[go: up one dir, main page]

JPH0377405A - Plane antenna - Google Patents

Plane antenna

Info

Publication number
JPH0377405A
JPH0377405A JP1214318A JP21431889A JPH0377405A JP H0377405 A JPH0377405 A JP H0377405A JP 1214318 A JP1214318 A JP 1214318A JP 21431889 A JP21431889 A JP 21431889A JP H0377405 A JPH0377405 A JP H0377405A
Authority
JP
Japan
Prior art keywords
center
radiation
waveguide
antenna
axially symmetrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1214318A
Other languages
Japanese (ja)
Inventor
Naohisa Goto
尚久 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAJIARU ANTENNA KENKYUSHO KK
Original Assignee
RAJIARU ANTENNA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAJIARU ANTENNA KENKYUSHO KK filed Critical RAJIARU ANTENNA KENKYUSHO KK
Priority to JP1214318A priority Critical patent/JPH0377405A/en
Priority to GB9017253A priority patent/GB2235590B/en
Priority to CA002023544A priority patent/CA2023544C/en
Priority to FR9010484A priority patent/FR2651608B1/en
Priority to KR1019900012877A priority patent/KR930010833B1/en
Priority to DE4026432A priority patent/DE4026432C2/en
Publication of JPH0377405A publication Critical patent/JPH0377405A/en
Priority to US07/793,314 priority patent/US5175561A/en
Pending legal-status Critical Current

Links

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

PURPOSE:To obtain a plane antenna of even the inner exciting type with a sufficient efficiency by selecting a coupling coefficient for external radiation higher toward the outer circumference and lower toward the center. CONSTITUTION:A waveguide for the axially symmetrical mode propagation is formed between a an upper disk (radiation disk) 12 and a lower disk 14 and a coaxial cable 16 is connected to the center of the lower disk 14. A radiation slot pair 20 comprising two radiation slots (coupling slots in the case of reception) 20A, 20B arranged on the upper disk 12 so as to be orthogonal spacially and electrically in spiral to the radiation face. Then the length of the radiation slots 20A, 20B, a distance Sr of the radiation slot pair 20 adjacent in the radial direction, a circumferential interval Sa and the thickness of the waveguide or the like are adjusted to make the coupling coefficient higher toward the outer circumference and lower toward the center. Thus, a comparatively flat aperture distribution is obtained and the practical plane antenna of the inner excitation type with a high efficiency is realized.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、平面アンテナに関し、より具体的には、ラジ
アル・ライン・スロット・アンテナと呼ばれ、軸対称モ
ード励振される平面アンテナに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a planar antenna, and more specifically to a planar antenna called a radial line slot antenna that is excited in an axially symmetric mode.

[従来の技術] ラジアル・ライン・スロット・アンテナに関しては、種
々の文献(例えば、笹沢英生、安藤真、後藤尚久「ラジ
アルラインスロ・ソトアンテナ配置と能率の向上」電子
通信学会信学技報、AP86−106)や、特許出願公
開昭和57−87603号、6〇−199201号、6
0−199202号、60−199203号、60−2
00602号、平成1−46305号などに記載されて
いる。
[Prior art] Regarding radial line slot antennas, there are various documents (for example, Hideo Sasazawa, Makoto Ando, and Naohisa Goto, "Radial line slot antenna arrangement and improvement of efficiency," Institute of Electronics and Communication Engineers IEICE Technical Report, AP86-106), patent application publication No. 57-87603, 60-199201, 6
No. 0-199202, No. 60-199203, 60-2
00602, Heisei 1-46305, etc.

これらに記載されている軸対称モード励振の平面アンテ
ナは、専ら2つの伝搬層を具備する2層構造であった。
The axially symmetric mode excitation planar antennas described in these publications had a two-layer structure exclusively comprising two propagation layers.

即ち、給電源からの電波を下伝搬層の中央に供給し、下
伝搬層を半径外側に伝搬させ、その終端で上伝搬層に導
き、上伝搬層内を中心に向けて伝搬させ、上伝搬層での
伝搬過程で多数のスロットにより電波を放射させるよう
にしていた。そのスロットの配置により円偏波、直線偏
波か決定されていた。このような2層構造では、放射ス
ロット面を具備する放射層(即ち、上伝搬層)では、電
波か外周から中央に伝搬する。このように軸対称モード
励振の電波が外周から中央に伝搬する場合、内部電磁界
f(r)は f(r)= Aexp ((α+ j k ) r )
 /f rで表わされる。Aは比例係数、kは伝搬定数
、rは半径、αは半径方向単位長さ当たりに放射される
電力の比例係数である。αは正値であり、結合係数と呼
ぶ。
In other words, a radio wave from a power source is supplied to the center of the lower propagation layer, propagated through the lower propagation layer radially outward, guided to the upper propagation layer at the end, propagated within the upper propagation layer toward the center, and then propagated to the upper propagation layer. Radio waves were radiated through a large number of slots during the propagation process through the layers. Circular polarization or linear polarization was determined by the slot arrangement. In such a two-layer structure, radio waves propagate from the outer periphery to the center in the radiation layer (that is, the upper propagation layer) provided with the radiation slot surface. When a radio wave with axially symmetric mode excitation propagates from the outer periphery to the center in this way, the internal electromagnetic field f(r) is f(r) = Aexp ((α+ j k ) r )
It is expressed as /f r. A is a proportionality coefficient, k is a propagation constant, r is a radius, and α is a proportionality coefficient of power radiated per unit length in the radial direction. α is a positive value and is called a coupling coefficient.

これに対して、半径rの位置の開口電力分布U(r)は
、 U  (r)  =αf2(r) =αexp(2αr)/r となり、αが正であるから、半径rに対して一様に近い
開口電力分布を理論的に得やすい構成になっている。
On the other hand, the aperture power distribution U(r) at the position of radius r is U (r) = αf2(r) = αexp(2αr)/r, and since α is positive, The configuration is such that it is theoretically easy to obtain an aperture power distribution close to that of the

また、放射されずに残った電波は中心の吸収材で吸収す
ることになるが、中心付近では電波進行方向断面積が小
さく、従って、このように吸収すべき電波の量も少なく
て済み、効率的である。
In addition, the remaining radio waves that are not radiated are absorbed by the central absorbing material, but the cross-sectional area in the direction of radio wave propagation is small near the center, so the amount of radio waves that must be absorbed is small, which increases efficiency. It is true.

[発明が解決しようとする課題] しかし、このような2層構造は、製造が極めて困難であ
るという欠点を具備する。即ち、上伝搬層と下伝搬層を
区分する板材を、電波伝搬に障害とならないように保持
する必要があり、且つまた、上伝搬層及び下伝搬層の層
幅を所定値に維持する必要がある。
[Problems to be Solved by the Invention] However, such a two-layer structure has the drawback that it is extremely difficult to manufacture. That is, it is necessary to maintain the plate material that separates the upper propagation layer and the lower propagation layer so that it does not interfere with radio wave propagation, and it is also necessary to maintain the layer widths of the upper propagation layer and the lower propagation layer at a predetermined value. be.

このような製造上の観点からは、電波が中心から半径方
向外側に伝搬する過程で電波を放射する1層構造のもの
が有利であるが、このような1@構造で軸対称励振する
場合、給電電波は中央から半径方向外側に伝搬し、その
伝搬の過程で少しずつ電波を放射することになる。なお
、本明細書では、軸対称モード励振の平面アンテナにお
いて、放射放射面を具備する伝搬層内で、励振電波が外
周から中央に伝搬するものを外側給電式(又は外側励振
式)と呼び、中央から外周に伝搬するものを内側給電式
(又は内側励振式)と呼ぶ。
From this manufacturing point of view, a one-layer structure that emits radio waves in the process of propagating from the center to the outside in the radial direction is advantageous, but when axisymmetric excitation is performed with such a 1@ structure, The feeding radio waves propagate radially outward from the center, and radio waves are radiated little by little during the propagation process. In addition, in this specification, an axially symmetric mode excitation planar antenna in which the excitation radio wave propagates from the outer periphery to the center within a propagation layer having a radiation emitting surface is referred to as an external feeding type (or external excitation type). The one that propagates from the center to the outer periphery is called the inside feeding type (or inside excitation type).

内側励振式では、上述の2゛層構造、即ち周囲給電式の
場合とは逆に、導波路内の内部電磁界f(r)は、 f(r)=Aexp (−(α+ j k )  r 
l  /r rとなり、放射スロットによる放射が無く
とも(α=0)、中心で非常に大きく、周囲にいくほど
弱くなる。これに加えて放射スロットからの放射がある
ので(α〉O)、外側にいくほどより急激に電磁界が弱
まる。従って、このような内側励振式では、開口分布を
半径方向で一様に近づけるのは原理的に極めて困難であ
ると考えられていた。
In the inner excitation type, contrary to the case of the above-mentioned two-layer structure, that is, the ambient feeding type, the internal electromagnetic field f(r) in the waveguide is f(r)=Aexp (-(α+ j k ) r
Even if there is no radiation by the radiation slot (α=0), it is very large at the center and becomes weaker toward the periphery. In addition to this, there is radiation from the radiation slot (α>O), so the electromagnetic field weakens more rapidly toward the outside. Therefore, in such an inside excitation type, it has been thought that it is extremely difficult in principle to make the aperture distribution uniform in the radial direction.

また、放射されずに残った電波は、反射を避けるために
、外周面で吸収することになるが、外側給電式の場合に
比べて極端に断面積か大きくなる。
Furthermore, the remaining radio waves that are not radiated are absorbed by the outer peripheral surface to avoid reflection, but the cross-sectional area becomes extremely large compared to the case of the external feeding type.

この吸収が損失になるので、内側励振式では理論的に効
率が極めて悪いと考えられていた。このようなことから
、従来、内側励振式では、高効串で実用的な平面アンテ
ナを得るのは極めて困難又は不可能であると考えられて
おり、これがまた、内側給電式に比べて周囲給電式の研
究が盛んな伸出でもある。
Since this absorption results in loss, it was theoretically thought that the efficiency of the internal excitation type would be extremely low. For this reason, it has traditionally been thought that it is extremely difficult or impossible to obtain a highly effective and practical planar antenna with the inside excitation type. It is also an area where research into formulas is active.

しかし本発明者は、アンテナ理論の原点に立ち返って考
察した結果、内側励振式でも充分に効率のよい平面アン
テナを設計し得ることを発見した。
However, the inventor of the present invention returned to the origins of antenna theory and discovered that it is possible to design a sufficiently efficient planar antenna even with an internal excitation type antenna.

即ち、本発明は、内側励振式の平面アンテナを提示する
ことを目的とする。
That is, an object of the present invention is to provide an internally excited planar antenna.

[課題を解決するための手段] 本発明に係る平面アンテナは、中央に給電された電波が
外周方向に伝搬しつつ外部に放射される形式の平面アン
テナであって、外部放射の結合係数を、外周で高く中央
程低くなるようにした。また、アンテナ面の中央に外部
との結合を有しない領域を設けた。
[Means for Solving the Problems] The planar antenna according to the present invention is a planar antenna in which radio waves fed to the center are radiated to the outside while propagating in the direction of the outer periphery, and the coupling coefficient of external radiation is I made it higher at the outer periphery and lower at the center. In addition, a region without coupling with the outside was provided at the center of the antenna surface.

別の発明として、円偏波用の平面アンテナであって、軸
対称モード導波部材の終端部分のアンテナ面にスパイラ
ル状スロットを設け、当該スパイラル状スロットに沿っ
て、当該軸対称モード導波部材の内外間で当該スパイラ
ル状スロットを介して電波を反射する反射部材を設けた
Another invention is a planar antenna for circularly polarized waves, in which a spiral slot is provided in the antenna surface of the terminal portion of the axially symmetrical mode waveguide member, and the axially symmetrical mode waveguide member is provided with a spiral slot along the spiral slot. A reflecting member was provided between the inside and outside of the device to reflect radio waves through the spiral slot.

[作用コ 中央給電の場合、中央部分で内部電磁界が極度に強く、
周囲になる程急速に弱くなるが、上記のように結合係数
を外周で高く中央程低くなるようにすることで、比較的
平坦な開口分布を得ることができる。また、中央部分に
非結合領域を設けると、長線路効果を抑圧することにな
り、バンド幅が広くなり、反面、アンテナ面積の減少に
よりアンテナ利得が減少する。しかし、アンテナ利得の
減少よりもバンド幅の増加が顕著であり、アンテナとし
てより好ましい特性を得ることができる。
[In the case of central power supply, the internal electromagnetic field is extremely strong in the center,
Although it becomes weaker rapidly toward the periphery, by making the coupling coefficient higher at the outer periphery and lower toward the center as described above, a relatively flat aperture distribution can be obtained. Further, if a non-coupling region is provided in the central portion, the long line effect will be suppressed and the band width will be widened, but on the other hand, the antenna gain will be reduced due to the decrease in the antenna area. However, the increase in bandwidth is more remarkable than the decrease in antenna gain, and more favorable characteristics as an antenna can be obtained.

スパイラル状スロット及び反射部材により、導波路内部
への反射を少なく又は実質ゼロに抑えて、終端の電波を
アンテナ正面に反射させることができる。スパイラル状
スロットからは、終端までで放射される円偏波の電波と
同相の電波が放射されるので、吸収体を用いた場合には
吸収されてしまう電力を有効に活用できる。
By using the spiral slot and the reflecting member, the radio wave at the end can be reflected to the front of the antenna while minimizing or substantially eliminating reflection into the inside of the waveguide. Since the spiral slot radiates radio waves that are in phase with the circularly polarized radio waves radiated up to the end, it is possible to effectively utilize the power that would be absorbed when an absorber is used.

[実施例コ 以下、図面を参照して本発明の詳細な説明する。[Example code] Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の一実施例である円偏波用平面アンテ
ナの平面図、第2図は第1図のA−A線の断面図、第3
図は第工図のB−B線の断面図である。図示実施例の平
面アンテナ10では、円形の上板(放射板)12と、同
じく円形の下板14との間に軸対称モード伝搬の導波路
が形成される。
FIG. 1 is a plan view of a circularly polarized planar antenna according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, and FIG.
The figure is a cross-sectional view taken along line B-B of the construction drawing. In the planar antenna 10 of the illustrated embodiment, a waveguide for axially symmetric mode propagation is formed between a circular upper plate (radiation plate) 12 and a circular lower plate 14.

上板12及び下板14は、導電性材料からなるか、又は
、少なくともその内面を導電体で被覆しである。上板1
2と下板14との間は、空気でも、所定の誘電体を充填
してもよい。上板12と下板14との間隔は、充填され
た誘電体、図示しない部材、又は上板12及び下板14
自身の強度により、一定間隔に保持されている。下板1
4の中心には同軸ケーブル16が接続され、上板12の
内面(下板14に向いた面)の中央部分には、同軸ケー
ブル16の電波を半径方向外側に向ける整合反射体18
が取り付けられている。整合反射体18は、少なくとも
その表面を電波反射面としてあればよい。
The upper plate 12 and the lower plate 14 are made of a conductive material, or at least their inner surfaces are coated with a conductor. Top plate 1
2 and the lower plate 14 may be filled with air or a predetermined dielectric material. The distance between the upper plate 12 and the lower plate 14 is determined by a filled dielectric, a member (not shown), or a gap between the upper plate 12 and the lower plate 14.
It is held at regular intervals by its own strength. Lower plate 1
A coaxial cable 16 is connected to the center of the upper plate 12, and a matching reflector 18 is provided at the center of the inner surface of the upper plate 12 (the surface facing the lower plate 14) to direct the radio waves of the coaxial cable 16 outward in the radial direction.
is installed. The matching reflector 18 only needs to have at least its surface as a radio wave reflecting surface.

同軸ケーブル16の電波を、上板12及び下板14間の
導波路に導く構造としては、整合反射体18の他に、第
10図及び第11図に示すような構造でもよい。第10
図の構造の理論説明は例えば、名取、安藤、後藤「プロ
ーブ型同軸−ラシアル導波路変換器J 1989年電子
情報通信学会秋季全国大会に記載されている。
As a structure for guiding the radio waves of the coaxial cable 16 to the waveguide between the upper plate 12 and the lower plate 14, in addition to the matching reflector 18, a structure as shown in FIGS. 10 and 11 may be used. 10th
A theoretical explanation of the structure shown in the figure can be found, for example, in Natori, Ando, and Goto, "Probe Type Coaxial-Radial Waveguide Converter J, 1989 IEICE Autumn National Conference.

上板12には、空間的及び電気的に直交するように配置
された2つの放射スロット(受信の場合には結合スロッ
ト)2OA、20Bを対として、このような放射スロッ
ト対20を放射面にスパイラル状に配置しである。参考
のため、このスパイラル線を第1図に破線で図示した。
On the upper plate 12, two radiation slots (combined slots in the case of reception) 2OA and 20B arranged so as to be spatially and electrically orthogonal are arranged as a pair, and such a radiation slot pair 20 is provided on the radiation surface. It is arranged in a spiral. For reference, this spiral line is shown as a broken line in FIG.

このように配置すると、アンテナ正面で、同位相の円偏
波が得られることが分かっている(上記文献参照)。先
に説明したように、上板12及び下板14で形式される
導波路を伝搬する軸対称モードの電波は、半径rに対し
て、 f(r)=Aexp (−(a十j k) r) /r
rで変化する。
It is known that when arranged in this way, circularly polarized waves of the same phase can be obtained in front of the antenna (see the above-mentioned literature). As explained above, the axially symmetrical mode radio wave propagating through the waveguide formed by the upper plate 12 and the lower plate 14 has the following formula for the radius r: f(r)=Aexp (-(a + j k) r) /r
It changes with r.

本発明者は、放射スロット2OA、20Bの諸パラメー
タ、具体的には放射スロット2OA、20Bの長さ及び
半径方向に隣接する放射スロット対20の距離Sr、周
方向間隔Sa、導波路の厚み(即ち、板12.14間の
間隔)などを調節することにより、開口面電界分布の一
様性を保ちつつ、結合係数αを調節できることを発見し
た。例えば、内側給電式の直径60cmの平面アンテナ
の場合、結合係数αを半径rに対して第4図に示すよう
に変化させれば、理論的に、許容範囲内で−様な開口分
布を得ることができ、このような結合係数分布を得るに
は、放射スロット2OA、20Bの長さを半径rに対し
て第5図に示すように変化させ、半径方向に隣接する放
射スロット対20の距離Srを半径rに対して第6図に
示すように変化させればよい。第4図、第5図及び第6
図の横軸は半径、第4図の縦軸は結合係数α、第5図の
縦軸はスロット長、第6図の縦軸は放射スロット対の半
径方向間隔Srである。
The present inventor has investigated various parameters of the radiation slots 2OA and 20B, specifically the lengths of the radiation slots 2OA and 20B, the distance Sr between the radially adjacent radiation slot pairs 20, the circumferential spacing Sa, and the waveguide thickness ( In other words, it has been discovered that by adjusting the distance between the plates 12 and 14, etc., the coupling coefficient α can be adjusted while maintaining the uniformity of the aperture surface electric field distribution. For example, in the case of an internally fed planar antenna with a diameter of 60 cm, if the coupling coefficient α is varied with respect to the radius r as shown in Fig. 4, a −-like aperture distribution can be theoretically obtained within the allowable range. In order to obtain such a coupling coefficient distribution, the lengths of the radiating slots 2OA and 20B are changed with respect to the radius r as shown in FIG. 5, and the distance between the radially adjacent pairs of radiating slots 20 is What is necessary is to change Sr with respect to the radius r as shown in FIG. Figures 4, 5 and 6
The horizontal axis in the figure is the radius, the vertical axis in FIG. 4 is the coupling coefficient α, the vertical axis in FIG. 5 is the slot length, and the vertical axis in FIG. 6 is the radial spacing Sr between the pairs of radial slots.

このような数値計算により理論的に得られた結合係数α
が、実際の実験値と良く合致することが、法相二部、安
藤真及び後藤尚久「周期構造モデルによるラジアル導波
路とスロットの結合の解析」電気学会、電磁気研究会資
料、1989年5月27日により報告されている。
The coupling coefficient α theoretically obtained by such numerical calculations
However, it is found that the results are in good agreement with the actual experimental values, Hosou Nibu, Makoto Ando, and Naohisa Goto, "Analysis of the coupling between a radial waveguide and a slot using a periodic structure model," Institute of Electrical Engineers of Japan, Electromagnetism Study Group Materials, May 27, 1989. Reported on a daily basis.

中央から外周に向って伝搬し、その伝搬の過程で正面に
放射されずに残る電波が存在する。このような残存電波
は、吸収材により吸収させてもよいが、以下に説明する
ように、効率よくアンテナ正面に放射させるのが好まし
い。即ち、外側給電式の、即ち2層式の平面アンテナの
知識から、約45度の傾斜面の反射材により、逆方向に
殆ど反射させずに、電波をアンテナ正面方向に反射でき
ることが分かっている。そこで本実施例では、平面アン
テナ10の外周部分に、伝搬電波を正面方向に向ける反
射材22を配置し、上板12には、反射材22による反
射電波を正面方向に放射するためのスロット24を設け
た。但し、スロット24による放射電波も、スロット対
20による放射電波と同相にする必要があり、本実施例
では、スロット24を、スロット対20のスパイラル線
に沿って延びるスロットとした。スロット24は、例え
ば、第工図に図示するように角度方向に360度にわた
る1つのスロットとすればよい。このスロット24に沿
って、反射材22を配置する。
There are radio waves that propagate from the center toward the outer periphery, and during the propagation process, they remain without being radiated to the front. Although such residual radio waves may be absorbed by an absorbing material, it is preferable to radiate them efficiently to the front of the antenna, as explained below. In other words, from the knowledge of externally fed, or two-layer, planar antennas, it is known that the reflector on the approximately 45-degree slope allows radio waves to be reflected in the front direction of the antenna, with almost no reflection in the opposite direction. . Therefore, in this embodiment, a reflective material 22 is arranged around the outer circumference of the planar antenna 10 to direct the propagating radio waves toward the front, and a slot 24 is provided in the upper plate 12 to radiate the reflected radio waves from the reflective material 22 toward the front. has been established. However, the radio waves radiated by the slot 24 must also be in phase with the radio waves radiated by the slot pair 20, and in this embodiment, the slot 24 is a slot extending along the spiral line of the slot pair 20. The slot 24 may be, for example, one slot spanning 360 degrees in the angular direction, as shown in the drawing. A reflective material 22 is arranged along this slot 24.

スパイラル状に延びるスロットからは円偏波の電波が放
射されることが既に知られているが、その放射電波量を
微調節するのが困難なことから、多数のスロットによる
放射が考えられたという経緯がある。本実施例のスロッ
ト24は、スロット24による放射量を調節する必要は
なく、反射材22による電波を全て放射すればよいので
あるから、それに応じた幅のスロットとすればよい。反
射材22及びスロット24による終端構造は、円偏波の
場合にのみ適用でき、直線偏波の場合には適用できない
。また、得られる効果は小さいが、反射材22及びスロ
ット24による終端構造は、外部給電式の平面アンテナ
にも適用でき、この場合には、放射層の中央部分にスパ
イラル・スロット及びそれに沿った反射材が配置される
ことになる。
It is already known that circularly polarized radio waves are emitted from spirally extending slots, but because it is difficult to finely adjust the amount of emitted radio waves, radiation from multiple slots was considered. There is a history. In the slot 24 of this embodiment, since it is not necessary to adjust the amount of radiation by the slot 24 and it is sufficient to radiate all the radio waves by the reflecting material 22, the slot 24 may have a width corresponding to this. The termination structure with the reflector 22 and the slot 24 is applicable only in the case of circularly polarized waves, and not in the case of linearly polarized waves. Furthermore, although the effect obtained is small, the termination structure with the reflector 22 and the slot 24 can also be applied to an externally fed planar antenna. In this case, a spiral slot in the center of the radiation layer and a reflection materials will be placed.

直線偏波に対しては、放射されずに残った電波は、電波
吸収材に吸収させればよい。
For linearly polarized waves, the remaining radio waves that are not radiated may be absorbed by a radio wave absorbing material.

第4図に示すように、アンテナ面の中心部分では、結合
係数αは非常に小さくてよい。極端なケースとして、ア
ンテナ面の中央部分に放射スロット2OA、20Bを設
けなければ、その部分の結合係数αはゼロとなる。そこ
で本発明の第2の実施例として、アンテナ面の中央を、
放射スロット2OA、20Bを具備しない非放射領域と
することを提案する。第7図は第2の実施例の正面図を
示す。アンテナ面の中心に半径rの非放射領域を設け、
その外周側に、第4図に示した結合係数の分布になるよ
うに放射スロット2OA、20Bを設ける。これにより
、結合係数αとしては、第8図に示すように、半径rま
では完全にゼロで、半径rから半径Rまでの間は第4図
と同じ曲線になる。
As shown in FIG. 4, the coupling coefficient α may be very small in the central portion of the antenna plane. As an extreme case, if the radiation slots 2OA and 20B are not provided in the central part of the antenna surface, the coupling coefficient α in that part becomes zero. Therefore, as a second embodiment of the present invention, the center of the antenna surface is
It is proposed that the area be a non-radiating area that does not include the radiating slots 2OA and 20B. FIG. 7 shows a front view of the second embodiment. A non-radiation area of radius r is provided at the center of the antenna surface,
Radiation slots 2OA and 20B are provided on the outer circumferential side thereof so as to have the coupling coefficient distribution shown in FIG. As a result, the coupling coefficient α is completely zero up to the radius r, as shown in FIG. 8, and becomes the same curve as in FIG. 4 between the radius r and the radius R.

アンテナ利得Gは放射面の面積S、即ちアンテナ半径R
の二乗にほぼ比例し、他方、バンド幅Bは導波路の伝搬
距離、即ち、軸対称励振の平面アンテナではアンテナ半
径に概略反比例する。後者はいわゆる、線路長が長くな
る程、周波数帯域が狭くなる長線路効果によるものであ
る。
The antenna gain G is the area S of the radiation surface, that is, the antenna radius R
On the other hand, the bandwidth B is approximately inversely proportional to the propagation distance of the waveguide, that is, the antenna radius in the case of an axially symmetrically excited planar antenna. The latter is due to the so-called long line effect, in which the longer the line length, the narrower the frequency band.

第9図は、アンテナ半径R及び非放射領域の半径rと、
バンド幅B及び利得Gとの関係を図示するグラフであり
、非放射領域によりアンテナ面積が減少するので、利得
Gが僅かに減少するが、電波伝搬距離がRから(R−r
)に短くなり、長線路効果によりバンド幅が広くなる。
FIG. 9 shows the antenna radius R and the radius r of the non-radiation area,
This is a graph illustrating the relationship between the bandwidth B and the gain G. Since the antenna area is reduced due to the non-radiating region, the gain G is slightly reduced, but the radio wave propagation distance is reduced from R to (R-r
), and the band width becomes wider due to the long line effect.

換言すれば、非放射領域を設けることによる利得Gの減
少をカバーするには、放射面積がπr2だけ増すように
アンテナ半径Rを大きくすればよいが、その増加したア
ンテナ半径でも電波伝搬距離(線路長)は当初の値(R
)より小さく、従って、より大きなバンド幅Bを得るこ
とができる。例えば、直径60cmで、半径r = 1
0cmの非放射領域を設けると、利得は約0.5dBL
か低下せずに、バンド幅は約13倍になる。
In other words, to compensate for the decrease in gain G due to the provision of a non-radiating region, the antenna radius R should be increased so that the radiation area increases by πr2, but even with this increased antenna radius, the radio wave propagation distance (line long) is the initial value (R
), and therefore a larger bandwidth B can be obtained. For example, if the diameter is 60 cm, the radius r = 1
If a non-radiating area of 0 cm is provided, the gain is approximately 0.5 dBL.
The bandwidth is increased approximately 13 times without any loss in performance.

このような非放射領域を設けると、メインローブが少し
低下し、奇数番目のサイドローブが少し上昇するという
欠点があるが、この欠点は、バンド幅の増加という長所
との比較では、大した問題ではない。。
The disadvantage of having such a non-radiating region is that the main lobe is slightly lowered and the odd-numbered sidelobes are slightly increased, but these disadvantages are outweighed by the advantage of increased bandwidth. isn't it. .

第8図では、非放射領域と放射領域の接点で、結合係数
を階段状に第4図の特性カーブに変化させたが、このよ
うなサイドローブの上昇は、結合係数を緩やかに変化さ
せることで緩和できるものと推測されるので、必ずしも
、第8図に示すように結合係数αを非放射領域と放射領
域の境界でステップ状に変化させる必要はなく、当該境
界から徐々に、第4図の特性カーブに接近させてもよい
In Fig. 8, the coupling coefficient changes stepwise to the characteristic curve shown in Fig. 4 at the contact point between the non-radiating region and the radiating region, but such a rise in side lobes causes the coupling coefficient to change gradually. Therefore, it is not necessarily necessary to change the coupling coefficient α stepwise at the boundary between the non-radiating region and the radiating region as shown in FIG. 8, but gradually from the boundary as shown in FIG. The characteristic curve may be made to approach the characteristic curve of

なお、第7図のようにアンテナ面の中央に非放射領域を
設ける構成は、軸対称モードの内側励振の平面アンテナ
一般に適用でき、円偏波、直線偏波などの偏波の種類に
限定されない。
Note that the configuration in which a non-radiating region is provided at the center of the antenna surface as shown in Figure 7 can be applied to general planar antennas with internal excitation in an axially symmetric mode, and is not limited to types of polarization such as circularly polarized waves and linearly polarized waves. .

以上をまとめると、内部給電方式では、中央部分の強い
電磁界が−様な開口分布の形成を妨げる大きな要因にな
っているが、本発明では、結合係数を半径方向で変化さ
せることにより、比較的平坦な開口分布を得ることがで
きることを示した。
To summarize the above, in the internal feeding system, the strong electromagnetic field in the center is a major factor that prevents the formation of a -like aperture distribution, but in the present invention, by changing the coupling coefficient in the radial direction, It was shown that a flat aperture distribution can be obtained.

放射スロットの形状及び配置については、例えば上記各
公報に記載されるように種々のものが提案されているが
、結合係数を半径方向で変化させることを特徴とする本
発明は、上記各公報に記載される各種の放射スロットの
形状及び配置に対しても適用できることはいうまでもな
い。また、アンテナ面の中央部分を非放射領域とするこ
とにより、中央部分の強い内部電磁界が開口分布に与え
る影響を著しく削減又はゼロにでき、平坦な開口分布が
より得やすくなるばかりか、バンド幅も広げることがで
きる。
Various shapes and arrangements of the radiation slots have been proposed, for example, as described in the above-mentioned publications, but the present invention, which is characterized by changing the coupling coefficient in the radial direction, is based on the above-mentioned publications. It goes without saying that the invention is also applicable to the various shapes and arrangements of the radiation slots described. In addition, by making the central part of the antenna surface a non-radiating area, the influence of the strong internal electromagnetic field in the central part on the aperture distribution can be significantly reduced or eliminated, which not only makes it easier to obtain a flat aperture distribution, but also makes it possible to The width can also be expanded.

円偏波の場合には、外周部にスパイラル状のスロット2
4及び当該スロット24に沿った反射材2.2を設ける
ことにより、中央から外周に伝搬して外部放射されずに
残った電波を効率良くアンテナ正面に円偏波で放射でき
る。従って、非常に高い効率を期待できる。
In the case of circularly polarized waves, there is a spiral slot 2 on the outer periphery.
4 and the reflective material 2.2 along the slot 24, the radio waves that propagate from the center to the outer periphery and remain without being radiated to the outside can be efficiently radiated to the front of the antenna as circularly polarized waves. Therefore, very high efficiency can be expected.

電波を放射する場合、即ち送信の場合を例に説明したが
、アンテナの相反定理により電波受信の場合にも同様の
議論が成立する。特許請求の範囲でもそのように理解さ
れるべきである。
Although the case of emitting radio waves, that is, the case of transmission, has been explained as an example, the same argument holds true in the case of receiving radio waves due to the antenna reciprocity theorem. The scope of the claims should also be understood as such.

[発明の効果] 以上の説明から容易に理解できるように、本発明によれ
ば、軸対称励振モードであって、1層の高効率の平面ア
ンテナを提供できる。電波伝搬層が1層でよいので、外
部給電式である2層の平面アンテナに比べ安価に製造で
きる。また、1層又は2層構造の円偏波用平面アンテナ
において、スパイラル状スロット及びそれに沿って配置
した反射部材により未放射の電波を最終的に効率よく放
射でき、より高い効率の平面アンテナを提供できる。
[Effects of the Invention] As can be easily understood from the above description, according to the present invention, it is possible to provide a highly efficient single-layer planar antenna with an axially symmetrical excitation mode. Since only one radio wave propagation layer is required, the antenna can be manufactured at a lower cost than a two-layer planar antenna that is externally powered. In addition, in a circularly polarized planar antenna with a one-layer or two-layer structure, unradiated radio waves can be efficiently radiated by the spiral slot and the reflective member placed along it, providing a planar antenna with higher efficiency. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の正面図、第2図は第1図の
A−A線の断面図、第3図は第1図のB−B線の断面図
、第4図は平坦な開口分布を得るための結合係数αの分
布図、第5図及び第6図ははそれぞれ、第4図の結合係
数分布を得るためのスロット長さ及びスロット間隔Sr
の分布図、第7図はアンテナ面の中央部分に非放射領域
を設けた変更実施例の正面図、第8図は半径10cmの
部分を非放射領域とした場合の結合係数αの分布図、第
9図は利得G及び帯域幅Bの特性図、第10図及び第1
1図は中央給電部の別の構造例である。 10:平面アンテナ(実施例) 12:上板 14:下
板 16:同軸ケーブル 18:整合反射体 2OA、
20B:放射スロット 20:放射スロット対 22:
反射材 24:スパイラル状スロット
FIG. 1 is a front view of an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line A-A in FIG. 1, FIG. 3 is a cross-sectional view taken along line B-B in FIG. 1, and FIG. The distribution diagrams of the coupling coefficient α to obtain a flat aperture distribution, FIGS. 5 and 6, respectively show the slot length and slot spacing Sr to obtain the coupling coefficient distribution of FIG. 4.
7 is a front view of a modified example in which a non-radiation region is provided in the center of the antenna surface, and FIG. 8 is a distribution diagram of the coupling coefficient α when a portion with a radius of 10 cm is set as a non-radiation region. Figure 9 is a characteristic diagram of gain G and bandwidth B, Figure 10 and
Figure 1 shows another example of the structure of the central power feeding section. 10: Planar antenna (example) 12: Upper plate 14: Lower plate 16: Coaxial cable 18: Matching reflector 2OA,
20B: Radiation slot 20: Radiation slot pair 22:
Reflective material 24: Spiral slot

Claims (5)

【特許請求の範囲】[Claims] (1)軸対称モード導波手段と、当該軸対称導波手段の
中央に接続された受信又は送信電波の接続手段と、結合
係数が外周で高く中央程低くなるように、当該軸対称導
波手段の一面に形成配置された複数の結合スロットとか
らなることを特徴とする平面アンテナ。
(1) An axially symmetrical mode waveguide, a receiving or transmitting radio wave connection means connected to the center of the axially symmetrical waveguide, and an axially symmetrical waveguide such that the coupling coefficient is high at the outer periphery and lower at the center. A planar antenna characterized in that it comprises a plurality of coupling slots formed and arranged on one side of the means.
(2)アンテナ面の中央に上記結合スロットを具備しな
い領域を設けたことを特徴とする特許請求の範囲第(1
)項に記載の平面アンテナ。
(2) Claim No. 1 (1) characterized in that an area without the coupling slot is provided in the center of the antenna surface.
) The planar antenna described in section 2.
(3)円偏波用の平面アンテナであって、軸対称モード
が励振される軸対称モード導波部材と、当該軸対称モー
ド導波部材の終端部分のアンテナ面に設けられたスパイ
ラル状スロットと、当該スパイラル状スロットに沿って
配置され、当該軸対称モード導波部材の内外間で伝搬電
波を反射する反射部材を設けたことを特徴とする平面ア
ンテナ。
(3) A planar antenna for circularly polarized waves, which includes an axially symmetrical mode waveguide member in which an axially symmetrical mode is excited, and a spiral slot provided in the antenna surface of the terminal portion of the axially symmetrical mode waveguide member. A planar antenna, characterized in that a reflecting member is disposed along the spiral slot and reflects propagating radio waves between the inside and outside of the axially symmetric mode waveguide member.
(4)前記軸対称モード導波部材が、送信電波が中央か
ら外周に向け伝搬する1層の導波路である特許請求の範
囲第(3)項に記載の平面アンテナ。
(4) The planar antenna according to claim (3), wherein the axially symmetrical mode waveguide member is a one-layer waveguide in which transmitted radio waves propagate from the center toward the outer periphery.
(5)前記軸対称モード導波部材が、送信電波が中央か
ら外周に向け伝搬する第1導波層と、第1導波層の電波
が外周から中央に向け伝搬する第2導波層からなり、上
記スパイラル状スロット及び上記反射部材を、第2導波
層の中央部に配置した特許請求の範囲第(3)項に記載
の平面アンテナ。
(5) The axially symmetrical mode waveguide member includes a first waveguide layer in which the transmitted radio waves propagate from the center toward the outer periphery, and a second waveguide layer in which the radio waves in the first waveguide layer propagate from the outer periphery toward the center. The planar antenna according to claim 3, wherein the spiral slot and the reflective member are arranged at the center of the second waveguide layer.
JP1214318A 1989-08-21 1989-08-21 Plane antenna Pending JPH0377405A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP1214318A JPH0377405A (en) 1989-08-21 1989-08-21 Plane antenna
GB9017253A GB2235590B (en) 1989-08-21 1990-08-07 Planar antenna
CA002023544A CA2023544C (en) 1989-08-21 1990-08-17 Planar slotted antenna with radial line
FR9010484A FR2651608B1 (en) 1989-08-21 1990-08-20 FLAT ANTENNA.
KR1019900012877A KR930010833B1 (en) 1989-08-21 1990-08-21 Planar antenna
DE4026432A DE4026432C2 (en) 1989-08-21 1990-08-21 Radial line slot antenna
US07/793,314 US5175561A (en) 1989-08-21 1991-11-15 Single-layered radial line slot antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1214318A JPH0377405A (en) 1989-08-21 1989-08-21 Plane antenna

Publications (1)

Publication Number Publication Date
JPH0377405A true JPH0377405A (en) 1991-04-03

Family

ID=16653771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1214318A Pending JPH0377405A (en) 1989-08-21 1989-08-21 Plane antenna

Country Status (1)

Country Link
JP (1) JPH0377405A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179477A (en) * 2000-03-30 2006-07-06 Tokyo Electron Ltd Plasma processing apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006179477A (en) * 2000-03-30 2006-07-06 Tokyo Electron Ltd Plasma processing apparatus
JP4522356B2 (en) * 2000-03-30 2010-08-11 東京エレクトロン株式会社 Plasma processing equipment

Similar Documents

Publication Publication Date Title
KR930010833B1 (en) Planar antenna
JP4072280B2 (en) Dielectric loaded antenna
JPH02302104A (en) Square waveguide slot array antenna
US8149180B2 (en) Antenna with resonator having a filtering coating and system including such antenna
US8564490B2 (en) Antenna device and radar apparatus
JPH0685487B2 (en) Dual antenna for dual frequency
RU2258285C1 (en) Planar antenna
JP2007318348A (en) Antenna device and antenna system
JP2000341030A (en) Waveguide array antenna device
RU2435260C2 (en) Plane antenna
JPH05226927A (en) Slot array antenna
JPH0444843B2 (en)
JPH0377405A (en) Plane antenna
JP2010239524A (en) Antenna device
JPH0435401A (en) Flat antenna
JPH02280504A (en) Leakage type waveguide slot array antenna
JPH0522025A (en) Parallel plate slot antenna
JP3021752B2 (en) Composite structure radial line slot antenna
JP2003152441A (en) Planar circular polarization waveguide slot and array antennas, and planar waveguide slot and array antennas
JP3360118B2 (en) Horizontally polarized antenna
JPH0680971B2 (en) Dielectric loaded antenna with reflector
JP2001196850A (en) Waveguide slot antenna
JP2002026640A (en) Dielectric planar antenna
JPH02164108A (en) planar antenna
JP3806759B2 (en) Horizontally polarized antenna