[go: up one dir, main page]

JPH0377147B2 - - Google Patents

Info

Publication number
JPH0377147B2
JPH0377147B2 JP59176927A JP17692784A JPH0377147B2 JP H0377147 B2 JPH0377147 B2 JP H0377147B2 JP 59176927 A JP59176927 A JP 59176927A JP 17692784 A JP17692784 A JP 17692784A JP H0377147 B2 JPH0377147 B2 JP H0377147B2
Authority
JP
Japan
Prior art keywords
weight
ticx
cutting
tic
toughness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59176927A
Other languages
Japanese (ja)
Other versions
JPS6153154A (en
Inventor
Junichiro Suzuki
Shoji Sakakibara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP59176927A priority Critical patent/JPS6153154A/en
Priority to DE19853529265 priority patent/DE3529265A1/en
Publication of JPS6153154A publication Critical patent/JPS6153154A/en
Priority to US07/742,737 priority patent/US5106788A/en
Publication of JPH0377147B2 publication Critical patent/JPH0377147B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は高密度で靱性の大きいセラミツク材料
の製造法に関するものであり、特に切削工具用材
料として有用なA2O3−TiC系の高靱性セラミ
ツクの製造法に関するものである。 [従来の技術] 工具材料のうち、特に刃先部に過酷な力や熱を
受ける切削工具では、次のような材料特性が要求
される。 1 高温硬度が大きいこと。 2 靱性、特に高温での靱性を有すること。 3化学的に安定で、刃先において被切削材と反応
しないこと。 切削工具材料としてのアルミナ系工具では、これ
らの要求特性のうちの1と3とについては申し分
ないが、2については問題がある。この限界を乗
り越えるべく開発されたのが、A2O3−TiC系
のセラミツクである。この系のセラミツクは、A
2O3基材料の改良としては画期的なもので、複
合化セラミツクの典型的な成功例である。ところ
が酸化物と炭化物との複合化であるため、単純に
熱を加えるだけの製法では緻密化することが困難
である。そこでA2O3粒子と分散粒子(TiC)
との間のガス発生を極力抑制する工夫が必要にな
るが、工業的な製造技術としては、熱とともに機
械的な力を加えるホツトプレスの適用、更には全
周囲方向から均等で大きな力を加えることのでき
る熱間静水圧プレスの適用が、安定して高性能な
製品製造の使われている。このようなA2O3
TiC系のセラミツクは、耐摩耗性が優れ、鉄との
親和性が低いという特徴をもつために、鋳鉄の精
密仕上げや高速切削において広く使用されてい
る。 [問題が解決しようとする問題点] 種々の業界例えば、自動車や航空機産業などで
は生産性向上のために、切削速度が極度に速くな
るつつあり、一方ではこうした高速切削に耐えう
る工作機械の発展もある。 又、生産現場の無人化が進むにしたがつて切削
工具特にセラミツク工具の信頼性を高めることが
必要となつてきた。 高速切削および切削工具の信頼性を向上させる
ためには、現在のA2O3−TiC系のセラミツク
の性能、特に靱性面を更に向上させることが必要
である。 この靱性の改善の一手段としてTiC粒同士、A
2O3粒同士あるいはTiC粒とA2O3粒間の界面
の強化が考えられ、過去にTiO2(特公昭51−569)
やTi(特公昭50−20963及び特公昭50−39445)の
添加により試みられたことがあるが十分な成果は
得られていない。 本発明は、上記問題点を解決するためになされ
たものでより靱性の大きいA2O3−TiC系セラ
ミツクの製造法を提供することを目的とする。 [発明の構成] 本発明は、 一般式TiCx(ただしxは0.65〜0.93)で表わさ
れる炭化チタン20〜50重量%と、MgO,CaO,
SiO2,ZrO2,NiO及び希土類酸化物から選ばれ
る1種又は2種以上の焼結助剤を0.1〜2重量%
と、A2O348〜79.9重量%と、からなる配合物
を成形後、ホツトプレス法により焼結し対理論密
度を99%以上とすることを特徴とする高靱性セラ
ミツクの製造法を要旨とする。 本発明においてTiCx(ただしxは0.65〜0.93)
が20〜50重量%用いられることが必要である。 上記のTiCxはTiが過剰の非化学量論的炭化チ
タンであり、TiCで表わされる化学量論的炭化チ
タンに比べて、結晶構造が不完全かつ不安定であ
る。そのため固相反応等の焼結反応が容易とな
り、A2O3粒とTiCx粒及びTiCx粒同士の界面
がA2O3粒とTiC粒及びTiC粒同士の界面に比
較して強化される。又、TiCxの原子間の結合形
態は共有結合に金属結合的性質を帯びたものとな
り靱性が向上する。 TiCxにおけるxが0.65より小さい場合には、
焼結体の性能特に耐摩耗性が低下し、又xが0.93
より大きくなるとTiCxにおける非化学量論的効
果が弱くなり、十分な靱性が得られなくなる。 上記TiCxは20〜50重量%用いられることが必
要であるがTiCxが20重量%未満の場合は、TiCx
を用いた効果が十分に表われず、50重量%を越え
る場合は焼結性が悪くなり、十分な靱性が得られ
なくなる。 さらに、1種又は2種以上の焼結助剤例えば
MgO,CaO等を0.1〜2重量%用いることが必要
である。 焼結助剤はA2O3と化合物をつくり、それ
が、セラミツクの焼結を助成し、焼結性が向上す
る。又焼結助剤を添加することによつて焼結時の
2O3の粒成長を抑えることができる。本発明
において焼結助剤とは、上述した様に、MgO、
CaO、SiO2、ZrO2、NiOや、Y2O3、Dy2O3、Er2
O3、Ho2O3等の希土類酸化物等の通常A2O3
系、A2O3−TiC系、A2O3−ZrO2系などの
2O3主体セラミツクの焼結に用いられるもの
を指す。 焼結助剤は、本発明において、0.1重量%〜2
重量%用いられるが0.1重量%以下では、上記の
効果は十分にあらわれず、逆に2重量%以上では
多量の上記化合物がセラミツク材料の高温特性を
低下させる。 以上のような本発明方法によつて得られるセラ
ミツクは耐摩耗性及び靱性に優れたものとなる。
その理由はA2O3とTiCxとの接着強度が高く、
かつA2O3の結晶粒子が微細なためと推定され
る。 [実施例] 本発明の一実施例について述べる。 純度99.9%平均粒径0.4μmのα−A2O3、第1
表の内容に調整されたTiCx、及び焼結助剤を第
2表のように各種配合し、ボールミルにて40hr湿
式混合を行つた後乾燥し、混合粉を得た。この混
合粉を圧力200Kg/cm2、時間15分、第2表に示す
温度の条件で黒鉛型内においてホツトプレス法に
よつて焼結した。得られた焼結体を13×13×5mm
に切断し、さらにダイヤモンド砥石を用いて
SNGN432の形状(JIS)に仕上げた。チヤンフ
アーは0.1mm×25°とした。このものについて次の
、の条件にて切削テストを行つたところ第2
表のような結果が得られた。 切削テストの条件 I被削材 :FC20(HB190〜220) 切削条件:切削速度(V)=800m/min、 切り込み(t)=0.5mm、 送り速度(f)=0.25mm/rev、 寿命判定:120mmφ×I5mmの外周部を100回切
削した後の摩耗幅VB(mm)を測定 被削材:SKD11(HRC62) 切削条件:切削速度(V)=150m/min、 切り込み(t)=0.5mm、 送り速度(f)=0.17mm/rev 寿命判定:120φmmの棒材を15分間切削した後
の摩耗幅VB(mm)を測定
[Industrial Field of Application] The present invention relates to a method for producing a high-density, high-toughness ceramic material, and in particular to a method for producing A 2 O 3 -TiC-based high-toughness ceramic material useful as a material for cutting tools. It is. [Prior Art] Among tool materials, the following material properties are required for cutting tools that are subjected to severe force and heat, particularly at the cutting edge. 1 High temperature hardness. 2. Must have toughness, especially toughness at high temperatures. 3. It is chemically stable and does not react with the material to be cut at the cutting edge. Alumina tools used as cutting tool materials are satisfactory in 1 and 3 of these required properties, but have a problem with 2. A 2 O 3 -TiC ceramic was developed to overcome this limitation. This type of ceramic is A
This is an epoch-making improvement in 2 O 3 based materials and a typical success example of composite ceramics. However, since it is a composite of oxide and carbide, it is difficult to make it dense by simply applying heat. Therefore, A 2 O 3 particles and dispersed particles (TiC)
It is necessary to devise measures to suppress the gas generation between the parts as much as possible, but industrial manufacturing techniques include the application of hot pressing, which applies mechanical force in addition to heat, and furthermore, the application of even and large force from all directions. The application of hot isostatic pressing is used to produce products with stable and high performance. Such A 2 O 3
TiC-based ceramics have excellent wear resistance and low affinity with iron, so they are widely used in precision finishing and high-speed cutting of cast iron. [Problem that the problem is trying to solve] Cutting speeds are becoming extremely fast in various industries, such as the automobile and aircraft industries, to improve productivity, and on the other hand, the development of machine tools that can withstand such high-speed cutting. There is also. Furthermore, as production sites become increasingly unmanned, it has become necessary to improve the reliability of cutting tools, especially ceramic tools. In order to improve high-speed cutting and reliability of cutting tools, it is necessary to further improve the performance of current A 2 O 3 --TiC ceramics, especially in terms of toughness. As a means of improving this toughness, TiC grains are
Strengthening of the interface between 2 O 3 grains or between TiC grains and A 2 O 3 grains is considered, and in the past TiO 2 (Special Publication No. 51-569)
Attempts have been made to add Ti (Japanese Patent Publication No. 50-20963 and Japanese Patent Publication No. 50-39445), but sufficient results have not been obtained. The present invention was made in order to solve the above problems, and an object of the present invention is to provide a method for manufacturing A 2 O 3 -TiC ceramic having greater toughness. [Structure of the Invention] The present invention comprises 20 to 50% by weight of titanium carbide represented by the general formula TiCx (where x is 0.65 to 0.93), MgO, CaO,
0.1 to 2% by weight of one or more sintering aids selected from SiO 2 , ZrO 2 , NiO and rare earth oxides
and 48 to 79.9% by weight of A 2 O 3 is molded and then sintered by hot pressing to have a theoretical density of 99% or more. do. In the present invention, TiCx (x is 0.65 to 0.93)
is required to be used in an amount of 20 to 50% by weight. The above TiCx is a non-stoichiometric titanium carbide containing excess Ti, and has an incomplete and unstable crystal structure compared to the stoichiometric titanium carbide represented by TiC. Therefore, sintering reactions such as solid phase reactions become easier, and the interfaces between the A 2 O 3 grains, the TiCx grains, and between the TiCx grains are strengthened compared to the interfaces between the A 2 O 3 grains, the TiC grains, and between the TiC grains. In addition, the bonding form between TiCx atoms is such that the covalent bond has metallic bonding characteristics, improving toughness. If x in TiCx is less than 0.65,
The performance of the sintered body, especially the wear resistance, decreased, and x was 0.93.
If it becomes larger, the non-stoichiometric effect in TiCx becomes weaker and sufficient toughness cannot be obtained. It is necessary to use 20 to 50% by weight of the above TiCx, but if TiCx is less than 20% by weight, TiCx
If the amount exceeds 50% by weight, the sinterability will deteriorate and sufficient toughness will not be obtained. Additionally, one or more sintering aids such as
It is necessary to use 0.1 to 2% by weight of MgO, CaO, etc. The sintering aid forms a compound with A 2 O 3 , which assists the sintering of the ceramic and improves the sinterability. Furthermore, grain growth of A 2 O 3 during sintering can be suppressed by adding a sintering aid. In the present invention, sintering aids include MgO,
CaO, SiO 2 , ZrO 2 , NiO, Y 2 O 3 , Dy 2 O 3 , Er 2
Ordinary A 2 O 3 such as rare earth oxides such as O 3 and Ho 2 O 3
Refers to those used for sintering A 2 O 3 -based ceramics such as A 2 O 3 -TiC series, A 2 O 3 -ZrO 2 series, etc. In the present invention, the sintering aid is used in an amount of 0.1% by weight to 2% by weight.
If the amount is less than 0.1% by weight, the above-mentioned effect will not be sufficiently exhibited, whereas if it is more than 2% by weight, a large amount of the above-mentioned compound will deteriorate the high-temperature properties of the ceramic material. The ceramic obtained by the method of the present invention as described above has excellent wear resistance and toughness.
The reason is that the adhesive strength between A 2 O 3 and TiCx is high.
And it is presumed that this is because the crystal grains of A 2 O 3 are fine. [Example] An example of the present invention will be described. α-A 2 O 3 with a purity of 99.9% and an average particle size of 0.4 μm, 1st
TiCx adjusted to the contents shown in the table and sintering aids were variously blended as shown in Table 2, wet mixed in a ball mill for 40 hours, and then dried to obtain a mixed powder. This mixed powder was sintered by the hot press method in a graphite mold under the conditions of a pressure of 200 kg/cm 2 , a time of 15 minutes, and a temperature shown in Table 2. The obtained sintered body is 13×13×5mm
Then, using a diamond grindstone,
Finished in the shape of SNGN432 (JIS). The chamfer was set to 0.1 mm x 25°. When a cutting test was conducted on this material under the following conditions, the second
The results shown in the table were obtained. Cutting test conditions I Work material: FC20 (HB190~220) Cutting conditions: Cutting speed (V) = 800 m/min, depth of cut (t) = 0.5 mm, feed rate (f) = 0.25 mm/rev, life judgment: Measure the wear width V B (mm) after cutting the outer circumference of 120 mmφ x I5 mm 100 times Work material: SKD11 (HRC62) Cutting conditions: Cutting speed (V) = 150 m/min, depth of cut (t) = 0.5 mm , Feed rate (f) = 0.17mm/rev Life judgment: Measure the wear width V B (mm) after cutting a 120φmm bar for 15 minutes.

【表】【table】

【表】【table】

【表】 第2表の結果により次の(1)〜(6)の場合には、セ
ラミツク工具の摩耗幅が大きくなり、場合によつ
ては欠損することが判つた。 (1) No.17のようにTiCxが50重量%よりも多く配
合された場合。 (2) No.18のようにTiCxが20重量%よりも少なく
配合された場合。 (3) No.19のようにTiCxにけるxの値が0.93を越
える場合。 (4) No.20のようにTiCxにおけるxの値が0.65よ
りも小さい場合。 (5) No.21のように焼結助剤が0.1重量%よりもす
くない場合。 (6) No.22のように焼結助剤が2重量%よりも多い
場合。 これらより高靱性セラミツクを得るには、本発
明のようにTiCxにおけるxの値、TiCxの配合
量、焼結助剤の配合量を所定にすることがどうし
ても必要であることがわかつた。 [発明の効果] 本発明のセラミツクの製造法を用いることによ
つて靱性の大きいA2O3−TiC系セラミツクを
製造することができ製造されたセラミツクは鋳
鉄、鋼、高ニツケル、アルミニウム、チタン等
や、非金属の切削工具として、又振動が激しくか
かるあるいは高熱のかかる機械部品等に有用であ
る。
[Table] From the results shown in Table 2, it was found that in the following cases (1) to (6), the wear width of the ceramic tool increases, and in some cases, the ceramic tool breaks. (1) When TiCx is blended in an amount greater than 50% by weight as in No.17. (2) When less than 20% by weight of TiCx is blended as in No.18. (3) When the value of x in TiCx exceeds 0.93 as in No.19. (4) When the value of x in TiCx is smaller than 0.65 as in No.20. (5) When the sintering aid is less than 0.1% by weight like No.21. (6) When the sintering aid is more than 2% by weight as in No.22. It has been found that in order to obtain highly tough ceramics from these, it is absolutely necessary to set the value of x in TiCx, the amount of TiCx, and the amount of sintering aid to be specified as in the present invention. [Effects of the Invention] By using the ceramic manufacturing method of the present invention, A 2 O 3 -TiC ceramics with high toughness can be manufactured, and the manufactured ceramics can be used for cast iron, steel, high nickel, aluminum, and titanium. It is useful as a non-metallic cutting tool, as well as for mechanical parts that are subject to intense vibration or high heat.

Claims (1)

【特許請求の範囲】 1 一般式TiCx(ただしxは0.65〜0.93)で表さ
れる炭化チタン20〜50重量%と、 MgO,CaO,SiO2,ZrO2,NiO及び希土類酸
化物から選ばれる1種又は2種以上の焼結助剤を
0.1〜2重量%と、 A2O3 48〜79.9重量%と、 からなる配合物を成形後、ホットプレス法により
焼結し対理論密度を99%以上とすることを特徴と
する高靱性セラミツクの製造法。
[Claims] 1. 20 to 50% by weight of titanium carbide represented by the general formula TiCx (where x is 0.65 to 0.93), and 1 selected from MgO, CaO, SiO 2 , ZrO 2 , NiO, and rare earth oxides. species or two or more sintering aids
0.1 to 2% by weight of A 2 O 3 and 48 to 79.9% by weight of A 2 O 3 A high toughness ceramic characterized in that it is molded and then sintered by a hot press method to have a theoretical density of 99% or more. manufacturing method.
JP59176927A 1984-08-22 1984-08-22 Manufacture of high tenacity ceramic Granted JPS6153154A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP59176927A JPS6153154A (en) 1984-08-22 1984-08-22 Manufacture of high tenacity ceramic
DE19853529265 DE3529265A1 (en) 1984-08-22 1985-08-16 Ceramic of very high toughness and process for making it
US07/742,737 US5106788A (en) 1984-08-22 1991-08-06 Process for producing highly tough ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59176927A JPS6153154A (en) 1984-08-22 1984-08-22 Manufacture of high tenacity ceramic

Publications (2)

Publication Number Publication Date
JPS6153154A JPS6153154A (en) 1986-03-17
JPH0377147B2 true JPH0377147B2 (en) 1991-12-09

Family

ID=16022182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59176927A Granted JPS6153154A (en) 1984-08-22 1984-08-22 Manufacture of high tenacity ceramic

Country Status (1)

Country Link
JP (1) JPS6153154A (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102865A (en) * 1982-12-03 1984-06-14 日本特殊陶業株式会社 Manufacture of ceramic cutting tool

Also Published As

Publication number Publication date
JPS6153154A (en) 1986-03-17

Similar Documents

Publication Publication Date Title
US4828584A (en) Dense, fine-grained tungsten carbide ceramics and a method for making the same
JPS6011288A (en) Surface coated sialon-base ceramic tool member
CA2427863C (en) Ceramic cutting insert of polycrystalline tungsten carbide
US5106788A (en) Process for producing highly tough ceramics
Ezugwu et al. Manufacture and properties of ceramic cutting tools: a review
JPH0411503B2 (en)
JPS6256106B2 (en)
JPH0377147B2 (en)
JP2596094B2 (en) Surface-coated ceramic cutting tool with excellent wear resistance
EP1116703B1 (en) Nanocomposite dense sintered alumina based ceramic cutting tool
US5023211A (en) Super-hard ceramics
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
Ezugwu Manufacturing methods of ceramic cutting tools
JP3560629B2 (en) Manufacturing method of high toughness hard sintered body for tools
JPS5874585A (en) Surface-coated silicon nitride-based sintered parts for high-speed cutting
JPH06320305A (en) Ceramic tools for grooving turning
JP2782524B2 (en) High density phase boron nitride based reaction sintered body and method for producing the same
JPS59217676A (en) Silicon nitride-based sintered material for cutting tools
JPS6236065A (en) Manufacture of heat-resistant antiabrasive ceramic material
JP2954996B2 (en) Sintered materials for tools
JP2735919B2 (en) Sintered body for tool and manufacturing method thereof
JP4636574B2 (en) Ceramic-based sintered material for tool and manufacturing method thereof
JPH02157176A (en) Cutting tool made of surface coated ceramics having excellent wear resistance
JPS62108765A (en) Manufacture of tough ceramic material
JPS6335588B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees