JPH0376177B2 - - Google Patents
Info
- Publication number
- JPH0376177B2 JPH0376177B2 JP60280272A JP28027285A JPH0376177B2 JP H0376177 B2 JPH0376177 B2 JP H0376177B2 JP 60280272 A JP60280272 A JP 60280272A JP 28027285 A JP28027285 A JP 28027285A JP H0376177 B2 JPH0376177 B2 JP H0376177B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- impact
- particles
- solid particles
- film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crushing And Pulverization Processes (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
- Glanulating (AREA)
Description
本発明は、核となる粒子(以下母粒子という)
の表面にあらかじめ微粒子(以下子粒子という)
を付着させておくか、又は付着させずにおき、該
子粒子を母粒子の表面に固着し、さらに該子粒子
全部あるいは一部を軟化・溶融させて、母粒子の
表面の成膜化を行なう方法に関する。
従来、一般に固体粒子の固結防止、変色変質防
止、分散性の向上、流動性の改善、触媒効果の向
上、消化・吸収の制御、磁気特性の向上、耐光性
の向上などを目的として各種の表面改質が、物理
吸着法、化学吸着法、真空蒸着法、静電付着法、
溶解物質の被覆法、特殊スプレードライング法な
どの方法で行なわれて来た。これらのうち、特に
固体粒子の表面を固体粒子で、即ち、粉体の表面
を粉体で表面改質する場合は、公知の各種ミキサ
ー型やボールミル型の攪拌機を使つて長時間(数
時間〜数十時間)攪拌し、攪拌に伴なつて生ずる
静電現象やメカノケミカル現象を応用して改質を
行なつて来たが、母粒子の囲りに子粒子が付着す
るだけで母粒子に対する子粒子の密着性が十分で
なく、そのため改質後の粉体を次工程で混合、混
練、分散、ペースト化等の加工をする場合、子粒
子が簡単に脱落したり、成分偏析を生じたりして
その操作条件を著しく制限するばかりでなく、加
工後の生産品の品質にバラツキが生じる最大の原
因となつていた。
さらにまた、上記の各種ミキサー、ボールミル
等を使用した粉体−粉体系の表面改質にあつて
は、一般に母粒子表面に対する子粒子の定着力が
弱いため、所望の表面改質を得るためには数時間
乃至数十時間を要し、そのため装置が大型とな
り、加工効率が決めて悪いなどの問題があつた。
本発明は前記事情に鑑みてなされたもので、従
来技術の問題点を解消し、第1図に示す如く、母
粒子の表面全域にわたつて子粒子を機械的手段に
より、必要に応じて補助的手段として熱的手段を
用いて強制的に埋設または固着させ、さらに子粒
子の全部あるいは一部を軟化・溶融させて成膜化
し、極めて短時間(数秒〜数分間)のうちに均一
な安定した粉体粒子の表面の成膜化を行ない、そ
れによつて機能性複合材料(ハイブリツドパウダ
ー)を得ることができる方法を提供するもので、
その要旨は、衝撃室内に、衝撃ピンを周設した回
転盤を配置すると共に、該衝撃ピンの最外周軌道
面に沿い、かつそれに対して一定の空間を置いて
衝突リングを配置し、前記衝撃ピンの回転によつ
て発生した気流を、前記衝撃室と、前記衝撃リン
グの一部から前記回転盤の中心部付近に開口する
循環回路とに誘導・循環させ、該気流と共に粒径
100〜0.1μmの固体粒子と、該固体粒子よりも小
さな粒径10〜0.01μmの他の微小固体粒子とから
構成される粉体粒子群の全量を、繰り返し前記衝
撃室と前記循環回路とを通過させ、前記衝撃ピン
と、前記衝突リングとの間で前記固体粒子を粉砕
しない範囲の機械的打撃により、該固体粒子の表
面に前記他の微小固体粒子を付着させながら、ま
たは、付着させた後、固着させ、さらに打撃を継
続することにより発生した熱エネルギーにより、
この微小固体粒子を軟化・溶解させて、隣合う微
小固体粒子の全部あるいは一部を互いに融着して
固体粒子の表面に膜を形成することを特徴とする
固体粒子表面の成膜方法にある。
本発明の方法で表面処理できる代表的母粒子粉
体としては、一般にその粒径が0.1μm〜100μm程
度である二酸化チタン、酸化鉄などの顔料、エポ
キシパウダー、ナイロンパウダー、ポリエチレン
パウダー、ポリスチレンパウダーなどの合成高分
子材料、及びデンプン、セルロース、シルクパウ
ダーなどの天然材料、また、代表的子粒子粉体と
しては、一般に粒径が0.01μm〜10μm程度である
ところのナイロンパウダー、ポリエチレンパウダ
ー、アクリルパウダー、スチレンパウダー、ポリ
プロピレンパウダー、ABSパウダー、ポリビニ
ールアルコール、ゼラチン、各種ワツクス類、硫
黄、低融点合金等の有機物、無機物、金属類など
である。しかし、これら材料に限定されることな
く、各種化学工業、電気、磁気工業材料、化粧
品、塗料、印刷インキ、及びトナー、色材、繊
維、医薬、食品、ゴム、プラスチツクス、窯業な
どの工業界で使用されている各種材料の各組合わ
せ成分に適用することができる。
以下、本発明の実施例について図面を参照しな
がら詳細に説明する。
第2図及び第3図は衝撃式打撃手段として粉体
衝撃装置を用いた例を示す。同図において、1は
本発明方法を実施するために使用する粉体衝撃装
置のケーシング、2はその後カバー、3はその前
カバー、4はケーシング1内にあつて高速回転す
る回転盤、5は回転盤4の外周に所定間隔を置い
て放射状に周設された複数の衝撃ピンであり、こ
れは一般にハンマー型またはプレート型のもので
ある。6は回転盤4をケーシング1内に回転可能
に軸支持する回転軸、8は衝撃ピン5の最外周軌
道面に沿い、かつそれに対して0.5〜20mmの間の
一定の間隔を隔てて周設された衝突リングであ
り、これは、各種形状の凹凸型または円周平板型
のものを用いる。ここで衝撃ピン5の最外周軌道
面と衝撃リング8との間隔を0.5〜20mmの間とし
たのは、本発明の方法を実施するために使用する
粉体衝撃装置の大きさ、回転盤の周速度にもよる
が、何れにしても回転盤が高速で回転する装置で
あるため、回転盤の回転に伴う振動および遠心力
による回転盤の反りにより、該衝撃ピンと衝撃リ
ングとが接触する危険性があり、これ以上間隔を
狭めることができないという製作上の問題と、衝
撃室18はこの間隔として規定されており、この
間隔が狭いと衝撃室の容積が小さくなり、1バツ
チ(Batch)当たりの処理量が極端に減少するか
らである。一方、間隔が20mm以上になると1バツ
チ当たりの処理量は飛躍的に増大するものの、粉
体粒子群の組合せ、母粒子・子粒子各々の粒径、
成膜化処理の度合いにもよるが、粉体粒子群の衝
突リングへの衝撃力が弱くなり、所望の改質処理
を得ることができなかつたり、あるいは所望に改
質処理を行なうのに長時間を必要とする等処理効
率が悪くなるからである。9は衝突リングの一部
を切欠いて設けた改質粉体排出用の開閉弁で、こ
れは場合によつては前カバーや後カバーの粉砕室
に面した一部を切欠いて設けてもよい。10は開
閉弁9の弁軸、11は弁軸10を介して開閉弁9
を操作するアクチユエーター、13は一端が衝突
リング8の内壁の一部に開口し、他端が回転盤4
の中心部付近の前カバー3に開口して閉回路を形
成する循環回路、14は原料ホツパー、15は原
料ホツパー14と循環回路13とを連結する原料
供給用のシユート、16は原料計量フイーダー、
17は原料貯槽である。18は回転盤4の外周と
衝突リング8との間に設けられた衝撃室、19は
循環回路13への循環口を夫々示す。20は改質
粉体排出シユート、21はサイクロン、22はロ
ータリーバルブ、23はバツグフイルター、24
はロータリーバルブ、25は排風機、31は本発
明の方法を実施するために使用する粉体衝撃装置
の運転を制御する時限制御装置、32はあらかじ
め母粒子の表面に子粒子を付着させる必要のある
場合に使用する各種ミキサー、電動乳鉢等公知の
プレプロセツサーを夫々示す。
上記装置を用いて、本発明の粉体表面の成膜化
の方法を実施する場合、次の要領で操作する。
まず、改質粉体排出用の開閉弁9を閉鎖した状
態としておき、必要に応じて不活性ガスを装置内
に導入しながら、駆動手段(図示せず)によつて
回転軸6を駆動し、改質処理すべき物質の性質に
より母粒子が粉砕しない5m/sec〜160m/sec
の範囲の周速度で回転盤4を回転させる。この
際、回転盤4外周の衝撃ピン5の回転に伴つて急
激な空気・不活性ガスの気流が生じ、この気流の
遠心力に基づくフアン効果によつて衝撃室18に
開口する循環回路13の循環口19から循環回路
13を巡つて回転盤4の中心部に戻る気流の循環
流れ、即ち完全な自己循環の流れが形成される。
しかもこの際発生する単位時間当りの循環風量
は、衝撃室と循環系の全容積に較べて著しく多量
であるため、短時間のうちに莫大な回数の気流循
環サイクルが形成されることになる。
次に、一定量の母粒子の表面に例えば静電現象
を利用して子粒子を付着させた被処理粉体を、計
量フイーダー16より原料ホツパー14に短時間
で投入する。プレプロセツサー32を使用する必
要のない場合は、母粒子、子粒子を夫々別々に計
量して原料ホツパー14に投入する。被処理粉体
は原料ホツパー14からシユート15を通り衝撃
室18に入る。衝撃室18へ送入された粉体粒子
群は、ここで高速回転する回転盤4の多数の衝撃
ピン5によつて瞬間的な打撃作用を受け、さらに
周辺の衝突リング8に衝突して母粒子表面の子粒
子が選択的に強度の圧縮作用を受ける。そして同
時に前記循環ガスの流れに同伴して被処理粉体は
循環回路13を循環して再び衝撃室18へ戻り、
再度打撃作用を受ける。
この様な衝撃作業が短時間のうちに連続して何
回も繰り返され、子粒子は母粒子の表面へ埋設ま
たは強固に固着され、さらに、衝撃、打撃作用に
よる(熱)エネルギーを受けることにより、子粒
子は短時間のうちに軟化・溶融され、1ケの母粒
子表面に固着された子粒子の全部あるいは一部が
融着しあう。そしてこの一連の衝撃作業、即ち母
粒子表面に対する子粒子の軟化・溶融による成膜
化作業は、母粒子の全表面が所望の融着状態にな
るまで継続させるが、衝撃室と循環系の全容積に
較べて多量のガス(空気及び不活性ガス)が系内
を循環するため、ガスと同伴して循環する被処理
粉体(母粒子と子粒子)は極めて短時間のうちに
莫大な衝撃回数を受けることになる。一回分の処
理量にもよるが、この表面の成膜化に要する時間
は被処理粉体の供給時間を含めても一般に数秒乃
至数分の極めて短時間内で終了する。
第1図にモデル図を示す。図において母粒子、
子粒子は球状に限定されない。同図1,2は母粒
子a,a′に子粒子b,b′を予め静電気により付着
させた状態を示すが、これらの母粒子、子粒子は
上記衝撃、打撃作用により3〜5に示すように母
粒子は破砕されず、その表面に付着した子粒子の
表面が軟化・溶融され、子粒子同子の融着が一部
あるいは全面に生じ、成膜化される。また子粒子
の多種組合せや、供給順序によつては6〜8に示
す様に、母粒子aに互いに異なる子粒子b,cを
単層や多層に成膜化することができる。
以上の成膜化作業が終了した後は、改質粉体排
出用の開閉弁9を鎖線で示す位置に移動させて開
き、成膜化処理された粉体を排出する。この成膜
化処理された粉体は、それ自身に作用している遠
心力(処理粉体に遠心力が作用しているところで
あれば排出弁9の位置は別のところでも良い。)
と、排風機25の吸引力によつて短時間(数秒
間)で衝撃室18及び循環回路13から排出さ
れ、シユート20を通つてサイクロン21及び循
環回路13から排出され、シユート20を通つて
サイクロン21及びバツグフイルター23などの
粉末捕集装置に誘導された後捕集され、ロータリ
ーバルブ22,24を介して系外に排出される。
成膜化処理された粉体を排出後、開閉弁9は直
ちに閉鎖され、再び計量フイダー16から、次回
以降の一定量の被処理粉体が衝撃室に供給されて
同様な工程を経て成膜化処理された粉体が次々と
生産される。なお、これら一連の回分成膜化処理
操作は、関連機器の動作時間に関連して、予め時
限設定された時限制御装置31によつて制御され
継続される。
また、成膜化処理操作中、熱的処理を補助的に
併用する必要のある場合(例えば母粒子と子粒子
の硬度の差をより大きくする必要のある場合な
ど)は、衝突リング8や循環回路13をジヤケツ
ト構造とし、各種の熱媒や冷媒を通して被処理粉
体の成膜化処理に都合のよい温度条件を設定する
ことができる。
また、本発明の方法を実施するために使用する
粉体衝撃装置においては、前記回転盤4に補助羽
根を装着し、循環流に更に強制力を与えることも
できる。すなわち、循環風量を増大させれば単位
時間内の循環回数が増加し、従つて粉体粒子の衝
突回数も増加するので、成膜化処理時間を短縮す
ることができる。
次に本発明の方法を実施するために使用する粉
体衝撃装置において行なう粉体表面の成膜化作業
においては、被処理粉体の成膜化中における酸化
劣化を防止したり、発火や爆発を防止する目的で
窒素ガスなどの各種の不活性ガスを使用する場合
を説明する。
第4図は本発明に係る粉体衝撃装置において、
この不活性ガスを使用する実施例を示す。なおこ
の実施例の説明に際し、前記実施例と同一部材に
ついては同一符号を付し、説明を省略する。第4
図において、26は原料ホツパー14の下部に設
けた原料供給弁、27は原料供給用のシユート1
5に開口する不活性ガスの供給弁、28は不活性
ガス供給源、29は不活性ガスの供給路を示す。
尚、この実施例では循環回路13をケーシング1
内に収納した態様を示す。
運転開始に際して、まず、原料供給弁26を閉
じ、開閉弁9を開いたあと、不活性ガスの供給弁
27を開き衝撃室18及び循環回路13内に不活
性ガスを充満させておく。この成膜化作業開始に
先立つて行なう衝撃室及び循環回路内への不活性
ガスの置換は、通常数分以内で終了する。
次に開閉弁9と供給弁27とを同時に閉じたあ
と、直ちに原料供給弁26を開いて、予め計量さ
れた被処理粉体をシユート15を通じて衝撃室1
8に供給する。なお供給後、供給弁26は直ちに
閉の状態に戻し、その信号を受けて計量フイーダ
ー16は原料ホツパー14に次回の被処理粉体を
計量し供給しておく。
以後は、不活性ガスと共に前記実施例の場合と
同様に被処理粉体の衝撃を行ない、被処理粉体は
循環回路13内を循環しながら不活性ガスとの十
分な接触を保ちつつ成膜化処理される。次に開閉
弁9と供給弁27とを開くと成膜化処理された粉
体は、衝撃室18及び循環回路13からシユート
20へ排出され、同時に衝撃室18及び循環回路
13は新らしい不活性ガスで置換される。排出さ
れた成膜化粉体は前記実施例と同様に処理され
る。
以後は開閉弁9及び供給弁27を閉じて原料供
給弁26を開とすれば、次回分の成膜化処理操作
が進行する。なお、不活性ガスの供給、停止を含
むこれら一連の回分成膜化操作は、前記実施例と
同様に時限制御装置31によつて制御され継続さ
れる。
上述の如く、本願発明に係る固体(粉体)粒子
の表面の成膜化の方法の特長は、衝撃式打撃手段
としての粉体衝撃装置の微小粉体粒子に対する強
力な衝撃力と、母粒子と子粒子のもつ硬度の差に
着目し、かつ一定の形状を有する母粒子の全表面
に対する衝撃力付与のための衝撃力の大きさそれ
自体及び衝撃回数を任意に調節できることろにあ
る。
また、第1図に示す如く本発明の方法によれ
ば、各種材料の母粒子に対する子粒子の成膜化は
単なる一成分子粒子による単粒子層の成膜化処理
にどどまらず、母粒子を膜状に被服するマイクロ
カプセル化、二成分以上の子粒子の成膜化、さら
には一成分以上の子粒子による複数層に成膜化処
理することができる。また子粒子の形状も球状、
不定形、繊維状などその形状はとわない。
また、母粒子の形状も球状、不定形などその形
状は問わない。さらに母粒子の表面は必ずしも平
滑な状態のものに限らず、各種形状、各種寸法の
凹凸またはまたは孔状、若しくは溝状の形態であ
つてもよく、これらの表面形態をもつた母粒子の
凹部に選択的に子粒子を埋め込んだ後、母粒子自
身の凸部が衝撃力や熱を受けて変形し、子粒子を
包み込むような母粒子による膜を母粒子表面全域
にわたつて形成させることもできる。
本発明の方法よれば、各母粒子に対する成膜化
子粒子の割合(比率)がそれ程厳密でなくともよ
い場合(即ち、全体としての成分比率が一定であ
ればよい場合)は、各種ミキサー、電動乳鉢など
のプレプロセツサーを使用せず、別々に計量され
た母粒子粉体と子粒子粉体を直接衝撃室に供給し
て母粒子表面に対する子粒子の成膜化処理を行な
うことができる。
以上のように、本願発明に係る固体粒子の表面
改質方法によれば、各種粉体材料の組合わせから
成る母粒子に対して子粒子を軟化・溶融させて成
膜化させる表面の改質処理を行ない、均一で安定
した特性を有する機能性複合・混成粉体材料(コ
ンポジツトまたはハイブリツドパウダー)を極め
て短時間で効率よく生産することができる。
実施例 1
回転盤に周設された8枚のプレート型衝撃ピン
の外径が235mm、衝撃ピンの最外周軌道面と衝撃
リングとの間の間隔が4mm、循環回路の直径が
54.9mmである第2図の粉体衝撃装置を使用した。
母粒子として平均粒径dp50=5μmの球状ナイロ
ン12の表面に平均粒径dp50=0.3μmのPMMA(ポ
リメチルメタクリレート)子粒子をあらかじめミ
キサーで付着させたオーダードミクスチヤーを
夫々下表に示す処理条件で軟化・溶融成膜化処理
した結果、何れもポリメチルメタクリレート(子
粒子)がナイロン12(母粒子、核粒子)の表面に
強固に固着し、さらに子粒子の一部あるいは全部
が軟化・溶融し成膜化され、均一安定したナイロ
ン12のポリメチルメタクリレートによる表面改質
粉体を得た。運転条件の違いで子粒子の軟化・溶
融状態の違いがはつきり示されており(第5図走
査型電子顕微鏡写真参照)、もし所望の改質状態
が母粒子をマイクロカプセル化した状態ならばT
−1の条件でこれを満たすことができる。
The present invention focuses on core particles (hereinafter referred to as base particles).
Microparticles (hereinafter referred to as child particles) are placed on the surface of
The child particles are adhered to the surface of the mother particle by being attached or not attached, and further, all or part of the child particles are softened and melted to form a film on the surface of the mother particle. Concerning how to do it. Conventionally, various treatments have been used to prevent caking of solid particles, prevent discoloration, improve dispersibility, improve fluidity, improve catalytic effect, control digestion and absorption, improve magnetic properties, and improve light resistance. Surface modification can be performed using physical adsorption method, chemical adsorption method, vacuum evaporation method, electrostatic deposition method,
Methods such as coating with dissolved substances and special spray drying methods have been used. Among these, in particular, when the surface of solid particles is modified with solid particles, that is, the surface of powder with powder, it is necessary to modify the surface of solid particles with powder for a long period of time (several hours to Modification has been carried out by applying electrostatic phenomena and mechanochemical phenomena that occur with stirring (for several tens of hours), but the modification has been carried out by applying the electrostatic and mechanochemical phenomena that occur with stirring. The adhesion of the child particles is not sufficient, so when the modified powder is mixed, kneaded, dispersed, made into a paste, etc. in the next process, the child particles may easily fall off or component segregation may occur. This not only significantly limits the operating conditions, but also becomes the biggest cause of variations in the quality of processed products. Furthermore, in surface modification of powder-powder systems using the above-mentioned various mixers, ball mills, etc., the fixing force of child particles to the mother particle surface is generally weak, so it is difficult to obtain the desired surface modification. It takes several hours to several tens of hours, which results in large-sized equipment and problems such as poor processing efficiency. The present invention has been made in view of the above-mentioned circumstances, and solves the problems of the prior art, and as shown in FIG. The child particles are forcibly buried or fixed using thermal means, and all or part of the child particles are softened and melted to form a film, resulting in a uniform and stable film in an extremely short period of time (several seconds to minutes). The present invention provides a method for forming a film on the surface of powder particles, thereby obtaining a functional composite material (hybrid powder).
The gist is that a rotary disk with an impact pin arranged around it is placed in the impact chamber, and a collision ring is placed along the outermost orbital surface of the impact pin with a certain space therebetween, and The airflow generated by the rotation of the pin is guided and circulated through the impact chamber and a circulation circuit that opens from a part of the impact ring near the center of the rotary disk, and the particle size is adjusted along with the airflow.
The entire amount of powder particles consisting of solid particles of 100 to 0.1 μm and other fine solid particles with a particle size of 10 to 0.01 μm smaller than the solid particles is repeatedly passed through the shock chamber and the circulation circuit. While or after adhering the other microscopic solid particles to the surface of the solid particles by passing through the impact pin and the impact ring within a range that does not crush the solid particles. , due to the thermal energy generated by sticking and continuing the blow,
A method for forming a film on the surface of a solid particle is characterized in that the fine solid particle is softened and dissolved, and all or part of adjacent fine solid particles are fused to each other to form a film on the surface of the solid particle. . Typical base particle powders that can be surface-treated by the method of the present invention include pigments such as titanium dioxide and iron oxide, which generally have a particle size of about 0.1 μm to 100 μm, epoxy powder, nylon powder, polyethylene powder, polystyrene powder, etc. Synthetic polymeric materials, and natural materials such as starch, cellulose, and silk powder. Typical child particle powders include nylon powder, polyethylene powder, and acrylic powder, which generally have a particle size of about 0.01 μm to 10 μm. , styrene powder, polypropylene powder, ABS powder, polyvinyl alcohol, gelatin, various waxes, sulfur, low melting point alloys, and other organic substances, inorganic substances, and metals. However, without being limited to these materials, industries such as various chemical industries, electrical, magnetic industrial materials, cosmetics, paints, printing inks, toners, coloring materials, textiles, pharmaceuticals, foods, rubber, plastics, ceramics, etc. It can be applied to each combination of components of various materials used in Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIGS. 2 and 3 show an example in which a powder impact device is used as the impact type striking means. In the figure, 1 is a casing of a powder impacting device used to carry out the method of the present invention, 2 is a rear cover, 3 is a front cover, 4 is a rotary disk that rotates at high speed inside the casing 1, and 5 is a A plurality of impact pins are provided radially around the outer periphery of the rotary disk 4 at predetermined intervals, and are generally hammer-shaped or plate-shaped. 6 is a rotating shaft that rotatably supports the rotary disk 4 in the casing 1; 8 is a rotary shaft provided along the outermost orbital surface of the impact pin 5 and at a constant interval of 0.5 to 20 mm therefrom; This is a collision ring of various shapes, such as a concave-convex type or a circumferential flat plate type. Here, the reason why the distance between the outermost orbital surface of the impact pin 5 and the impact ring 8 is set in the range of 0.5 to 20 mm is due to the size of the powder impact device used to carry out the method of the present invention, and the size of the rotary disk. Although it depends on the circumferential speed, since the rotary disk is a device that rotates at high speed, there is a risk that the impact pin and the impact ring will come into contact with each other due to the vibration caused by the rotation of the rotary disk and warping of the rotary disk due to centrifugal force. The impact chamber 18 is specified at this interval, and if this interval is narrow, the volume of the impact chamber becomes small, and the This is because the amount of processing will be extremely reduced. On the other hand, when the interval is 20 mm or more, the amount of processing per batch increases dramatically, but the combination of powder particles, the particle size of each mother particle and child particle,
Depending on the degree of film formation, the impact force of the powder particles on the collision ring may become weaker, making it impossible to obtain the desired modification treatment, or it may take a long time to perform the desired modification treatment. This is because processing efficiency deteriorates due to the need for time. Reference numeral 9 denotes an on-off valve for discharging the modified powder, which is provided by cutting out a part of the collision ring. Depending on the case, this may also be provided by cutting out a part of the front cover or rear cover facing the grinding chamber. . 10 is the valve shaft of the on-off valve 9; 11 is the on-off valve 9 via the valve shaft 10;
The actuator 13 that operates the collision ring 8 has one end opening in a part of the inner wall of the collision ring 8, and the other end opening in the rotary disk 4.
14 is a raw material hopper; 15 is a chute for supplying raw materials that connects the raw material hopper 14 and the circulation circuit 13; 16 is a raw material measuring feeder;
17 is a raw material storage tank. Reference numeral 18 indicates a shock chamber provided between the outer periphery of the rotary disk 4 and the collision ring 8, and reference numeral 19 indicates a circulation port to the circulation circuit 13. 20 is a modified powder discharge chute, 21 is a cyclone, 22 is a rotary valve, 23 is a bag filter, 24
25 is a rotary valve, 25 is an exhaust fan, 31 is a time control device for controlling the operation of the powder impact device used to carry out the method of the present invention, and 32 is a device for attaching child particles to the surface of the mother particles in advance. Various types of mixers, electric mortars, and other known preprocessors used in certain cases are shown. When carrying out the method of forming a film on a powder surface according to the present invention using the above-mentioned apparatus, the following procedure is performed. First, the on-off valve 9 for discharging the reformed powder is kept in a closed state, and the rotating shaft 6 is driven by a driving means (not shown) while introducing inert gas into the apparatus as necessary. , 5m/sec to 160m/sec where the base particles are not crushed depending on the nature of the material to be modified.
The rotary disk 4 is rotated at a circumferential speed within the range of . At this time, a rapid airflow of air/inert gas is generated as the impact pin 5 on the outer periphery of the rotary disk 4 rotates, and the circulation circuit 13 opens into the impact chamber 18 due to the fan effect based on the centrifugal force of this airflow. A circulating flow of air flows from the circulation port 19 through the circulation circuit 13 and back to the center of the rotary disk 4, that is, a completely self-circulating flow is formed.
Furthermore, since the amount of circulating air generated per unit time is significantly larger than the total volume of the shock chamber and circulation system, an enormous number of air circulation cycles are formed in a short period of time. Next, a powder to be treated, in which child particles are attached to the surface of a certain amount of mother particles using, for example, an electrostatic phenomenon, is fed into the raw material hopper 14 from the metering feeder 16 in a short time. If it is not necessary to use the preprocessor 32, the mother particles and child particles are weighed separately and placed into the raw material hopper 14. The powder to be processed passes from the raw material hopper 14 through the chute 15 and enters the shock chamber 18 . The powder particles sent into the impact chamber 18 are instantaneously impacted by a large number of impact pins 5 of the rotary disk 4 rotating at high speed, and further collide with the surrounding impact ring 8 to form a matrix. Child particles on the particle surface are selectively subjected to strong compression. At the same time, the powder to be treated is circulated through the circulation circuit 13 along with the flow of the circulating gas and returned to the shock chamber 18 again.
It is hit again. This type of impact operation is repeated many times in a row in a short period of time, and the child particles are buried or firmly attached to the surface of the mother particle, and then receive (thermal) energy from the impact and impact action. The child particles are softened and melted in a short time, and all or part of the child particles fixed to the surface of one mother particle are fused together. This series of impact operations, that is, film-forming operations by softening and melting the child particles on the surface of the mother particle, is continued until the entire surface of the mother particle is in the desired fused state, but the shock chamber and circulation system are Since a large amount of gas (air and inert gas) circulates in the system compared to its volume, the powder to be processed (mother particles and child particles) that circulates with the gas undergoes a tremendous impact in an extremely short period of time. You will receive the number of times. Although it depends on the amount of treatment per batch, the time required to form a film on the surface is generally completed within an extremely short time of several seconds to several minutes, even including the time for supplying the powder to be treated. Figure 1 shows a model diagram. In the figure, the mother particle,
Child particles are not limited to spherical shapes. Figures 1 and 2 show the state in which child particles b and b' are attached to mother particles a and a' by static electricity in advance, but these mother particles and child particles are attached to the mother particles a and a' by the above-mentioned impact and impact action as shown in 3 to 5. In this way, the mother particles are not crushed, but the surfaces of the child particles attached to their surfaces are softened and melted, and fusion of the child particles occurs partially or over the entire surface, forming a film. Further, depending on various combinations of child particles and the supply order, as shown in 6 to 8, different child particles b and c can be formed into a single layer or a multilayer film on a mother particle a. After the above film-forming work is completed, the on-off valve 9 for discharging the modified powder is moved to the position shown by the chain line and opened, and the powder subjected to the film-forming process is discharged. The centrifugal force acting on the film-forming powder is exerted on itself (the discharge valve 9 may be located at a different location as long as the centrifugal force is acting on the treated powder).
Then, it is discharged from the shock chamber 18 and the circulation circuit 13 in a short period of time (several seconds) by the suction force of the exhaust fan 25, and is discharged from the cyclone 21 and circulation circuit 13 through the chute 20. 21 and a bag filter 23, the powder is collected and discharged to the outside of the system via rotary valves 22 and 24. After discharging the powder that has been formed into a film, the on-off valve 9 is immediately closed, and a certain amount of the powder to be processed for the next time is supplied from the metering feeder 16 to the shock chamber again to form a film through the same process. Chemically treated powder is produced one after another. Note that these series of batch film formation processing operations are controlled and continued by a time limit control device 31 whose time limit is set in advance in relation to the operating time of related equipment. In addition, during the film forming process, if it is necessary to use supplementary thermal treatment (for example, when it is necessary to increase the difference in hardness between the mother particles and child particles), the collision ring 8 or the circulation The circuit 13 has a jacket structure, and it is possible to set temperature conditions convenient for the film-forming process of the powder to be processed through various heating mediums and coolants. In addition, in the powder impact device used to carry out the method of the present invention, auxiliary blades may be attached to the rotary disk 4 to further apply force to the circulating flow. That is, if the circulating air volume is increased, the number of times of circulation within a unit time increases, and therefore the number of collisions of powder particles also increases, so that the film forming process time can be shortened. Next, in the process of forming a film on the surface of the powder in the powder impacting apparatus used to carry out the method of the present invention, it is necessary to prevent oxidative deterioration during film formation of the powder to be treated, and prevent ignition and explosion. We will explain the use of various inert gases such as nitrogen gas for the purpose of preventing this. FIG. 4 shows a powder impact device according to the present invention,
An example using this inert gas will be shown. In the description of this embodiment, the same members as in the previous embodiment are designated by the same reference numerals, and the explanation thereof will be omitted. Fourth
In the figure, 26 is a raw material supply valve provided at the bottom of the raw material hopper 14, and 27 is a chute 1 for supplying raw materials.
5 is an inert gas supply valve opened, 28 is an inert gas supply source, and 29 is an inert gas supply path.
In this embodiment, the circulation circuit 13 is connected to the casing 1.
Shows how it is stored inside. When starting the operation, first, the raw material supply valve 26 is closed, the on-off valve 9 is opened, and then the inert gas supply valve 27 is opened to fill the shock chamber 18 and circulation circuit 13 with inert gas. The substitution of inert gas into the shock chamber and circulation circuit, which is performed prior to the start of this film-forming operation, is usually completed within a few minutes. Next, after closing the on-off valve 9 and the supply valve 27 at the same time, the raw material supply valve 26 is immediately opened, and the pre-measured powder to be processed is passed through the chute 15 into the shock chamber 1.
Supply to 8. After supplying, the supply valve 26 is immediately returned to the closed state, and upon receiving this signal, the weighing feeder 16 measures and supplies the next powder to be processed to the raw material hopper 14. Thereafter, the powder to be treated is bombarded with an inert gas in the same manner as in the above embodiment, and the powder to be treated is circulated in the circulation circuit 13 while maintaining sufficient contact with the inert gas to form a film. processed. Next, when the on-off valve 9 and the supply valve 27 are opened, the film-formed powder is discharged from the shock chamber 18 and the circulation circuit 13 to the chute 20, and at the same time, the shock chamber 18 and the circulation circuit 13 are replaced by gas. The discharged film-forming powder is treated in the same manner as in the previous example. Thereafter, if the on-off valve 9 and the supply valve 27 are closed and the raw material supply valve 26 is opened, the next film forming process operation will proceed. Note that this series of batch film forming operations including supply and stop of inert gas are controlled and continued by the time control device 31 as in the previous embodiment. As mentioned above, the feature of the method for forming a film on the surface of solid (powder) particles according to the present invention is that the powder impact device as an impact impact means has a strong impact force on the micro powder particles, and By focusing on the difference in hardness between the mother particles and the child particles, it is possible to arbitrarily adjust the magnitude of the impact force itself and the number of times of impact for applying impact force to the entire surface of the mother particle having a certain shape. Furthermore, according to the method of the present invention, as shown in FIG. It is possible to perform microencapsulation in which particles are coated in a film, formation of child particles of two or more components into a film, and further formation of multiple layers of child particles of one or more components. Also, the shape of the child particles is spherical,
It can be of any shape, such as amorphous or fibrous. In addition, the shape of the base particles is not limited, such as spherical or amorphous. Further, the surface of the base particle is not necessarily in a smooth state, but may be uneven in various shapes and sizes, or may have a hole-like or groove-like form, and concave portions of the base particle having these surface configurations may be used. After selectively embedding child particles in the mother particle, the protrusions of the mother particle itself deform due to impact force and heat, forming a film of the mother particle that wraps around the child particles over the entire surface of the mother particle. can. According to the method of the present invention, when the ratio (ratio) of the film-forming particles to each base particle does not need to be so strict (that is, when the overall component ratio only needs to be constant), various mixers, Without using a preprocessor such as an electric mortar, the separately measured mother particle powder and child particle powder can be directly supplied to the impact chamber to form a film of the child particles on the surface of the mother particle. As described above, according to the method for surface modification of solid particles according to the present invention, surface modification is performed by softening and melting child particles to form a film on a mother particle made of a combination of various powder materials. Through this process, functional composite/hybrid powder materials (composite or hybrid powder) with uniform and stable properties can be efficiently produced in an extremely short time. Example 1 The outer diameter of the eight plate-type impact pins installed around the rotary disk is 235 mm, the distance between the outermost orbital surface of the impact pins and the impact ring is 4 mm, and the diameter of the circulation circuit is 235 mm.
The powder impact device of Figure 2, which is 54.9 mm, was used.
Ordered mixtures are prepared by adhering PMMA (polymethyl methacrylate) child particles with an average particle diameter of dp50 = 0.3 μm to the surface of spherical nylon 12 with an average particle diameter of dp50 = 5 μm using a mixer in advance, as shown in the table below. As a result of the softening and melting film formation treatment under these conditions, polymethyl methacrylate (child particles) firmly adhered to the surface of nylon 12 (mother particle, core particle), and some or all of the child particles softened and melted. A uniform and stable surface-modified powder of polymethyl methacrylate of nylon 12 was obtained by melting and forming a film. It is clearly shown that the softening and melting state of the child particles differs depending on the operating conditions (see the scanning electron micrograph in Figure 5), and if the desired modified state is one in which the mother particles are microencapsulated, BaT
This can be satisfied with the condition -1.
【表】
内容積から算出した。
なお、前記実施例(T−1からT−3)で得ら
れた固定化改質後の粉体の走査型電子顕微鏡写真
を第5図に示す。[Table] Calculated from the internal volume.
Incidentally, scanning electron micrographs of the immobilized and modified powders obtained in the above Examples (T-1 to T-3) are shown in FIG.
第1図1〜8は本発明に係る方法で処理される
各種改質前粉体と改質成膜化後の粉体の態様を示
す概念的な説明図、第2図は、本発明の方法を実
施するために使用する粉体衝撃装置の一実施例
を、その前後装置とともに系統的に示した概念的
な説明図、第3図は第2図の側断面説明図、第4
図は同じく不活性ガスを用いる場合の他の実施例
の説明図であり、第5図は表面改質後の粉体の走
査型電子顕微鏡写真を示し、同図1は前記実施例
に用いた静電付着品10000倍のもの、2は前記実
施番号T−1で8500倍のもの、3は実施番号T−
2で10000倍のもの、4は実施番号T−3で10000
倍のものを示す。
a…母粒子、b,c…子粒子、1…粉体衝撃装
置。
1 to 8 are conceptual explanatory diagrams showing the aspects of various pre-modified powders and modified film-formed powders treated by the method according to the present invention, and FIG. A conceptual explanatory diagram systematically showing one embodiment of the powder impact device used to carry out the method together with its front and rear devices. FIG. 3 is a side cross-sectional explanatory diagram of FIG.
The figure is an explanatory diagram of another example in which an inert gas is also used. Figure 5 shows a scanning electron micrograph of the powder after surface modification, and Figure 1 shows the powder used in the above example. Electrostatic adhesion product 10,000 times larger, 2 is the above implementation number T-1 and 8,500 times larger, 3 is implementation number T-
2 is 10,000 times, 4 is implementation number T-3 and 10,000 times
It shows twice as much. a... Mother particle, b, c... Child particle, 1... Powder impact device.
Claims (1)
置すると共に、該衝撃ピンの最外周軌道面に沿
い、かつそれに対して一定の空間を置いて衝突リ
ングを配置し、前記衝撃ピンの回転によつて発生
した気流を、前記衝撃室と、前記衝撃リングの一
部から前記回転盤の中心部付近に開口する循環回
路とに誘導・循環させ、該気流と共に粒径100〜
0.1μmの固体粒子と、該固体粒子よりも小さな粒
径10〜0.01μmの他の微小固体粒子とから構成さ
れる粉体粒子群の全量を、繰り返し前記衝撃室と
前記循環回路とを通過させ、前記衝撃ピンと、前
記衝突リングとの間で前記固体粒子を粉砕しない
範囲の機械的打撃により、該固体粒子の表面に前
記他の微小固体粒子を付着させながら、または、
付着させた後、固着させ、さらに打撃を継続する
ことにより発生した熱エネルギーにより、この微
小固体粒子を軟化・溶解させて、隣合う微小固体
粒子の全部あるいは一部を互いに融着して固体粒
子の表面に膜を形成することを特徴とする固体粒
子表面の成膜方法。1 A rotary disk surrounding an impact pin is placed in the impact chamber, and a collision ring is placed along the outermost orbital surface of the impact pin with a certain space therebetween, and the rotation of the impact pin is The airflow generated by
The entire amount of the powder particle group consisting of solid particles of 0.1 μm and other fine solid particles with a particle size of 10 to 0.01 μm smaller than the solid particles is repeatedly passed through the shock chamber and the circulation circuit. , while adhering the other fine solid particles to the surface of the solid particles by mechanical impact in a range that does not crush the solid particles between the impact pin and the collision ring, or
After adhering and fixing, the heat energy generated by continuing the impact softens and melts the fine solid particles, and fuses all or part of the adjacent fine solid particles to each other to form solid particles. A method for forming a film on the surface of a solid particle, the method comprising forming a film on the surface of a solid particle.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60280272A JPS62140636A (en) | 1985-12-13 | 1985-12-13 | Method and device for reforming surface of solid grain |
EP86112228A EP0224659B1 (en) | 1985-10-07 | 1986-09-04 | Method of improving quality of surface of solid particles and apparatus thereof |
DE8686112228T DE3687219T2 (en) | 1985-10-07 | 1986-09-04 | METHOD FOR IMPROVING THE SURFACE QUALITY OF SOLID PARTICLES AND DEVICE THEREFOR. |
SU864028279A RU2047362C1 (en) | 1985-10-07 | 1986-10-03 | Method and device for treating solid particle surface |
KR1019860010468A KR900001366B1 (en) | 1985-12-13 | 1986-12-08 | Surface treating method of the solid particles and apparatus there for |
US07/183,297 US4915987A (en) | 1985-10-07 | 1988-04-11 | Method of improving quality of surface of solid particles and apparatus thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60280272A JPS62140636A (en) | 1985-12-13 | 1985-12-13 | Method and device for reforming surface of solid grain |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62140636A JPS62140636A (en) | 1987-06-24 |
JPH0376177B2 true JPH0376177B2 (en) | 1991-12-04 |
Family
ID=17622678
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60280272A Granted JPS62140636A (en) | 1985-10-07 | 1985-12-13 | Method and device for reforming surface of solid grain |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62140636A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62298443A (en) * | 1986-06-17 | 1987-12-25 | Nara Kikai Seisakusho:Kk | Method for reforming surface of solid particle |
JPH0775665B2 (en) * | 1986-10-27 | 1995-08-16 | 日本合成ゴム株式会社 | Method for producing microencapsulated fine particles |
JPH02157027A (en) * | 1988-12-07 | 1990-06-15 | Canon Inc | Production of dry toner |
JPH02194828A (en) * | 1989-01-20 | 1990-08-01 | Nippon Spindle Mfg Co Ltd | Surface improvement of powder and its apparatus |
JP2576462Y2 (en) * | 1992-12-01 | 1998-07-09 | 株式会社小松製作所 | Operating lever device coupling |
JP3301569B2 (en) * | 1993-12-07 | 2002-07-15 | 株式会社小松製作所 | Electric lever device |
JP2003025325A (en) * | 2001-07-23 | 2003-01-29 | Sumitomo Bakelite Co Ltd | Method for producing composite particle |
KR20070108798A (en) * | 2006-05-08 | 2007-11-13 | 최길배 | Polymer macroparticles surface-modified with nanoparticles and mesoparticles, nanoparticle-polymer composite materials using the same, and methods for their preparation |
JP2013026014A (en) * | 2011-07-21 | 2013-02-04 | Honda Motor Co Ltd | Catalyst for fuel cell and manufacturing method of catalyst for fuel cell |
JP6385321B2 (en) * | 2015-09-30 | 2018-09-05 | 積水化成品工業株式会社 | Surface-modified foamable particles, method for producing foamed particles, and method for producing foamed molded articles |
DE102020131233A1 (en) * | 2020-11-25 | 2022-05-25 | Netzsch Trockenmahltechnik Gmbh | PROCESS FOR MAKING A HOMOGENIZED MIXTURE OF CARBON, SULFUR AND PTFE |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5318650A (en) * | 1976-08-04 | 1978-02-21 | Mitsui Aluminium Kogyo Kk | Granules for molding building materials made by bonding gypsum dihydrate and high polymer and method of manufacture |
JPS60129144A (en) * | 1983-12-16 | 1985-07-10 | 株式会社奈良機械製作所 | Finely pulverizing machine |
JPS6283029A (en) * | 1985-10-07 | 1987-04-16 | Nara Kikai Seisakusho:Kk | Method and apparatus for surface modification of solid particle |
-
1985
- 1985-12-13 JP JP60280272A patent/JPS62140636A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5318650A (en) * | 1976-08-04 | 1978-02-21 | Mitsui Aluminium Kogyo Kk | Granules for molding building materials made by bonding gypsum dihydrate and high polymer and method of manufacture |
JPS60129144A (en) * | 1983-12-16 | 1985-07-10 | 株式会社奈良機械製作所 | Finely pulverizing machine |
JPS6283029A (en) * | 1985-10-07 | 1987-04-16 | Nara Kikai Seisakusho:Kk | Method and apparatus for surface modification of solid particle |
Also Published As
Publication number | Publication date |
---|---|
JPS62140636A (en) | 1987-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH032009B2 (en) | ||
US4915987A (en) | Method of improving quality of surface of solid particles and apparatus thereof | |
JPH0376177B2 (en) | ||
JP4898002B2 (en) | Apparatus for producing a pourable product and method for using this apparatus | |
JPH0510970B2 (en) | ||
EP0421980A2 (en) | Particulate material treating apparatus | |
US5516550A (en) | Method for surface treatment of solid particles and apparatus therefor | |
JPH0461687B2 (en) | ||
JPH0751288B2 (en) | Particle composite method | |
JPH0510971B2 (en) | ||
JP2941081B2 (en) | Method for suppressing increase in amorphous ratio of crystalline organic compound and recrystallization | |
JP4596134B2 (en) | Method for improving dispersibility of carbon nanotubes | |
JPH043250B2 (en) | ||
US20210205850A1 (en) | De-agglomerating sieve with de-ionization | |
KR900001366B1 (en) | Surface treating method of the solid particles and apparatus there for | |
JPH0816795B2 (en) | Toner manufacturing method and apparatus | |
RU2047362C1 (en) | Method and device for treating solid particle surface | |
JP2001315127A (en) | Method and apparatus for peeling coating film | |
JPH05168895A (en) | Method for modifying surface of solid grain | |
KR100665042B1 (en) | Polymer macroparticles surface-modified with nanoparticles and mesoparticles, nanoparticle-polymer composite materials using the same, and methods for their preparation | |
US4762765A (en) | Method of generating a spherical grain | |
US6635207B1 (en) | Process for recycling of powder coating waste | |
JP2702195B2 (en) | Method for producing dry coating carrier material for electrophotography | |
JPH0655053A (en) | Powder treating device | |
JPH05305225A (en) | Rotor of capsule powder producing apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |