JPH0375886B2 - - Google Patents
Info
- Publication number
- JPH0375886B2 JPH0375886B2 JP59004428A JP442884A JPH0375886B2 JP H0375886 B2 JPH0375886 B2 JP H0375886B2 JP 59004428 A JP59004428 A JP 59004428A JP 442884 A JP442884 A JP 442884A JP H0375886 B2 JPH0375886 B2 JP H0375886B2
- Authority
- JP
- Japan
- Prior art keywords
- depth
- tool
- cut
- command
- movement path
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000003754 machining Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 150000001875 compounds Chemical class 0.000 description 5
- 239000002131 composite material Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/182—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by the machine tool function, e.g. thread cutting, cam making, tool direction control
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/37—Measurements
- G05B2219/37252—Life of tool, service life, decay, wear estimation
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/49—Nc machine tool, till multiple
- G05B2219/49392—Multipasses, segmentation of cut, paraxial cutting
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Numerical Control (AREA)
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は、加工プログラムの指令によりたと
えば旋盤のような工作機械の制御を行う数値制御
装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a numerical control device that controls a machine tool, such as a lathe, based on instructions from a machining program.
従来、この種の機能を有する装置として第1図
に示すものがあつた。
Conventionally, there has been a device having this type of function as shown in FIG.
この図において、1はパラメータで、例えば各
切削行程の終点における工具のひき量である。2
はこの加工行程における工具切込み量指令、3は
加工形状指令、4は前記各パラメータ1、工具切
込み量指令2、加工形状指令3を入力とする工具
移動経路決定手段、5は前記工具移動経路決定手
段4の出力である制御指令である。 In this figure, 1 is a parameter, for example, the amount of tool pulling at the end of each cutting stroke. 2
3 is a tool cutting amount command in this machining process; 3 is a machining shape command; 4 is a tool movement path determining means that receives the parameters 1, the tool depth of cut command 2, and the machining shape command 3; and 5 is the tool movement path determination device. This is the control command that is the output of the means 4.
また、第2図は第1図の従来装置に使用される
工具の移動経路であり、dは工具の切込み量、S
は工具の始終点、11は加工形状、12は仕上げ
しろ寸法で、kは仕上げしろを示し、13は工具
の移動経路である。 In addition, Fig. 2 shows the moving path of the tool used in the conventional device shown in Fig. 1, where d is the depth of cut of the tool, and S
are the starting and ending points of the tool, 11 is the machining shape, 12 is the finishing margin dimension, k is the finishing margin, and 13 is the moving path of the tool.
次に動作について説明する。数値制御装置が複
合固定サイクル命令を受けると、各パラメータ1
および命令中に含まれる荒削りの工具切込み量指
令2、さらに命令中で指定された加工形状指令3
を用いて工具移動経路決定手段4により工具の移
動経路13を算出し、制御指令5として制御回路
へ出力する。この動作を繰り返すと第2図に示さ
れる工具の移動経路13が得られる。 Next, the operation will be explained. When the numerical controller receives a complex fixed cycle command, each parameter 1
and the rough cutting tool depth command 2 included in the command, and the machining shape command 3 specified in the command.
A tool movement path 13 is calculated by the tool movement path determination means 4 using , and is outputted as a control command 5 to the control circuit. By repeating this operation, the tool movement path 13 shown in FIG. 2 is obtained.
従来の複合固定サイクル機能を有する数値制御
装置は以上のように構成されているので、上記機
能実行中は同一切込み量の連続した切削が行われ
るため、工具刃先の摩耗が一点に集中してしまう
欠点があつた。 Conventional numerical control devices with multiple canned cycle functions are configured as described above, and while the above functions are being executed, continuous cutting with the same depth of cut is performed, resulting in wear on the tool edge concentrating on one point. There were flaws.
この発明は、上記のような従来のものの欠点を
除去するためになされたもので、複合固定サイク
ル実行中での一行程の切削ごとに工具の切込み量
を加減する切込み量決定手段を設けることによ
り、工具刃先の摩耗を分散しながら複合固定サイ
クルを行う数値制御装置を提供するものである。
This invention was made in order to eliminate the drawbacks of the conventional ones as described above, and by providing a depth of cut determining means for adjusting the depth of cut of the tool for each cutting stroke during execution of a compound canned cycle. , provides a numerical control device that performs a compound canned cycle while distributing wear on the tool cutting edge.
第3図はこの発明の一実施例を示す構成ブロツ
ク図であり、符号1〜5は第1図に示すものと同
じものである。6は切込み量変化幅指令で、工具
切込み量の変化幅を指令する。7は前記切込み量
変化幅指令6と工具切込み量指令2を入力とする
工具切込み量決定手段である。
FIG. 3 is a block diagram showing an embodiment of the present invention, and numerals 1 to 5 are the same as those shown in FIG. 6 is a depth of cut change width command which instructs the width of change in the depth of cut of the tool. Reference numeral 7 denotes a tool depth of cut determining means which receives the depth of cut change width command 6 and the tool depth of cut command 2 as input.
また第4図は第3図の実施例に使用される工具
の移動経路図で、11〜13は第2図と同じもの
を示し、Dは基本となる工具切込み量、Δdは切
込み量変化幅の単位を示し、第4図では、Δd、
2Δd、3Δd、……と変化させている場合を示して
いる。 Also, Fig. 4 is a movement path diagram of the tool used in the embodiment shown in Fig. 3, where 11 to 13 indicate the same things as in Fig. 2, D is the basic tool depth of cut, and Δd is the width of change in the depth of cut. In Fig. 4, Δd,
The case where the values are changed as 2Δd, 3Δd, etc. is shown.
次に動作について説明する。従来と同様に数値
制御装置が複合固定サイクル命令を受けると、命
令中に含まれる荒削りのための工具切込み量指令
2と切込み量変化幅n×Δd(nは切込回数で整
数)より一行程における工具切込み量D−n×
Δdを決定する。次いで各パラメータ1、命令中
で指令された加工形状指令3と工具切込み量D−
n×Δdを工具移動経路決定手段4により工具の
移動経路を算出し、制御指令5として制御回路へ
出力する。この動作を繰り返すと第4図に示す工
具の移動経路13が得られる。第4図では初期の
工具切込み量Dから最小許容切込み量(この例で
はD−4Δd)に達するまで切込み量変化幅Δdの
減算を行い、それ以降は初期の切込み量指令値D
に達するまで切込み量変化幅Δdの加算を行つて
いる。 Next, the operation will be explained. As in the past, when the numerical control device receives a compound fixed cycle command, it calculates one stroke from the tool cutting amount command 2 for rough cutting included in the command and the cutting amount change width n × Δd (n is the number of cuts and is an integer). Tool depth of cut D−n×
Determine Δd. Next, each parameter 1, machining shape command 3 and tool depth of cut D- specified in the command
The tool movement path is calculated by the tool movement path determining means 4 using n×Δd, and is outputted as a control command 5 to the control circuit. By repeating this operation, a tool movement path 13 shown in FIG. 4 is obtained. In Fig. 4, the depth of cut change width Δd is subtracted from the initial tool depth of cut D until the minimum allowable depth of cut (D-4Δd in this example) is reached, and after that, the initial depth of cut command value D
The depth of cut change width Δd is added until reaching .
また、上記実施例では複合固定サイクル機能の
場合について説明したが、数値制御装置の自動運
転を行うすべての加工プログラム中であつてもよ
く、上記実施例と同様の効果を奏する。 Further, in the above embodiment, the case of the composite fixed cycle function has been described, but it may be performed during all machining programs that perform automatic operation of the numerical control device, and the same effects as in the above embodiment can be obtained.
以上説明したように、この発明は所要行程の切
削ごとに切込み量変化幅指令にしたがつて工具切
込み量を決定する切込み量決定手段を設けたの
で、工具刃先の摩耗が一点に集中しないようにで
き、刃先の寿命を延ばすことができる利点があ
る。
As explained above, this invention is provided with a depth of cut determination means that determines the depth of cut of the tool according to the depth of cut change width command for each cutting stroke of the required stroke, so that wear on the tool cutting edge is not concentrated at one point. This has the advantage of extending the life of the cutting edge.
第1図は従来の複合固定サイクルを示す制御ブ
ロツク図、第2図は従来の工具経路図、第3図は
この発明の一実施例を示す構成ブロツク図、第4
図はこの発明の実施例による工具経路図である。
図中、1はパラメータ、2は工具切込み量指
令、3は加工形状指令、4は工具移動経路決定手
段、5は制御指令、6は切込み量変化幅指令、7
は切込み量決定手段、11は加工形状、12は仕
上げしろ寸法、13は工具の移動経路である。
Fig. 1 is a control block diagram showing a conventional compound canned cycle, Fig. 2 is a conventional tool path diagram, Fig. 3 is a configuration block diagram showing an embodiment of the present invention, and Fig. 4 is a control block diagram showing a conventional compound fixed cycle.
The figure is a tool path diagram according to an embodiment of the invention. In the figure, 1 is a parameter, 2 is a tool depth of cut command, 3 is a machining shape command, 4 is a tool movement path determining means, 5 is a control command, 6 is a depth of cut change width command, 7
11 is a processing shape, 12 is a finishing margin dimension, and 13 is a moving path of a tool.
Claims (1)
御を行う数値制御装置において、工具切込み量指
令に切込み回数と切込み量変化幅指令とから求め
た切込み量変化幅を加算または減算して新たな工
具切込み量を決定する切込み量決定手段を具備
し、工具のワークに対する接触部位を切削行程ご
とに移動させるようにしたことを特徴とする数値
制御装置。1 In a numerical control device that controls a machine tool according to commands from a machining program, a new tool depth of cut is determined by adding or subtracting the depth of cut change range obtained from the number of cuts and the depth of cut change width command to the tool depth of cut command. A numerical control device comprising: a depth of cut determining means for determining the depth of cut; and a part of the tool in contact with the workpiece is moved for each cutting stroke.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP442884A JPS60150944A (en) | 1984-01-13 | 1984-01-13 | Numerical control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP442884A JPS60150944A (en) | 1984-01-13 | 1984-01-13 | Numerical control device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60150944A JPS60150944A (en) | 1985-08-08 |
JPH0375886B2 true JPH0375886B2 (en) | 1991-12-03 |
Family
ID=11583976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP442884A Granted JPS60150944A (en) | 1984-01-13 | 1984-01-13 | Numerical control device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60150944A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH024715U (en) * | 1988-06-17 | 1990-01-12 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132870A (en) * | 1974-09-10 | 1976-03-19 | Teijin Ltd | TAFUTETSUDOKAAPETSUTO NO SEIZOHO |
-
1984
- 1984-01-13 JP JP442884A patent/JPS60150944A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5132870A (en) * | 1974-09-10 | 1976-03-19 | Teijin Ltd | TAFUTETSUDOKAAPETSUTO NO SEIZOHO |
Also Published As
Publication number | Publication date |
---|---|
JPS60150944A (en) | 1985-08-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR840006144A (en) | Numerical Control Machining Method | |
KR20010087302A (en) | Method and system for adaptive control of turning operations | |
EP0107147B1 (en) | Numerically controlled process and machine operating according to the process | |
JPH0375886B2 (en) | ||
US5386093A (en) | Method for electroerosive cutting and wire EDM machine | |
JPS632642A (en) | Numerical controller | |
JPS5645343A (en) | Multifunction complex machine tool | |
JPH0146234B2 (en) | ||
JPS6195851A (en) | Data processing device | |
JPH0429508B2 (en) | ||
JPS63104791A (en) | Laser beam machining method | |
JPS58177250A (en) | Rough and middle finishing processing method for circular arc and taper in simultaneous uniaxial nc machine tool | |
JPH0480802A (en) | Nc device for laser beam machining | |
JPS60228009A (en) | Processing control method of drill cycle of numerical control machine tool | |
JP3300384B2 (en) | Grinding machine control method | |
JP2612364B2 (en) | Numerical control unit | |
JPH0577138A (en) | Tool path determining device for nc surface finishing machine | |
JPS6090624A (en) | Gear profile cutting method | |
RU1808660C (en) | Method for manufacturing parts on flat-grinding machine | |
JPS5779507A (en) | Numeric controller | |
SU965725A1 (en) | Method of correcting control program for number program control machine | |
JPS5548556A (en) | Numerically controlled machine tool with hole position approval punction | |
SU854681A1 (en) | Method of automatic monitoring of tool integrity in the machine tools and numerically controlled machine tool linesections | |
JPH0683431A (en) | Speed control method for nc controller | |
KR100206135B1 (en) | Control of workpiece cutting |