ratio of the payoff reel, the plate width of the material to be rolled, the circumference, etc.

そして、以上のようにしてφ+RP+JPを求めたなら
ば、これらのうち任意のパラメータを各演算手段55,
56.58.60に供給し、かつ、予め前記メモリに格
納された値を用いて電流目標値修正量ΔS O,RII
Pを求める。すなわち、偏差演算手段54において被圧
延材張力目標値t BREFから張力検出器33の張力
検出値taを減算して張力偏差を求めた後、この張力偏
差を第2の積分演算手段55に導き、ここで張力偏差に
前記(26)式の係数に2Sを乗算し、 ((WArc”jp・Gw・L)/(4・RhE’?)
) ・/(ta*gp−ts)dt・・・(31) なる積分演算を行って積分演算値を得た後、後続の加算
手段57に導入する。一方、第3の積分演算手段56で
は、前記偏差演算手段41から送られてくる板厚偏差に
前記(25)式の係数を乗算し、 (−(IfAccJp・Gz・KBH・VMO)/ (
Rp・−)l ・/(hRi+p−h)dt・・・(3
2) なる積分演算を行って積分演算値を得た後、前記演算手
段55による積分演算値とともに加算手段57にて加算
し、この加算結果を後続の加算手段59へ導入する。こ
のとき、第3の比例演算手段58にて、張力偏差に前記
(24)式で求めた係数に2.を乗じて、 (−(WATc ・Jp−GlL)/ (Rp ・E 
・+1))・(tII−tso)・・・(33) なる演算式で得られた比例演算値が加算手段59に人力
されているので、ここで前記加算手段57で得られた加
算出力と加算されて後続の加算手段60に送られる。こ
のとき、第4の比例演算手段60では、ペイオフリール
駆動電動機30の回転速度検出器31の出力N、から制
御開始時の回転速度検出値NPOを減算して得られた回
転速度偏差に前記(23)式で得られた係数に22を乗
算し、(JP/φ)   CNp −Npo)   ・
= (34)なる演算式で比例演算値を求めて加算手段
61に導入する。その結果、この加算手段61から得ら
れる電流目標値修正量△Ip、Revは、Δ I  P
、 REP −−(jp/φ)・(Np  −Npo)”1−(VA
tc  −Jp  ・Gg  ・L)/(Rp  ・E
・+1))・ (tB  −tso>+1〜(νAGC
・Jp  ・Gt  4ao・VMo)/(Rp  ・
φ))・J(h*gp−h)dt+l(VAtc  ’
  ・Jp  ・Gg  ・L>/(4・RP・E・φ
)) ・/(t8Rgp−ta  )di  ・・・(
35)となる。
Once φ+RP+JP is obtained in the above manner, any parameter among these is calculated by each calculation means 55,
56, 58, and 60, and using the value stored in the memory in advance, the current target value correction amount ΔS O,RII
Find P. That is, after the tension deviation is obtained by subtracting the detected tension value ta of the tension detector 33 from the target tension value tBREF of the rolled material in the deviation calculation means 54, this tension deviation is led to the second integral calculation means 55, Here, the tension deviation is multiplied by 2S by the coefficient of the above equation (26), and ((WArc"jp・Gw・L)/(4・RhE'?)
) /(ta*gp-ts)dt (31) After performing the integral calculation to obtain the integral calculation value, it is introduced into the subsequent addition means 57. On the other hand, the third integral calculation means 56 multiplies the plate thickness deviation sent from the deviation calculation means 41 by the coefficient of the equation (25), and calculates (-(IfAccJp・Gz・KBH・VMO)/(
Rp・-)l ・/(hRi+ph)dt...(3
2) After performing the following integral calculation to obtain an integral calculation value, the addition unit 57 adds the integral calculation value together with the integral calculation value by the calculation unit 55, and introduces the addition result to the subsequent addition unit 59. At this time, the third proportional calculation means 58 adds 2. Multiply by (-(WATc ・Jp-GlL)/(Rp ・E
・+1))・(tII-tso)...(33) Since the proportional calculation value obtained by the calculation formula is manually input to the addition means 59, the addition output obtained from the addition means 57 and the The sum is added and sent to the subsequent adding means 60. At this time, the fourth proportional calculation means 60 adds the rotation speed deviation obtained by subtracting the rotation speed detection value NPO at the start of control from the output N of the rotation speed detector 31 of the payoff reel drive motor 30. Multiply the coefficient obtained by formula 23) by 22, and get (JP/φ) CNp −Npo) ・
A proportional calculation value is obtained using the calculation formula = (34) and introduced into the addition means 61. As a result, the current target value correction amount ΔIp, Rev obtained from this addition means 61 is ΔI P
, REP --(jp/φ)・(Np −Npo)”1−(VA
tc - Jp ・Gg ・L)/(Rp ・E
・+1))・ (tB −tso>+1~(νAGC
・Jp ・Gt 4ao・VMo)/(Rp ・
φ))・J(h*gp-h)dt+l(VAtc'
・Jp ・Gg ・L>/(4・RP・E・φ
)) ・/(t8Rgp-ta)di ・・・(
35).

従って、以上のような実施例の構成によれば、圧延材2
4への圧下開度とペイオフリール駆動電動機電流を操作
量とし、かつ、圧延機出側板厚と圧延機後方張力を制御
量とする。いわゆる2人力2出力系を採用することによ
り、第2図(b)に示す如く時刻零秒で張力目標値が1
 kg/ tbm2ステップ変化したとき、その張力偏
差(t aRap−t B )を第2の積分演算手段5
5で種々のパラメータを用いて定めた係数に25にて与
えて積分演算しながら順次加算手段57,59.61で
各演算手段56.58.60の出力を加算することによ
り、同図(c)の如き電流目標値修正量△rp、R2p
を得てペイオフリール21へのトルクを制御するので、
張力変化は一次遅れの応答を示し、従来例で述べた第4
図(b)のように振動すること無く張力目標値に向かっ
て整定する。しかも、このときの張力が張力検出器33
を介して第1の比例演算手段43にて比例演算されて圧
下開度制御系に加わるので、第2図(d)の如き圧下開
度目標値修正量△S O,REFが徐々に増加し、第4
図(d)の如く振動せずに整定するので、圧延機出側板
厚は殆んど変化することがなく、張力制御と板厚IJ!
IIとの非干渉化を実現できる。
Therefore, according to the configuration of the embodiment as described above, the rolled material 2
The rolling opening to 4 and the payoff reel drive motor current are the manipulated variables, and the rolling mill outlet side plate thickness and the rolling mill rear tension are the controlled variables. By adopting a so-called two-manpower two-output system, the tension target value is set to 1 at time 0 seconds, as shown in Figure 2 (b).
kg/tbm2 steps, the tension deviation (taRap-tB) is calculated by the second integral calculating means 5.
By adding the outputs of each calculating means 56, 58, and 60 sequentially using the adding means 57, 59, and 61 while performing integral calculations using the coefficients determined using various parameters in step 5, ) such as current target value correction amount △rp, R2p
Since the torque to the payoff reel 21 is controlled by obtaining
The tension change shows a first-order delayed response, which is similar to the fourth-order delay described in the conventional example.
As shown in Figure (b), the tension stabilizes toward the target value without vibration. Moreover, the tension at this time is detected by the tension detector 33.
Since it is proportionally calculated by the first proportional calculation means 43 and added to the reduction opening control system, the reduction opening target value correction amount ΔSO,REF gradually increases as shown in FIG. 2(d). , 4th
As shown in figure (d), the plate thickness settles without vibration, so the plate thickness at the exit side of the rolling machine hardly changes, and tension control and plate thickness IJ!
Non-interference with II can be achieved.

また、例えば10秒後に第2図(a)に示す如く圧延機
出側板厚目標値h R[lFが0.1e+mステップ変
化したとき、その板厚偏差が第1の積分演算手段42お
よびm3の積分演算手段56にてそれぞれ積分演算され
て圧下開度制御系および張力制御系に与えられるので、
電流目標値修正量△Ip、ttEpが同図(C)のよう
に−時的に下がったのちに元に戻るが、これに伴って同
図(b)のように張力検出値1Bも一時的に下がって元
に戻る。一方、圧下開度目標値修正量△S O+ RE
Pは第1の積分演算手段42によって徐々に増加してい
くが、これに伴って圧延機出側被圧延材板厚も徐々に増
加し、振動することなく整定する。つまり、圧延機出側
板厚目標値の変化時、被圧延材22の張力が張力目標値
よりも小さくなって板厚変化を助けてくれるので、圧延
機出側板厚は一時遅れの応答を示し、振動することなく
整定し、板厚目標値に達するまでの時間を大幅に改善す
ることができる。
For example, when the rolling mill exit side plate thickness target value h R[lF changes by 0.1e+m steps as shown in FIG. 2(a) after 10 seconds, the plate thickness deviation is Since the integral calculation means 56 performs integral calculations and provides them to the reduction opening control system and the tension control system,
The current target value correction amount △Ip, ttEp temporarily decreases as shown in the same figure (C) and then returns to the original value, but along with this, the tension detection value 1B also temporarily decreases as shown in the same figure (b). and return to normal. On the other hand, the reduction opening target value correction amount △S O+ RE
P is gradually increased by the first integral calculation means 42, and along with this, the thickness of the rolled material at the exit side of the rolling machine is also gradually increased and stabilized without vibration. In other words, when the rolling mill outlet side plate thickness target value changes, the tension of the rolled material 22 becomes smaller than the tension target value and helps the plate thickness change, so the rolling machine outlet side plate thickness shows a temporary delayed response. It can be stabilized without vibration and the time taken to reach the plate thickness target value can be greatly improved.

また、圧延中におけるペイオフリール駆動電動機30の
トルク係数φ、ペイオフリール・コイル半径RP、ペイ
オフリールの慣性モーメントjp等を考慮しながらペイ
オフリール21を制御するので、これらφ、RpSJp
等の変化に依存すること無く常に最適制御を行うことが
でき、被圧延材22の品質や圧延操業に大きな影響を与
える被圧延材22の板厚および張力を目標値に高速に追
従させることができる。
In addition, since the payoff reel 21 is controlled while taking into consideration the torque coefficient φ of the payoff reel drive motor 30, the payoff reel coil radius RP, the moment of inertia jp of the payoff reel, etc. during rolling, these φ, RpSJp
Optimum control can always be performed without depending on changes such as, etc., and the plate thickness and tension of the rolled material 22, which have a great impact on the quality of the rolled material 22 and rolling operations, can be made to rapidly follow target values. can.

なお、本発明は上記実施例に限定されるものではない。Note that the present invention is not limited to the above embodiments.

例えば圧下開度制御系では複数の加算手段44.46を
用い、また張力制御系では加算手段57,59.61を
用いたが、それぞれの制御系に同様の機能を持つ加算手
段を1つずつ設け、対応する演算手段(43,45)、
(55,56゜58.60)の出力を一括して加算演算
してもよい。また、トルク係数φ、ペイオフリール・コ
イル半径RPsペイオフリールの慣性モーメントJ、を
得るために演算手段等51〜53を設けたが、同様の機
能をペイオフリール駆動電動機電流制御装置2つに備え
ている場合にはかかる演算手段51〜53は不要である
。その他、本発明はその要旨を逸脱しない範囲で種々変
形して実施できる。
For example, a plurality of adding means 44, 46 are used in the reduction opening control system, and adding means 57, 59, 61 are used in the tension control system, but each control system has one adding means with the same function. and corresponding calculation means (43, 45);
The outputs of (55, 56° 58.60) may be added together. In addition, calculation means 51 to 53 are provided to obtain the torque coefficient φ, the payoff reel coil radius RP, and the moment of inertia J of the payoff reel, but similar functions are provided in the two payoff reel drive motor current control devices. In this case, the calculation means 51 to 53 are unnecessary. In addition, the present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果] 以上説明したように本発明によれば、圧延中のプロセス
特性変化に迅速に対応して最適制御を実現でき、被圧延
材の品質の向上によって歩留まりを上げることができる
。さらに、制御定数を圧延パラメータおよびペリオフリ
ールのパラメータから求めることができ、面倒な調整作
業がなくなって休止時間の短縮化が図れ、圧延作業の効
率を高めることができる。
[Effects of the Invention] As described above, according to the present invention, optimal control can be realized by quickly responding to changes in process characteristics during rolling, and the yield can be increased by improving the quality of the rolled material. Furthermore, the control constants can be determined from the rolling parameters and the parameters of the perio mill, eliminating the need for troublesome adjustment work, reducing downtime, and increasing the efficiency of rolling work.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わる圧延機の制御装置の構成図、第
2図は本発明装置の制御応答状態を示す図、第3図は従
来装置の構成図、第4図は従来装置の制御応答状態を示
す図である。 21・・・ペイオフリール、22・・・被圧延材、24
・・・圧延機(圧延スタンド)、25・・・テンション
リール、26・・・圧下開度#J御装置、27・・・圧
下開度検出器、28・・・瓜延機出側板厚検出器、2つ
・・・ペイオフリール駆動電動機電流制御装置、30・
・・ペイオフリール駆動電動機、31・・・ペイオフリ
ール駆動電動機回転速度検出器、32・・・ピンチロー
ル周速検出器、33・・・張力検出器、40・・・制御
装置、41.44・・・偏差演算手段、42・・・第1
の積分演算手段、43・・・第1の比例演算手段、45
・・・第2の比例演算手段、44゜46・・・加算手段
、51・・・トルク係数演算手段、52・・・ペイオフ
リールコイル半径演算手段、53・・・慣性モーメント
演算手段、54・・・偏差演算手段、55・・・第2の
積分演算手段、56・・・第3の積分演算手段、57.
59.61・・・加算手段、58・・・第3の比例演算
手段、60・・・第4の比例演算手段。
Fig. 1 is a block diagram of a control device for a rolling mill according to the present invention, Fig. 2 is a diagram showing a control response state of the device of the present invention, Fig. 3 is a block diagram of a conventional device, and Fig. 4 is a control diagram of a conventional device. It is a figure which shows a response state. 21... Payoff reel, 22... Rolled material, 24
...Rolling mill (rolling stand), 25... Tension reel, 26... Rolling opening #J control device, 27... Rolling opening degree detector, 28... Melon rolling machine outlet side plate thickness detection Equipment, 2...Payoff reel drive motor current control device, 30.
...Payoff reel drive motor, 31...Payoff reel drive motor rotation speed detector, 32...Pinch roll circumferential speed detector, 33...Tension detector, 40...Control device, 41.44. ...deviation calculation means, 42...first
integral calculation means, 43...first proportional calculation means, 45
... Second proportional calculation means, 44° 46 ... Addition means, 51 ... Torque coefficient calculation means, 52 ... Payoff reel coil radius calculation means, 53 ... Inertia moment calculation means, 54. . . . deviation calculation means, 55 . . . second integral calculation means, 56 . . . third integral calculation means, 57.
59.61... Addition means, 58... Third proportional calculation means, 60... Fourth proportional calculation means.

Claims (2)

【特許請求の範囲】[Claims] (1)圧延スタンドの圧下開度を制御する圧下開度制御
装置とペイオフリールを駆動するペイオフリール駆動電
動機とを有する圧延ライン系において、 圧延機出側板厚目標値と圧延機出側板厚検出値との板厚
偏差を積分演算するとともにこの積分演算出力に少なく
とも被圧延材の張力検出値に係わる信号の比例演算値を
加算し、得られた加算信号を受けて前記圧下開度制御装
置で前記圧延スタンドの圧下開度を制御する圧下開度制
御手段と、張力目標値と被圧延材の張力検出値との張力
偏差を積分演算するとともにこの積分演算出力に少なく
とも記板厚偏差の積分演算値を加算し、得られた加算信
号を用いて前記ペイオフリール駆動電動機を制御して前
記ペイオフリールを駆動するペイオフリール駆動制御手
段とを備えたことを特徴とする圧延機の制御装置。
(1) In a rolling line system that has a roll-down opening degree control device that controls the roll-down opening degree of the rolling stand and a payoff reel drive motor that drives the payoff reel, the rolling machine exit side plate thickness target value and the rolling machine exit side plate thickness detection value At the same time, a proportional calculation value of a signal related to at least the detected tension value of the material to be rolled is added to the integral calculation output, and in response to the obtained added signal, the rolling opening degree control device A roll-down opening control means for controlling the roll-down opening of the rolling stand, and integrally calculates the tension deviation between the target tension value and the detected tension value of the material to be rolled. and a payoff reel drive control means for driving the payoff reel by controlling the payoff reel drive motor using the obtained addition signal to drive the payoff reel.
(2)圧延スタンドの圧下開度を制御する圧下開度制御
装置とペイオフリールを駆動するペイオフリール駆動電
動機とを有する圧延ライン系において、 圧延機出側板厚目標値と圧延機出側板厚検出値との板厚
偏差を積分演算する第1の積分演算手段と、ペイオフリ
ールと圧延機との間の被圧延材の張力検出値と制御開始
時のペイオフリールと圧延機との間の被圧延材の張力検
出値との張力偏差を比例演算する第1の比例演算手段と
、圧延機の圧下開度検出値と制御開始時での圧下開度検
出値との圧下開度偏差を比例演算する第2の比例演算手
段と、これら第1の積分演算手段および第1、第2の比
例演算手段の各出力を合成して圧下開度目標値修正量を
得、この圧下開度目標値修正量を前記圧下開度制御装置
に与えて前記圧延スタンドの圧下開度を制御する手段と
、 張力目標値と被圧延材の張力検出値との張力偏差に基づ
いて積分演算を行う第2の積分演算手段と、前記板厚偏
差に基づいて積分演算を行う第3の積分演算手段と、前
記ペイオフリールと圧延機との間の被圧延材の張力検出
値と制御開始時のペイオフリールと圧延機との間の被圧
延材の張力検出値との張力偏差に基づいて比例演算を行
う第3の比例演算手段と、前記ペイオフリール駆動電動
機の回転速度検出値と制御開始時での回転速度検出値と
の回転速度偏差に基づいて比例演算を行う第4の比例演
算手段と、これら第2の積分演算手段、第3の積分演算
手段、第3の比例演算手段および第4の比例演算手段の
各出力を合成して電流目標値修正量を得、この電流目標
値修正量をペイオフリール駆動電動機電流制御装置に与
えて前記ペイオフリール駆動電動機を駆動して被圧延材
の張力制御を行う手段とを備えたことを特徴とする圧延
機の制御装置。
(2) In a rolling line system that includes a roll-down opening degree control device that controls the roll-down opening degree of the rolling stand and a payoff reel drive motor that drives the payoff reel, the rolling machine exit side plate thickness target value and the rolling machine exit side plate thickness detection value a first integral calculating means for calculating integrally the thickness deviation between the payoff reel and the rolling mill; and a tension detection value of the rolled material between the payoff reel and the rolling mill and the rolled material between the payoff reel and the rolling mill at the start of control. a first proportional calculation means that proportionally calculates a tension deviation between the detected tension value of the rolling mill and a first proportional calculation means that proportionally calculates a deviation of the rolling opening between the detected value of the rolling opening of the rolling mill and the detected value of the rolling opening at the start of the control; The outputs of the second proportional calculation means, the first integral calculation means, and the first and second proportional calculation means are combined to obtain the reduction opening target value correction amount, and this reduction opening target value correction amount is means for controlling the rolling opening of the rolling stand by applying it to the rolling opening degree control device; and a second integral calculating means for performing an integral calculation based on the tension deviation between the tension target value and the detected tension value of the material to be rolled. and a third integral calculation means that performs an integral calculation based on the plate thickness deviation, and a detected value of the tension of the material to be rolled between the payoff reel and the rolling mill and the tension between the payoff reel and the rolling mill at the time of starting the control. a third proportional calculation means for performing a proportional calculation based on a tension deviation between the tension detection value of the rolled material and the rotational speed detection value of the payoff reel drive motor and the rotational speed detection value at the time of starting the control; A fourth proportional calculation means that performs a proportional calculation based on the rotational speed deviation, and each output of the second integral calculation means, the third integral calculation means, the third proportional calculation means, and the fourth proportional calculation means. means for synthesizing to obtain a current target value correction amount, and applying this current target value correction amount to a payoff reel drive motor current control device to drive the payoff reel drive motor and control the tension of the rolled material. A rolling mill control device characterized by:
JP1211402A 1989-08-18 1989-08-18 Rolling mill control device Expired - Lifetime JP2542698B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1211402A JP2542698B2 (en) 1989-08-18 1989-08-18 Rolling mill control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1211402A JP2542698B2 (en) 1989-08-18 1989-08-18 Rolling mill control device

Publications (2)

Publication Number Publication Date
JPH0377710A true JPH0377710A (en) 1991-04-03
JP2542698B2 JP2542698B2 (en) 1996-10-09

Family

ID=16605368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1211402A Expired - Lifetime JP2542698B2 (en) 1989-08-18 1989-08-18 Rolling mill control device

Country Status (1)

Country Link
JP (1) JP2542698B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270934A (en) * 2009-05-19 2010-12-02 Mitsubishi Electric Corp Dehumidifying dryer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010270934A (en) * 2009-05-19 2010-12-02 Mitsubishi Electric Corp Dehumidifying dryer

Also Published As

Publication number Publication date
JP2542698B2 (en) 1996-10-09

Similar Documents

Publication Publication Date Title
JP5961103B2 (en) Rolling control device, rolling control method, and rolling control program
JP5230509B2 (en) Rolling mill control device and control method thereof
EP3025798B1 (en) Rolling control device and rolling control method
KR101701646B1 (en) Rolling control apparatus, rolling control method and recording medium
JP2010162553A (en) Device and method for controlling rolling mill
US6619086B1 (en) Control system for tandem rolling mill
JPH07148518A (en) Tension control device
JPH0377710A (en) Control device for rolling mill
JPH10277618A (en) Tension controller for cold rolling mill
JP4653635B2 (en) Filter device and feedback control device using the same
JP3449305B2 (en) Tension control method and apparatus for strip material
JP6373800B2 (en) Rolling control device, rolling control method, and rolling control program
JP2760292B2 (en) Control method of tandem rolling mill
JPH11104725A (en) Rolling system
JP3085851B2 (en) Model identification device and control device for hot rolling mill
JPH0859040A (en) Control device for continuous hot rolling mill
JP3344092B2 (en) Rolling machine tension control method
JPH09136108A (en) Controller for hot tandem mill
JPH01150411A (en) Plate thickness control method for reversible rolling mill
JPH01259778A (en) Tension controller
KR0158580B1 (en) Thickness Prediction Method of Cold Rolled Steel Sheet
JP3438871B2 (en) Rolling mill shape control method
JPH0952119A (en) Control method for hot rolling and winding machine
JPH06269829A (en) Controller for screw down position of mill
JPH06297015A (en) Necking control method for hot rolling and winding machine

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070725

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080725

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14