JPH0375940B2 - - Google Patents
Info
- Publication number
- JPH0375940B2 JPH0375940B2 JP59211964A JP21196484A JPH0375940B2 JP H0375940 B2 JPH0375940 B2 JP H0375940B2 JP 59211964 A JP59211964 A JP 59211964A JP 21196484 A JP21196484 A JP 21196484A JP H0375940 B2 JPH0375940 B2 JP H0375940B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- recording
- reflectance
- optical
- thin film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/26—Apparatus or processes specially adapted for the manufacture of record carriers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0055—Erasing
- G11B7/00557—Erasing involving phase-change media
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24306—Metals or metalloids transition metal elements of groups 3-10
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24308—Metals or metalloids transition metal elements of group 11 (Cu, Ag, Au)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/2431—Metals or metalloids group 13 elements (B, Al, Ga, In)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24312—Metals or metalloids group 14 elements (e.g. Si, Ge, Sn)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24314—Metals or metalloids group 15 elements (e.g. Sb, Bi)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24302—Metals or metalloids
- G11B2007/24316—Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24318—Non-metallic elements
- G11B2007/2432—Oxygen
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/243—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
- G11B2007/24318—Non-metallic elements
- G11B2007/24326—Halides (F, CI, Br...)
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Optical Record Carriers And Manufacture Thereof (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、たとえばレーザビームによりヒー
トモード記録が行える光デイスクに関する
〔発明の技術的背景とその問題点〕
従来用いられているメモリ用光デイスクの記録
形態は第8図〜第10図に示す3種のタイプに分
類される。第8図に示すタイプは、基板1上に形
成した低融点材料の薄膜2にレーザビームをスポ
ツト照射してその局部を融解・蒸発させ微小な穴
3として記録するものである。また、第9図に示
すタイプは、基板4上に2層以上からなる多層薄
膜5を形成し、レーザビームをスポツト照射した
とき温度が上昇した下地層6から気泡を発生さ
せ、上の薄膜7にふくらみ8として記録するタイ
プである。また、第10図に示すタイプは、基板
9上に温度変化で組織の変化する薄膜10を形成
し、レーザビームのスポツト照射で薄膜10の局
部11をたとえば反射率のことなる組織に変化さ
せることで記録するタイプである。そして、これ
らタイプの記録部3,8,11はいずれも無記録
部に対して光の透過または反射の特性に違いを生
じることから、レーザビームを用い記録部3,
8,11の有無を検出することで記録情報は読み
出される。しかしながら、これらタイプの記録形
態のうち、第8図および第9図に示すタイプは記
録部3,8に不可逆的な変化を与えるもので、記
録は可能であるが消去はできない。また、第10
図に示すタイプは記録膜の材料として熱的に光学
特性が可逆的変化する材料を用いれば記録と消去
が可能になる。その1例として光磁気記録膜があ
る。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an optical disk that can perform heat mode recording using, for example, a laser beam [Technical background of the invention and its problems] Recording formats are classified into three types shown in FIGS. 8 to 10. The type shown in FIG. 8 is one in which a laser beam is spot-irradiated onto a thin film 2 of a low-melting point material formed on a substrate 1 to melt and evaporate a local area, thereby recording a minute hole 3. In the type shown in FIG. 9, a multilayer thin film 5 consisting of two or more layers is formed on a substrate 4, and when a laser beam is spot-irradiated, bubbles are generated from the base layer 6 whose temperature has increased, and the upper thin film 5 is heated. This type is recorded as a bulge 8. In addition, the type shown in FIG. 10 forms a thin film 10 whose structure changes with temperature changes on a substrate 9, and changes local areas 11 of the thin film 10 into structures with different reflectances by spot irradiation with a laser beam. This is the type that is recorded. Since all of these types of recording parts 3, 8, and 11 have different characteristics of light transmission or reflection compared to non-recorded parts, a laser beam is used to
Recorded information is read by detecting the presence or absence of 8 and 11. However, among these types of recording forms, the types shown in FIGS. 8 and 9 irreversibly change the recording sections 3 and 8, and although recording is possible, erasing is not possible. Also, the 10th
The type shown in the figure enables recording and erasing by using a material whose optical properties change reversibly thermally as the recording film material. One example is a magneto-optical recording film.
一方、Se,Ge,Te,InSb等の半導体は安定な
結晶相と非晶質相の2つの状態を取り得ることは
良く知られており、それぞれの状態での複素屈折
率N=n−ikが異なることは、J.STOUKEがJ.
of.Non−Crystalline Solid vol41 1970に詳
しく報告している。この半導体の結晶相と非晶質
相との2状態をレーザビームによる熱処理で可逆
的に変化させて光メモリとする着想はS.R.
OVSHINSKY等によつてMetsllurgical
Transactions vol2641 1971誌に提示されてい
る。しかしながら、これらの半導体材料の薄膜は
化学的に不安定で耐久性に乏しく実用化されるに
は至らなかつた。すなわち、Se,Ge,Te,InSb
等の半導体は溶融状態まで加熱して高速に冷却す
ると非晶質となり、より低い温度に加熱してゆつ
くり冷却すると結晶質となる特性を持つており、
この非晶質相と結晶質相はそれぞれn′−ik′とn
−ikの複素屈折率で特徴付けられる異なつた光学
的性質をもつて安定に存在するが、これらの半導
体は薄膜にすると化学的安定性に乏しく、大気中
では次第に腐食して劣化するのでメモリ用光デイ
スクの記録膜として実用的ではなかつた。 On the other hand, it is well known that semiconductors such as Se, Ge, Te, and InSb can take two states: a stable crystalline phase and an amorphous phase, and the complex refractive index N = n-ik in each state. The difference is that J.STOUKE is J.
of.Non-Crystalline Solid vol 4 1 1970. The idea of creating an optical memory by reversibly changing the two states of this semiconductor, crystalline and amorphous, through laser beam heat treatment is SR.
Metsllurgical by OVSHINSKY et al.
Transactions vol 2 641 1971. However, thin films of these semiconductor materials are chemically unstable and have poor durability, so they have not been put into practical use. That is, Se, Ge, Te, InSb
Semiconductors such as these have the property of becoming amorphous when heated to a molten state and then cooled quickly, and become crystalline when heated to a lower temperature and slowly cooled.
The amorphous and crystalline phases are n′−ik′ and n
Although they exist stably with different optical properties characterized by the complex refractive index of -ik, these semiconductors have poor chemical stability when made into thin films and gradually corrode and deteriorate in the atmosphere, so they are not suitable for memory applications. It was not practical as a recording film for optical discs.
その後、これら半導体を化合物にしたり耐久性
のある保護膜の間に挟んだりして耐久性を持たせ
る試みが発表されているが、それら従来の技術に
は次のような欠点があつた。 Subsequently, attempts have been made to make these semiconductors more durable by making them into compounds or sandwiching them between durable protective films, but these conventional techniques had the following drawbacks.
公知例 1
Teの低酸化物膜の加熱による相変化を用いた
非消去形光デイスク{特公昭54−3725号、
National Technical Report vol281016 1982}
……この例では、Teの低酸化物TeOx(0<x<
2)の薄膜を相変化する記録膜と記述している
が、光学特性の可逆的変化については言及してい
ない。Known example 1 Non-erasable optical disk using phase change due to heating of a low oxide film of Te {Japanese Patent Publication No. 54-3725,
National Technical Report vol 28 1016 1982}
...In this example, TeOx, a low oxide of Te (0<x<
Although the thin film 2) is described as a recording film that undergoes a phase change, there is no mention of reversible changes in optical properties.
公知例 2
TeOx(x=1.1)薄膜の可逆的相変化による消
去可能な光デイスク{日本学術振興会 薄膜第
131委員会 第116回研究会資料1983}……この例
では、Teに微量不純物としてGeとSnを添加した
ものとTeO2の同時蒸発により分解生成物として
TeO1,1薄膜を蒸着している。このように成膜工
程中に高温で不安定なTeO2の分解過程を含む膜
では品質の制御が困難であるという欠点がある。
さらに、TeO1.1は、上記National Technical
Report vol281016 1982に記載されているよう
に、記録前の膜の反射率が15%程度と低いこと、
および記録による反射率変化も約12%と小さいた
め、この膜による光デイスクは信号検出用光ピツ
クアツプのフオーカシングやトラツキングの動作
が難しい上に読み出し信号も小さいという欠点も
ある。Known example 2 Erasable optical disk by reversible phase change of TeOx (x=1.1) thin film {Japan Society for the Promotion of Science Thin Film No.
131 Committee 116th Research Meeting Materials 1983}...In this example, Te with Ge and Sn added as trace impurities and TeO 2 are simultaneously evaporated as decomposition products.
A thin film of TeO 1,1 is deposited. As described above, a film that includes a decomposition process of TeO 2 , which is unstable at high temperatures during the film formation process, has the disadvantage that it is difficult to control the quality.
In addition, TeO 1.1 is specified by the above National Technical
As stated in Report vol 28 1016 1982, the reflectance of the film before recording is as low as about 15%;
Also, the change in reflectance due to recording is as small as about 12%, so optical disks made of this film have the disadvantage that it is difficult to perform focusing and tracking operations for the optical pickup for signal detection, and the readout signal is also small.
公知例 3
記録・消去可能な光デイスク(A.E.Bell等
Appl.Phys.Lett vol38920 1981……この例では、
熱的に光学定数の可逆的変化の大きいTe単体の
薄膜を、その耐食性を保護するためと、加熱時に
おけるTeの蒸発を防ぐため、SiO2膜で挟んだ3
層構造としている。この構造では、各膜厚を正し
く制御しなければならず、成膜工程が複雑になる
欠点があつた。Publicly known example 3 Recordable/erasable optical disks (AEBell, etc.)
Appl.Phys.Lett vol 38 920 1981……In this example,
A thin film of pure Te, which has a large thermally reversible change in optical constant, was sandwiched between SiO 2 films to protect its corrosion resistance and prevent Te from evaporating during heating.
It has a layered structure. This structure had the disadvantage that the thickness of each film had to be controlled correctly, making the film formation process complicated.
[発明の目的]
この発明は上記事情に鑑みてなされたもので、
その目的とするところは、耐久性に優れ長期に亘
つて記録と消去が可能であり、しかも、光の多重
反射の干渉効果を得ることができ、反射率変化量
が大きなものとなり、記録情報を読出す際に、理
想に近い大きさの再生信号を得ることができ、さ
らに、製作が簡単で品質が揃えられるとともに安
価で安全無害である光デイスクを提供することに
ある。[Object of the invention] This invention was made in view of the above circumstances,
The purpose of this is to be able to record and erase data over a long period of time with excellent durability, and to obtain the interference effect of multiple reflections of light, resulting in a large amount of change in reflectance. To provide an optical disc which can obtain a reproduced signal of a nearly ideal size during reading, is simple to manufacture, has uniform quality, is inexpensive, safe and harmless.
この発明は、上記目的を達成するために、基体
上に薄膜を設け、この薄膜に記録すべき情報を有
する光ビームを照射することにより上記薄膜に局
所的に光学特性の変化を生じさせ、これにより情
報の記録および消去を行なうことが可能な光デイ
スクにおいて、上記薄膜が、光ビームによる熱的
エネルギーの賦与により光学定数が変化しかつ
Ge,TeおよびInSbのいずれかの主成分とする半
導体を化学的に安定な誘電体中に40%〜60%の体
積比で混合してなる混合膜から成り、かつこの混
合膜と基体との間に形成された金属を主成分とす
る半透明膜と上記混合膜に対し上記半透明膜とは
反対側に形成された金属反射膜とにより三層構造
をなし、上記半透明膜側からの光照射により、多
重反射の干渉作用を生じる厚さを上記三層構造が
有するようにしたものである。
In order to achieve the above object, the present invention provides a thin film on a substrate, irradiates the thin film with a light beam having information to be recorded, thereby locally causing a change in the optical characteristics of the thin film, and In an optical disk that can record and erase information using
It consists of a mixed film in which a semiconductor whose main component is Ge, Te or InSb is mixed in a chemically stable dielectric material at a volume ratio of 40% to 60%, and the mixed film and the substrate are A three-layer structure is formed with a semi-transparent film mainly composed of metal formed between them and a metal reflective film formed on the opposite side of the mixed film to the above-mentioned semi-transparent film. The three-layer structure has a thickness that causes multiple reflection interference upon light irradiation.
以下、この発明の一実施例について第1図から
第5図を参照しつつ説明する。
An embodiment of the present invention will be described below with reference to FIGS. 1 to 5.
第1図はこの発明の光デイスク20の構成を示
すものである。この光デイスク20はガラスで形
成される基板(基体)21、この基板21上に形
成される記録膜(薄膜)22、この記録膜22上
に形成される高い反射率有する金属膜27、およ
びその金属膜27上に形成され、傷が着かないよ
うにその表面を保護する保護膜23によつて多層
に構成されている。上記記録膜22は、第2図に
示すように、レーザビームLによる熱的エネルギ
ーの賦与方法により光学定数が可逆的に変化す
る、すなわち、安定な2つの異なる光学状態を呈
する微粒子の半導体(複素屈折率n−ik)24…
…を、化学的に特に高温で安定な誘電体(屈折率
n0)25中に、体積比で40%以上分散混合してな
る単一の混合膜で構成されており、また実効的な
光学厚さがレーザビームLの波長の1/2以下とさ
れている。なお、26はレーザビームLを記録膜
22上に集光するための対物レンズである。 FIG. 1 shows the structure of an optical disc 20 of the present invention. This optical disk 20 includes a substrate (substrate) 21 made of glass, a recording film (thin film) 22 formed on this substrate 21, a metal film 27 having a high reflectance formed on this recording film 22, and the like. The protective film 23 is formed on the metal film 27 and protects the surface from scratches, making it a multilayer structure. As shown in FIG. 2, the recording film 22 is made of fine particle semiconductor (complex) whose optical constants change reversibly depending on the method of imparting thermal energy by the laser beam L, that is, exhibits two different stable optical states. Refractive index n-ik)24...
...is chemically a dielectric material (refractive index) that is particularly stable at high temperatures.
n 0 ) 25, it is composed of a single mixed film that is dispersed and mixed by a volume ratio of 40% or more, and the effective optical thickness is less than 1/2 of the wavelength of the laser beam L. There is. Note that 26 is an objective lens for condensing the laser beam L onto the recording film 22.
このように構成した記録膜22は、その中に占
める半導体24……の体積含有率qを減少させる
と膜の耐久性は向上するが、両境界面での反射振
幅は低下し、結果として合成反射率Rが低下す
る。一例としてInSbとPbOで作つた十分に厚い
(1μm以上)記録膜22を高温・多湿の耐久性加
速試験の雰囲気に暴露したときの反射率の経時変
化を示したのが第3図である。この結果、記録膜
22としては、体積含有率qを0.4から0.8の間で
作ることが、優れた耐久性と十分な反射率の両特
性を併せ持つ膜を得るための条件であることが分
る。このような混合膜としたために得られるもう
1つの効果は、体積含有率qを減少させると記録
膜22の吸収係数が、用いた半導体24……の値
より減少するために、膜の両境界で反射した光の
干渉効果が増大することである。この効果は、
InSbとPbOとで作つた混合膜の波長0.83μmにお
ける反射率が現わす膜厚依存性を示した第4図か
ら明らかに見られる。この結果、吸収係数の大き
な半導体も誘電体との混合膜とすると、光の干渉
膜として十分に作用することを示すものである。 In the recording film 22 configured in this way, the durability of the film is improved by reducing the volume content q of the semiconductor 24 in it, but the reflection amplitude at both interfaces decreases, and as a result, the synthesis Reflectance R decreases. As an example, FIG. 3 shows the change in reflectance over time when a sufficiently thick (1 μm or more) recording film 22 made of InSb and PbO is exposed to a high temperature and high humidity accelerated durability test atmosphere. As a result, it can be seen that forming the recording film 22 with a volume content q between 0.4 and 0.8 is a condition for obtaining a film that has both excellent durability and sufficient reflectance. . Another effect obtained by using such a mixed film is that when the volume content q is reduced, the absorption coefficient of the recording film 22 decreases from the value of the semiconductor 24 used, so that both boundaries of the film are reduced. This increases the interference effect of light reflected by the This effect is
This can be clearly seen from Figure 4, which shows the film thickness dependence of the reflectance of a mixed film made of InSb and PbO at a wavelength of 0.83 μm. This result shows that when a semiconductor with a large absorption coefficient is used as a mixed film with a dielectric material, it can function satisfactorily as a light interference film.
したがつて、上記したように構成すると、記録
膜22中の半導体24……がレーザビームの照射
で相変化したとき、体積含有率qが100%でなく
ても干渉効果により十分に大きい合成反射率Rの
変化量を得ることができる。一例として、基板2
1に先ず体積含有率qを60%としたInSbとPbO
との混合膜からなる記録膜22を成膜し、ついで
金属膜27としてCu膜を0.05μm以上に膜づけし
た2層膜構造の光デイスク20を製作する。そし
て、この光デイスク20に対してレーザビームで
記録を行つた時、記録膜22の相変化による波長
0.83μmの読出しレーザビームに対する反射率変
化量の膜厚依存性を第5図に実線で示す。同図で
反射率変化量の+は明るくなる場合、−は暗くな
る場合を示す。図から記録膜22の厚さを
0.055μmに製作した光デイスク20では、記録し
たとき未記録時より50%以上(24%→77%)もの
反射率変化量の曝られることが分る。なお、第5
図に点線で示した曲線は体積含有率qが1、すな
わちInSbだけで記録膜を形成した場合である。
両曲線の比較から、この発明の2層記録膜を有す
る光デイスク20は、InSbをPbOとの含有量を
60%と低くしたにも係わらず、積層膜としたこと
で干渉効果により100%のInSbの膜と同程度の大
きな反射率変化量すなわち記録情報の再生信号レ
ベルが得られることが分る。 Therefore, with the configuration described above, when the semiconductor 24 in the recording film 22 undergoes a phase change due to laser beam irradiation, a sufficiently large combined reflection due to the interference effect occurs even if the volume content q is not 100%. The amount of change in the rate R can be obtained. As an example, the substrate 2
1. First, InSb and PbO with a volume content q of 60%
An optical disk 20 having a two-layer film structure is manufactured by forming a recording film 22 made of a mixed film of 1 and 2 and then depositing a Cu film as a metal film 27 to a thickness of 0.05 μm or more. When recording is performed on this optical disk 20 with a laser beam, the wavelength due to the phase change of the recording film 22 is
The film thickness dependence of the amount of change in reflectance for a readout laser beam of 0.83 μm is shown by a solid line in FIG. In the figure, + in the reflectance change amount indicates that the light becomes brighter, and - indicates that the reflectance becomes darker. The thickness of the recording film 22 can be determined from the figure.
It can be seen that the optical disc 20 manufactured to have a thickness of 0.055 μm is exposed to a change in reflectance of 50% or more (24%→77%) when recorded compared to when not recorded. In addition, the fifth
The curve shown by the dotted line in the figure shows the case where the volume content q is 1, that is, the recording film is formed only with InSb.
From the comparison of both curves, it is found that the optical disc 20 having the two-layer recording film of the present invention has a lower content of InSb and PbO.
It can be seen that even though it is as low as 60%, by using a laminated film, due to the interference effect, a large change in reflectance, that is, a reproduction signal level of recorded information, comparable to that of a 100% InSb film can be obtained.
このような構成によれば記録膜22は、化学的
に不安定で耐久性に乏しい半導体24……を微粒
子として、その相変化を可能にする化学的に安定
な誘電体25中に分散させるように同時スパツタ
で成膜する構造としたので、記録膜22中に分散
した半導体24……の微粒子は結晶相と非晶質相
とのいずれの状態にも容易に遷移することができ
るとともに、記録膜22として重要な耐久性も著
しく向上することができる。また、上記金属膜2
7もスパツタで成膜する構造としたので、簡単に
生成することができる。 According to such a configuration, the recording film 22 is made by dispersing the chemically unstable and poor durability semiconductor 24 as fine particles in the chemically stable dielectric material 25 that enables the phase change. Since the structure is such that the film is formed simultaneously by sputtering, the fine particles of the semiconductor 24 dispersed in the recording film 22 can easily transition to either the crystalline phase or the amorphous phase, and the recording The durability, which is important for the membrane 22, can also be significantly improved. In addition, the metal film 2
7 also has a structure in which the film is formed by sputtering, so it can be easily produced.
また、上記の記録膜22を局所的にレーザビー
ムLにより短時間τだけ照射すると、その中に含
まれる微粒子の半導体24……はレーザビームL
のパワーに比例した温度θまで加熱される。照射
が終わると高温になつた半導体24……は周囲の
誘電体25への熱の流出によりC=θ/2τの冷却
速度で温度が低下する。したがつて、照射部内の
半導体24……は、レーザビームLを強くして短
時間加熱したときは高速に、レーザビームLを弱
くして長い時間で加熱したときはゆつくりと冷却
される。すなわち、レーザビームLの賦与方法を
選択することにより、記録膜22の照射部に含ま
れる半導体24……を複素屈折率の異なる非晶質
相あるいは結晶相のいずれかの所望する状態にす
ることができる。その結果、記録膜22の照射部
をそこの複素屈折率で決まる反射率Rに変換する
こと、換言すれば記録したり消去したりすること
ができる。 Furthermore, when the recording film 22 is locally irradiated with the laser beam L for a short period of time τ, the fine particles of semiconductor 24 contained therein are irradiated with the laser beam L.
is heated to a temperature θ proportional to the power of When the irradiation ends, the temperature of the semiconductor 24, which has reached a high temperature, decreases at a cooling rate of C=θ/2τ due to the flow of heat to the surrounding dielectric 25. Therefore, the semiconductors 24 in the irradiation section are cooled quickly when heated for a short time with a strong laser beam L, and slowly when heated for a long time with a weak laser beam L. That is, by selecting the method of applying the laser beam L, the semiconductor 24 included in the irradiated portion of the recording film 22 can be brought into a desired state of either an amorphous phase or a crystalline phase with different complex refractive indexes. I can do it. As a result, it is possible to convert the irradiated portion of the recording film 22 into a reflectance R determined by its complex refractive index, in other words, it is possible to record or erase.
また、記録膜22の実効的な光学厚さをレーザ
ビームLの波長の1/2(第1の反射率極小が生じ
るより薄い厚さ)とすることにより、記録膜22
は、記録時も消去時も、すなわち消去後も記録後
も共に比較的高い反射率を保有することになり、
情報信号はもとよりフオーカシング信号やトラツ
キング信号も大きくとることができる。 Furthermore, by setting the effective optical thickness of the recording film 22 to 1/2 of the wavelength of the laser beam L (a thickness thinner than that at which the first reflectance minimum occurs), the recording film 22
has a relatively high reflectance both during recording and erasing, that is, both after erasing and after recording.
Not only information signals but also focusing signals and tracking signals can be made large.
すなわち、たとえば、微粒子の半導体24……
にInSb、誘電体25にPbOを用い、全記録膜2
2中に占めるInSbの体積充填率が60%になるよ
うにInSbとPbOを同時にスパツタして基板21
に成膜した記録膜22の記録部(非晶質相)と消
去部(結晶相)のレーザダイオード光の波長
0.83μmに対する反射率Rおよび反射率変化量ΔR
の膜厚依存性は、第5図に示すようになり、同じ
組成の記録膜22であつても、その膜厚により記
録時と消去時の反射率Rおよび反射率変化量ΔR
は記録膜22の両表面における反射光の干渉効果
で大きく変化する。したがつて、この例では、記
録膜22の膜厚を0.05μmにすることにより、未
記録部すなわち消去部および記録部のいずれの反
射率も大きく、しかも反射率変化量も大くきで
き、これにより、大きな読取り信号が得られると
ともに、信号検出用光ピツクアツプのフオーカシ
ングやトラツキングのサーボ動作を容易にするこ
とができる。なお、この例では、記録膜22は、
半導体24……としてInSb、誘電体25として
PbOを用いたが、この他に、半導体24……とし
てのGeには、B2O3,Sb2O3,PbO,SiO2,
Ta2O5等の酸化物およびBiF3,LiF,PbF2,
MgF2,BaF2,CaF2等の弗化物、半導体24…
…としてのTeおよびInSbには、B2O3,Sb2O3,
PbO等の酸化物およびBiF3,LiF,PbF2等の弗
化物中の1種または2種以上を主成分として含む
誘電体25が選出される。また、全記録膜22中
に占めるInSbの体積充填率を60%としたが、半
導体24……の微粒子の体積充填率は、小さいと
記録膜22としての必要な反射率変化が小さく、
大きいとメモリ用光デイスクとして必要な耐久性
が低下することから、40〜80が適していることが
実験により確認されている。 That is, for example, the fine particle semiconductor 24...
InSb is used for the dielectric material 25, PbO is used for the dielectric material 25, and the entire recording film 2
InSb and PbO are sputtered simultaneously so that the volumetric filling rate of InSb in the substrate 21 is 60%.
The wavelength of the laser diode light in the recording part (amorphous phase) and erasing part (crystalline phase) of the recording film 22 deposited on
Reflectance R and reflectance change ΔR for 0.83μm
The film thickness dependence of is as shown in FIG. 5, and even if the recording film 22 has the same composition, the reflectance R and the amount of change in reflectance ΔR during recording and erasing will vary depending on the film thickness.
varies greatly due to the interference effect of reflected light on both surfaces of the recording film 22. Therefore, in this example, by setting the thickness of the recording film 22 to 0.05 μm, the reflectance of both the unrecorded area, that is, the erased area, and the recorded area can be increased, and the amount of change in reflectance can also be increased. This makes it possible to obtain a large read signal and facilitate the focusing and tracking servo operations of the signal detection optical pickup. Note that in this example, the recording film 22 is
InSb as the semiconductor 24, and as the dielectric 25
Although PbO was used, Ge as the semiconductor 24 also includes B 2 O 3 , Sb 2 O 3 , PbO, SiO 2 ,
Oxides such as Ta 2 O 5 and BiF 3 , LiF, PbF 2 ,
Fluorides such as MgF 2 , BaF 2 , CaF 2 , semiconductors 24...
...Te and InSb include B 2 O 3 , Sb 2 O 3 ,
A dielectric material 25 containing as a main component one or more of oxides such as PbO and fluorides such as BiF 3 , LiF, and PbF 2 is selected. In addition, although the volume filling rate of InSb in the entire recording film 22 was set to 60%, if the volume filling rate of the fine particles of the semiconductor 24 is small, the change in reflectance necessary for the recording film 22 will be small.
It has been confirmed through experiments that a value of 40 to 80 is suitable since a larger value reduces the durability required for an optical disk for memory.
さらに、成膜過程で分解の生じない安定な材料
の組合わせを選定したため、同時に成膜を行なつ
て混合膜とすることが容易であり、しかも、各層
がスパツタで形成されるため製作が簡単であり、
品質の揃つたメモリ用光デイスクを安価に提供す
ることができる。 Furthermore, because we have selected a combination of stable materials that do not decompose during the film formation process, it is easy to form a mixed film by simultaneously forming films, and since each layer is formed by sputtering, manufacturing is simple. and
Optical memory disks of uniform quality can be provided at low cost.
さらに、上記構造の記録膜22では、デイスク
として取り扱い中に破損しても、また破棄して
も、半導体粉がむき出しで飛散することがなく安
全無害である。 Further, in the recording film 22 having the above structure, even if it is damaged during handling as a disk or even if it is discarded, the semiconductor powder is exposed and will not scatter, making it safe and harmless.
なお、前記実施例では、記録膜と金属膜との2
層膜構造で説明したが、これに限らず、たとえば
第6図に示すように、基板21と記録膜22の間
に半透明な金属膜28をスパツタで形成した3層
膜構造とするようにしても良い。たとえば、金属
膜27が0.05μm以上のCu膜とし、半透明の金属
膜28を0.01μmのCu膜とし、体積充填率qを60
%としたInSbとPbOの混合膜からなる記録膜2
2の厚さを変えたメモリ用の光デイスクで得られ
た特性例を第7図に示す。すなわち、この構造に
すると、光の多重反射の干渉効果で、記録膜22
の厚さを0.07μmにしたとき、記録による反射率
変化量は80%以上にも達することが示されてい
る。このような反射率変化量は、レーザビームで
記録情報を読出すとき、あたかも高反射の点の有
無に対応するような理想に近い大きさの再生信号
を与えるものである。 In addition, in the above embodiment, the recording film and the metal film are
Although the layered film structure has been described, the present invention is not limited to this, and for example, as shown in FIG. It's okay. For example, the metal film 27 is a Cu film of 0.05 μm or more, the translucent metal film 28 is a Cu film of 0.01 μm, and the volume filling factor q is 60.
Recording film 2 consisting of a mixed film of InSb and PbO as %
FIG. 7 shows examples of characteristics obtained with optical disks for memory with different thicknesses. That is, with this structure, due to the interference effect of multiple reflections of light, the recording film 22
It has been shown that when the thickness of the film is set to 0.07 μm, the amount of change in reflectance due to recording reaches more than 80%. Such a change in reflectance provides a reproduced signal of a near-ideal magnitude, as if it corresponds to the presence or absence of a highly reflective point, when reading recorded information with a laser beam.
以上詳述したようにこの発明によれば、基体上
に薄膜を設け、この薄膜に記録すべき情報を有す
る光ビームを照射することにより上記薄膜に局所
的に光学特性の変化を生じさせ、これにより情報
の記録および消去を行なうことが可能な光デイス
クにおいて、上記薄膜が、光ビームによる熱的エ
ネルギーの賦与により光学定数が変化しかつGe,
TeおよびInSbのいずれかを主成分とする半導体
を化学的に安定な誘電体中に40%〜80%の体積比
で混合してなる混合膜とから成り、かつこの混合
膜と基体との間に形成された金属を主成分とする
半透明膜と上記混合膜に対し上記半透明膜とは反
対側に形成された金属反射膜とにより三層構造を
なし、上記半透明膜側からの光照射により、多重
反射の干渉作用を生じる厚さを上記三層構造が有
するようにしたので、耐久性に優れ長期に亘つて
記録と消去が可能であり、しかも、光の多重反射
の干渉効果を得ることができ、反射率変化量が大
きなものとなり、記録情報を読出す際に、理想に
近い大きさの再生信号を得ることができ、さら
に、製作が簡単で品質が揃えられるとともに安価
で安全無害である光デイスクを提供できる。
As detailed above, according to the present invention, a thin film is provided on a substrate, and by irradiating this thin film with a light beam having information to be recorded, a local change in optical characteristics is caused in the thin film. In an optical disk on which information can be recorded and erased using Ge,
It consists of a mixed film formed by mixing a semiconductor whose main component is either Te or InSb in a chemically stable dielectric material at a volume ratio of 40% to 80%, and between this mixed film and the substrate. A three-layer structure is formed by a semitransparent film mainly made of metal formed on the surface of the film, and a metal reflective film formed on the opposite side of the mixed film to the semitransparent film. The three-layer structure has a thickness that causes the interference effect of multiple reflections when irradiated, so it has excellent durability and can be recorded and erased over a long period of time. The change in reflectance is large, and when reading recorded information, it is possible to obtain a reproduced signal with a size close to the ideal.Furthermore, it is easy to manufacture, has uniform quality, is inexpensive, and is safe. We can provide optical discs that are harmless.
第1図〜第5図はこの発明の一実施例を示すも
ので、第1図は断面図、第2図は拡大断面図、第
3図は記録膜の反射率と暴露時間との関係を示す
図、第4図は記録膜の反射量と膜厚との関係を示
す図、第5図は記録膜の反射率変化量と膜厚との
関係を示す図であり、第6図は他の実施例の構成
を説明するための断面図、第7図は第6図におけ
る記録膜の反射率変化量と膜厚との関係を示す図
であり、第8図〜第10図はそれぞれ異なる従来
例を示す断面図である。
21……基体(基板)、22……薄膜(記録
膜)、24……半導体、25……誘電体、27…
…金属膜、28……半透明金属膜。
Figures 1 to 5 show an embodiment of the present invention. Figure 1 is a cross-sectional view, Figure 2 is an enlarged cross-sectional view, and Figure 3 shows the relationship between the reflectance of the recording film and the exposure time. FIG. 4 is a diagram showing the relationship between the amount of reflection and film thickness of the recording film, FIG. 5 is a diagram showing the relationship between the amount of change in reflectance of the recording film and film thickness, and FIG. FIG. 7 is a cross-sectional view for explaining the configuration of the embodiment, and FIG. 7 is a diagram showing the relationship between the amount of change in reflectance of the recording film and the film thickness in FIG. FIG. 2 is a sectional view showing a conventional example. 21...Base (substrate), 22...Thin film (recording film), 24...Semiconductor, 25...Dielectric, 27...
...Metal film, 28...Semi-transparent metal film.
Claims (1)
情報を有する光ビームを照射することにより上記
薄膜に局所的に光学特性の変化を生じさせ、これ
により情報の記録および消去を行なうことが可能
な光デイスクにおいて、上記薄膜は、光ビームに
よる熱的エネルギーの賦与により光学定数が変化
しかつGe,TeおよびInSbのいずれかを主成分と
する半導体を化学的に安定な誘電体中に40%〜80
%の体積比で混合してなる混合膜から成り、かつ
この混合膜と基体との間に形成された金属を主成
分とする半透明膜と上記混合膜に対し上記半透明
膜とは反対側に形成された金属反射膜とにより三
層構造をなし、上記半透明膜側からの光照射によ
り、多重反射の干渉作用を生じる厚さを上記三層
構造が有することを特徴とする光デイスク。1 A thin film is provided on a substrate, and by irradiating this thin film with a light beam containing information to be recorded, a local change in optical properties is caused in the thin film, thereby making it possible to record and erase information. In an optical disk, the thin film has optical constants that change due to the application of thermal energy by a light beam, and a semiconductor containing Ge, Te, or InSb as a main component in a chemically stable dielectric material with 40% ~80
% of the mixed film, and a semitransparent film mainly composed of metal formed between the mixed film and the substrate, and a side opposite to the semitransparent film with respect to the mixed film. 1. An optical disk having a three-layer structure including a metal reflective film formed on the semi-transparent film, and the three-layer structure having a thickness that causes interference effects of multiple reflections when light is irradiated from the semi-transparent film side.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59211964A JPS6190341A (en) | 1984-10-09 | 1984-10-09 | Optical disk |
KR1019850005874A KR890004230B1 (en) | 1984-08-24 | 1985-08-14 | Light disk memory |
EP85305854A EP0173523B1 (en) | 1984-08-24 | 1985-08-16 | Optical memory |
DE8585305854T DE3580429D1 (en) | 1984-08-24 | 1985-08-16 | OPTICAL MEMORY. |
US07/339,656 US4969141A (en) | 1984-08-24 | 1989-04-18 | Optical memory for storing and retrieving information by light exposure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59211964A JPS6190341A (en) | 1984-10-09 | 1984-10-09 | Optical disk |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6190341A JPS6190341A (en) | 1986-05-08 |
JPH0375940B2 true JPH0375940B2 (en) | 1991-12-03 |
Family
ID=16614618
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59211964A Granted JPS6190341A (en) | 1984-08-24 | 1984-10-09 | Optical disk |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6190341A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3151058B2 (en) * | 1992-08-05 | 2001-04-03 | パイオニア株式会社 | optical disk |
CN1054227C (en) * | 1994-10-31 | 2000-07-05 | 北京航空航天大学 | High-order nonlinear optical-hysteresis bistable material and optical disc and card using said material |
KR20020074685A (en) * | 2001-03-21 | 2002-10-04 | 한국전자통신연구원 | Optical storage medium based on the luminescence from the crystalline semiconductor and optical storage/reading device and method by using photon absorption |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6028057B2 (en) * | 1976-04-30 | 1985-07-02 | 株式会社日立製作所 | optical recording device |
US4425570A (en) * | 1981-06-12 | 1984-01-10 | Rca Corporation | Reversible recording medium and information record |
JPS5854338A (en) * | 1981-09-28 | 1983-03-31 | Matsushita Electric Ind Co Ltd | Optical recording medium |
JPS5928478A (en) * | 1982-08-09 | 1984-02-15 | Mitsubishi Chem Ind Ltd | Yeast transformation method |
JPS59104996A (en) * | 1982-12-08 | 1984-06-18 | Canon Inc | Optical recording medium |
-
1984
- 1984-10-09 JP JP59211964A patent/JPS6190341A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS6190341A (en) | 1986-05-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3506491B2 (en) | Optical information media | |
JPS62152786A (en) | phase change recording medium | |
JPH09198709A (en) | Multilayer optical disc and recording / reproducing apparatus | |
US6660451B1 (en) | Optical information recording medium | |
JP3087433B2 (en) | Optical information recording medium and structure design method thereof | |
JPH0380635B2 (en) | ||
US5273861A (en) | Optical information recording medium, method of making an optical information recording medium and method of recording/reproducing optical information | |
JP2834131B2 (en) | Thin film for information recording | |
JPH04102243A (en) | Optical information recording medium | |
JP2003016687A (en) | Information recording medium, method of manufacturing the same, and recording / reproducing method using the same | |
JPH0375940B2 (en) | ||
JP4227278B2 (en) | Information recording medium, manufacturing method thereof, and recording / reproducing method thereof | |
JP3087454B2 (en) | Optical information recording medium and structure design method thereof | |
JPH0526668B2 (en) | ||
JPH0558910B2 (en) | ||
JPS59113535A (en) | Optical recording medium | |
JP2001028148A (en) | Optical information recording medium, manufacturing method thereof, recording / reproducing method, and recording / reproducing apparatus | |
JPS63155437A (en) | Information recording medium | |
JPH11167743A (en) | Optical recording medium | |
JP4086689B2 (en) | Optical information recording medium and manufacturing method thereof | |
JP2978652B2 (en) | Optical information recording medium | |
JPH04316887A (en) | Optical recording medium and sputtering target, and manufacture thereof | |
JPS62226438A (en) | Optical recording medium | |
JPH04228126A (en) | Optical information recording medium | |
JPS63167440A (en) | How to record or record and delete information |