JPH0375536A - Double pipe fitting stress detection method - Google Patents
Double pipe fitting stress detection methodInfo
- Publication number
- JPH0375536A JPH0375536A JP21148089A JP21148089A JPH0375536A JP H0375536 A JPH0375536 A JP H0375536A JP 21148089 A JP21148089 A JP 21148089A JP 21148089 A JP21148089 A JP 21148089A JP H0375536 A JPH0375536 A JP H0375536A
- Authority
- JP
- Japan
- Prior art keywords
- tube
- double
- fitting stress
- waveform
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、腐食性物質を含有する石油、天然ガスを輸送
するラインパイプあるいは化学工業における配管等に使
用される耐食性二重管等の嵌合二重管(以下単に二重管
という)の外管と内管のはめあい応力が所要値あるか否
かの良否材を、擬似アコースティックエミッション(A
Eという)法により選別するための検知方法に関するも
のである。Detailed Description of the Invention [Industrial Field of Application] The present invention is applied to the fitting of corrosion-resistant double pipes used for line pipes for transporting oil and natural gas containing corrosive substances, or for piping in the chemical industry. A pseudo-acoustic emission (A
The present invention relates to a detection method for sorting by the method (referred to as E).
[従来の技術]
二重管は耐食性および低コスト化を目的に開発された管
材であり、−数的には内管は耐食性の優れた材料、外管
には炭素鋼が使用される。二重管は特公昭5B−464
51に示されているように、別々の製管ラインで造られ
た成分および材質の異なる内管および外管を用い、加熱
膨張させた外管内に内管を挿入し、内管内に圧力を加え
て内管を拡管させた後、外管の熱収縮によって内管と外
管を機械的に嵌合して造られるが、内外管嵌金時のはめ
あい応力が二重管の品質に大きく影響する。二重管のは
めあい応力が10kgf/+n+++2以上の場合は内
管が抜けたりずれたりすることなく、二重管としての品
質が保たれる。[Prior Art] A double pipe is a pipe material developed for the purpose of corrosion resistance and cost reduction; numerically, the inner pipe is made of a material with excellent corrosion resistance, and the outer pipe is made of carbon steel. The double pipe is special public Sho 5B-464.
As shown in Figure 51, an inner tube and an outer tube with different components and materials made on separate tube manufacturing lines are used, the inner tube is inserted into the heated and expanded outer tube, and pressure is applied inside the inner tube. After expanding the inner tube, the inner tube and outer tube are mechanically fitted together by thermal contraction of the outer tube, but the fitting stress when fitting the inner and outer tubes greatly affects the quality of the double-walled tube. . When the fitting stress of the double tube is 10 kgf/+n+++2 or more, the inner tube does not come off or shift, and the quality of the double tube is maintained.
[発明が解決しようとする課題]
従来、このような製造方法で造られた二重管の内外管の
はめあい応力を、非破壊的に測定する方法としては、特
開昭62−828号公報か知られている。この方法は、
二重管を打撃した際に発生する音響信号を周波数で弁別
することにより、外管と内管のはめあい応力を測定する
ものである。このような従来法では、二重管の保持方法
によって音響信号の周波数が異なることや、測定場所の
騒音などによって周波数弁別精度が低くなる等の問題が
生じていた。[Problems to be Solved by the Invention] Conventionally, a method for non-destructively measuring the fitting stress between the inner and outer tubes of a double-walled tube manufactured by such a manufacturing method is disclosed in Japanese Patent Laid-Open No. 62-828. Are known. This method is
The fitting stress between the outer tube and the inner tube is measured by distinguishing the acoustic signals generated when the double tube is hit by frequency. Such conventional methods have problems such as the frequency of the acoustic signal being different depending on how the double tube is held, and the accuracy of frequency discrimination being lowered due to noise at the measurement location.
本発明は、二重管のはめあい応力が所要値あるか否かの
良否材を確実に安定して選別することを目的とする。The object of the present invention is to reliably and stably select good or bad materials to determine whether the fitting stress of a double pipe is at a required value.
[課題を解決するための手段]
本発明は、互いに異なる成分の金属材料からなる外管と
内管とが嵌合された二重管の外周面に送信変換子および
受信変換子を当て、周波数が20〜500kH2の範囲
の擬似AE倍信号前記送信変換子から送信し、前記二重
管を伝播した該信号を前記受信変換子で受信し、受信し
た擬似AE倍信号波形により前記外管と内管のはめあい
応力の良否を選別することを特徴とする二重管のはめあ
い応力検知方法である。[Means for Solving the Problems] The present invention applies a transmitting transducer and a receiving transducer to the outer circumferential surface of a double tube in which an outer tube and an inner tube made of metal materials of different components are fitted, and the frequency A pseudo AE multiplied signal in the range of 20 to 500 kHz is transmitted from the transmitting converter, the signal propagated through the double tube is received by the receiving converter, and the waveform of the received pseudo AE multiplied signal is used to differentiate between the outer tube and the inner tube. This is a method for detecting fitting stress in double pipes, which is characterized by determining whether the fitting stress in the pipes is good or bad.
以下、本発明の詳細を図面により説明する。第1図に示
すように、パルス発生器1により発生させたパルス信号
は送信変換子4により弾性波つまり擬似AE倍信号変換
され、接触媒質2を介して被測定用二重管3に送信され
る。被測定用二重管3を矢印5の方向に伝播した擬似A
E倍信号、接触媒質2を介して受信変換子6に受信され
、電機信号に変換される。この電気信号は例えば第2図
(a)のようの波形をしており、これをAE計測器7に
より包絡線検波して第2図(b)のような波形にするこ
ともできる。これらのAE波形を信号処理装置8により
ディジタル計測し、そのレベルにより合否選別器9で内
外管のはめあいの良否を判断する。ディジタル計測は、
第2図に示すように、所定のしきい値Thを越えている
波形持続時間T、波形面積Sおよび波形最大振幅値Vp
の何れに対して行なってもよい。Hereinafter, details of the present invention will be explained with reference to the drawings. As shown in FIG. 1, a pulse signal generated by a pulse generator 1 is converted into an acoustic wave, that is, a pseudo AE multiplied signal, by a transmission converter 4, and is transmitted to a double pipe 3 to be measured via a couplant 2. Ru. Pseudo A propagating in the direction of arrow 5 through the double pipe to be measured 3
The E-multiplied signal is received by the reception converter 6 via the couplant 2 and converted into an electrical signal. This electric signal has a waveform as shown in FIG. 2(a), for example, and can be envelope-detected by the AE measuring device 7 to obtain a waveform as shown in FIG. 2(b). These AE waveforms are digitally measured by a signal processing device 8, and based on the level, a pass/fail selector 9 judges whether the fit between the inner and outer tubes is good or bad. Digital measurement is
As shown in FIG. 2, the waveform duration T, the waveform area S, and the waveform maximum amplitude value Vp exceed a predetermined threshold Th.
You can do this for any of the following.
擬似AE倍信号周波数とSN比の関係の一例を第3図に
示す。擬似AE倍信号SN比良< (SN比が10dB
以上)検出するためには周波数20〜500kHzの範
囲にする必要がある。An example of the relationship between the pseudo AE multiplied signal frequency and the SN ratio is shown in FIG. Pseudo AE double signal SN ratio good < (SN ratio is 10dB
Above) In order to detect it, it is necessary to set the frequency in the range of 20 to 500 kHz.
また、送信変換子4および受信変換子6の配置は管軸方
向または管周方向のいずれでもよい。両変換子4.6間
の距離と波形持続時間Tの関係の一例を第4図に示す。Further, the transmitting transducer 4 and the receiving transducer 6 may be arranged in either the tube axis direction or the tube circumferential direction. An example of the relationship between the distance between both transducers 4.6 and the waveform duration T is shown in FIG.
第4図中のAは、二重管のはめあい応力が2.2kgf
/mm2で不足している場合、Bは14.2kgf/n
un2で所要値以上ある場合である。A in Figure 4 indicates that the fitting stress of the double pipe is 2.2 kgf.
/mm2 is insufficient, B is 14.2kgf/n
This is the case where un2 is greater than or equal to the required value.
変換子間距離りが大きくなると、両者ともに波形持続時
間Tは小さくなる。変換子間距離りが0.5m未満だと
AとBの波形持続時間Tの差が小さいために良否の判断
か難しくなる。また、変換子距離りが10m以上の場合
はSN比(受信信号とノズルの比)が低くなり安定した
測定ができ難くなる。従って、変換子間距離りは0.5
m以上、10m未満の範囲にすることが望ましい。As the distance between the transducers increases, the waveform duration T becomes shorter in both cases. If the distance between the transducers is less than 0.5 m, the difference in waveform duration T between A and B is small, making it difficult to judge whether the product is good or bad. Furthermore, if the transducer distance is 10 m or more, the SN ratio (ratio of the received signal to the nozzle) becomes low, making it difficult to perform stable measurements. Therefore, the distance between transducers is 0.5
It is desirable that the distance be within a range of not less than m and less than 10 m.
第5図に破壊試験により求めたはめあい応力と波形持続
時間Tの関係の一例を示す。両者は、このように比例関
係にあるので、例えば所要のはめあい応力を10kgf
/am2とする場合は、波形持続時間Tが4 m5ec
以上の場合を合格とするように合否選別器9をセットす
ればよい。また、二重管のはめあい応力と波形面積Sあ
るいは波形最大振幅vpの間にも比例関係Cあるので、
こられによっても合否を選別することができる。さらに
、受信した擬似AE倍信号波形持続時間T、波形面積S
あるいは波形最大振幅値Vpを信号処理装置8により計
測し、予め求めておいたはめあい応力とこれら多値との
関係からはめあい応力を測定することもできる。FIG. 5 shows an example of the relationship between the fitting stress and the waveform duration T determined by a destructive test. Since the two are in a proportional relationship, for example, the required fitting stress can be set to 10 kgf.
/am2, the waveform duration T is 4 m5ec
The pass/fail selector 9 may be set so that the above cases are accepted. In addition, there is a proportional relationship C between the fitting stress of the double pipe and the waveform area S or the waveform maximum amplitude vp, so
Based on these factors, it is also possible to determine pass/fail. Furthermore, the received pseudo AE multiplied signal waveform duration T, waveform area S
Alternatively, the waveform maximum amplitude value Vp can be measured by the signal processing device 8, and the fitting stress can be measured from the relationship between the fitting stress determined in advance and these multiple values.
[実施例コ
二重管外径88.9QIIllφ、外管肉厚5.0mm
、外管鋼種炭素鋼、内管肉厚1.5開、内管鋼種イン
コネル625の二重管2本について、擬似AE倍信号発
生させて検出AE倍信号波形持続時間Tを検出し、はめ
あいの良否を判断した。測定条件は送信変換子200k
Hz、受信変換子200kHz、変換子開路1111m
、パルス発信周波数20Hzである。[Example double tube outer diameter 88.9QIIllφ, outer tube wall thickness 5.0mm
, for two double-walled tubes with an outer tube steel of carbon steel, an inner tube wall thickness of 1.5 mm, and an inner tube steel of Inconel 625, a pseudo AE multiplied signal is generated, the detected AE multiplied signal waveform duration T is detected, and the fit is determined. I decided whether it was good or bad. Measurement conditions are transmitter converter 200k
Hz, reception converter 200kHz, converter open circuit 1111m
, the pulse oscillation frequency is 20Hz.
はめあい応力の合否を判定した結果、No、 1の二重
管の波形持続時間Tは7.5 m5ecで合格と判断さ
れた。No、1の二重管のはめあい応力を破壊試験によ
って測定した結果、18kgf/rnm2であった。N
o、 2の二重管の波形持続時間Tは2 m5ecで不
合格と判断された。No、2の二重管のはめあい応力を
破壊試験によって測定した結果、4 kgf/mm2で
あった。As a result of determining whether the fitting stress was acceptable or not, the waveform duration T of the No. 1 double tube was determined to be 7.5 m5ec, which was determined to be acceptable. The fitting stress of the double tube No. 1 was measured by a destructive test and was found to be 18 kgf/rnm2. N
o. The waveform duration T of the double tube of 2 was 2 m5ec and was judged to be a failure. The fitting stress of No. 2 double tubes was measured by a destructive test and was found to be 4 kgf/mm2.
[発明の効果]
本発明によれば、音響信号を周波数弁別する従来法に比
べ、二重管の保持方法や測定場所の騒音に関係なく、確
実に二重管のはめあい応力が所要値あるか否かを非破壊
的に判定して良否材を選別でき、二重管の品質保証精度
を大幅に向上させることができる。[Effects of the Invention] According to the present invention, compared to the conventional method of frequency-discriminating acoustic signals, it is possible to reliably check whether the fitting stress of the double tube has the required value regardless of the method of holding the double tube or the noise at the measurement location. It is possible to non-destructively determine whether the material is acceptable or not, and to sort out passable or defective materials, greatly improving the accuracy of quality assurance for double-walled pipes.
第1図は本発明の具体例を示すブロック図、第2図は受
信変換子により検出された波形を示す図、第3図は周波
数とSN比の関係の一例を示す図、第4図は変換子開路
ll!lLと波形持続時間Tの関係の一例を示す図、第
5図は破壊試験により求めたはめあい応力と波形持続時
間Tの関係の一例を示す図である。
1・・・パルス発生器、2・・・接触媒質、3・・・被
測定用二重管、4・・・送信変換子、5・・・矢印、6
・・・受信変換子、7・−AE計測器、8・・・信号処
理装置、9・・・合否選別器、Th・・・しきい値、T
・・・波形持続時間、S・・・波形面積、Vp・・・波
形最大振幅値。FIG. 1 is a block diagram showing a specific example of the present invention, FIG. 2 is a diagram showing a waveform detected by a receiving transducer, FIG. 3 is a diagram showing an example of the relationship between frequency and SN ratio, and FIG. 4 is a diagram showing an example of the relationship between frequency and SN ratio. Converter open circuit ll! FIG. 5 is a diagram showing an example of the relationship between IL and the waveform duration T, and FIG. 5 is a diagram showing an example of the relationship between the fitting stress and the waveform duration T determined by a destructive test. DESCRIPTION OF SYMBOLS 1...Pulse generator, 2...Coupling material, 3...Double tube for measurement, 4...Transmission transducer, 5...Arrow, 6
... Reception converter, 7.-AE measuring device, 8. Signal processing device, 9. Pass/fail selector, Th... Threshold value, T
...Waveform duration, S...Waveform area, Vp...Waveform maximum amplitude value.
Claims (1)
が嵌合された二重管の外周面に送信変換子および受信変
換子を当て、周波数が20〜500kHzの範囲の擬似
AE信号を前記送信変換子から送信し、前記二重管を伝
播した該信号を前記受信変換子で受信し、受信した擬似
AE信号の波形により前記外管と内管のはめあい応力の
良否を選別することを特徴とする二重管のはめあい応力
検知方法。1. A transmitting transducer and a receiving transducer are applied to the outer peripheral surface of a double tube in which an outer tube and an inner tube made of metal materials with different components are fitted, and a pseudo AE signal with a frequency in the range of 20 to 500 kHz is generated. The signal transmitted from the transmitting transducer and propagated through the double tube is received by the receiving transducer, and the quality of the fitting stress between the outer tube and the inner tube is determined based on the waveform of the received pseudo AE signal. Features a method for detecting fitting stress in double pipes.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1211480A JPH0752131B2 (en) | 1989-08-18 | 1989-08-18 | Fitting stress detection method for double pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1211480A JPH0752131B2 (en) | 1989-08-18 | 1989-08-18 | Fitting stress detection method for double pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0375536A true JPH0375536A (en) | 1991-03-29 |
JPH0752131B2 JPH0752131B2 (en) | 1995-06-05 |
Family
ID=16606652
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1211480A Expired - Lifetime JPH0752131B2 (en) | 1989-08-18 | 1989-08-18 | Fitting stress detection method for double pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0752131B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103411711A (en) * | 2013-07-11 | 2013-11-27 | 南京航空航天大学 | Measuring device of tubular part inner wall processing stress and measuring method thereof |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS629241A (en) * | 1985-07-08 | 1987-01-17 | Hitachi Constr Mach Co Ltd | Ultrasonic measuring method for contact stress of hose joint |
-
1989
- 1989-08-18 JP JP1211480A patent/JPH0752131B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS629241A (en) * | 1985-07-08 | 1987-01-17 | Hitachi Constr Mach Co Ltd | Ultrasonic measuring method for contact stress of hose joint |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103411711A (en) * | 2013-07-11 | 2013-11-27 | 南京航空航天大学 | Measuring device of tubular part inner wall processing stress and measuring method thereof |
Also Published As
Publication number | Publication date |
---|---|
JPH0752131B2 (en) | 1995-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6968727B2 (en) | Calibration method and device for long range guided wave inspection of piping | |
EP1344044B1 (en) | Method for ultrasonically detecting multiple types of corrosion | |
US5970434A (en) | Method for determining average wall thickness for pipes and tubes using guided waves | |
US6624628B1 (en) | Method and apparatus generating and detecting torsional waves for long range inspection of pipes and tubes | |
US5035143A (en) | Method of detecting creep swelling | |
US6000288A (en) | Determining average wall thickness and wall-thickness variation of a liquid-carrying pipe | |
AU598704B2 (en) | Method for detecting corrosion on conductive containers | |
US7565252B2 (en) | Method for automatic differentiation of weld signals from defect signals in long-range guided-wave inspection using phase comparison | |
US5661241A (en) | Ultrasonic technique for measuring the thickness of cladding on the inside surface of vessels from the outside diameter surface | |
JPH0431064B2 (en) | ||
US4577487A (en) | Pressure vessel testing | |
US4890496A (en) | Method and means for detection of hydrogen attack by ultrasonic wave velocity measurements | |
KR20050026403A (en) | Ultrasonic testing of fitting assembly | |
US4531409A (en) | Test system for defect determination in welding seams | |
JPS60104255A (en) | Device and method for inspecting solid under nondestructive state | |
EP1271097A2 (en) | Method for inspecting clad pipe | |
JPH04230846A (en) | Method and apparatus for inspecting metal tube using eddy current | |
JPH0375536A (en) | Double pipe fitting stress detection method | |
RU2089896C1 (en) | Method of examination of defects of pipe-lines and device for its implementation | |
CN113720765B (en) | Method and system for detecting corrosion state of gas pipeline | |
JPH0752132B2 (en) | Double pipe fitting stress detector | |
JP2000321041A (en) | Method for detecting carburized layer and method for measuring its thickness | |
JP3729686B2 (en) | Defect detection method for piping | |
RU2141648C1 (en) | Process evaluating safety margin of loaded material | |
JP2008026162A (en) | Inspection method for inspecting deterioration state of embedded pipe |